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Spin Locks and Contention 

• In contrast to uniprocessor programming, in 
multiprocessor programming, it is crucial to 
understand the underlying machine 
architecture. 
 

• What do you do if you cannot acquire the lock 
(i.e., if you cannot enter the critical section)? 
– Spinning (or busy waiting) 

• Sensible when you expect the lock delay to be short 
– Blocking 

• Sensible when you expect the lock delay to be long 

• Many Operating Systems (OS) apply a 
combination of both techniques 

• Here, we turn our attention to spin locks. 
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Welcome to Real World:   
Peterson’s algorithm 

Experiment 

• In practice, once both threads have finished 
  the execution of the 5000000 accesses to  
  the CS, we may discover that the shared  
  counter’s final value may be slightly off from  
  the expected value. 

 Even if this is a tiny error, why is there  
     any error at all?  

shared int count = shared int count = 00;;  
  
Code for Process pCode for Process pii  

  
while (lcnt++ < while (lcnt++ < 55..000000..000000) {) {  
            i = ThreadId.get(); i = ThreadId.get(); // either // either 0 0 or or 11  

            flag[i] = trueflag[i] = true  
            turn = turn = 11--ii  
            while (flag[while (flag[11--i] and turn == i] and turn == 11--i)i)  
                      noop;noop;    
  
            count++; count++;   // critical section// critical section  
  

            flag[i] = falseflag[i] = false  
  
              remainder section;remainder section;  
}}  

 

 Compilers re-order instructions to enhance  
    performance! 

 Program order is preserved for each  
    individual variable but not always  
    across multiple variables. 

 Due to hardware, writes to multiprocessor  
   memory do not necessarily take effect when they are issued! 

 Writes to shared memory are buffered in a special write (or store) buffer,  
    to be written to memory only when needed.  
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Welcome to Real World 
Memory Fences (or memory barriers) 
• A memory fence forces outstanding 

operations to take effect! 
• It is usually an expensive operation! 
• Stronger primitives, like Get&Set() 

or Compare&Swap(), as well as reads 
and writes to volatile vars do not 
cause such errors (usually because 
they are implemented using memory 
fences). 

ATOMIC boolean  
            Test&Set(MemoryByte *pB) { 
    boolean tmp = *pB; 
    *pB = 1; 
    return tmp; 
} 
 

ATOMIC void Reset(MemoryByte *pB) { 
    *pB = 0; 
} 

ATOMIC Value  
     Get&Set(MemoryWord *pW, Value nv) {  
      Value tmp = *pW;  
      *pW = nv;  
      return tmp;   
} 

ATOMIC boolean Compare&Swap( 
MemoryWord *pW, Value old, Value new) {  
     Value tmp = *pW;  
     if (*pW == old) {  
         *pW = new;      
         return TRUE;    
     }  
     return FALSE;  
} 

ATOMIC int Fetch&Inc(MemoryWord *pW) {  
     int tmp = *pW;  
    *pW = *pW + 1;  
    return tmp;  
} 

 Given that memory fences cost as much as synchronization instructions, it 
may make sense to design ME algorithms directly from such synchronization 
primitives! 
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The TAS and TTAS Locks 
 

THE TAS LOCK 
 
void lock(MemoryByte *pB) { 
 

 while (Test&Set(pB)) noop;
  

            // wait until Test&Set(pB) returns 0 
} 

 
void unlock(MemoryByte *pB) { 
 

    reset(pB);  
} 

 
Theorem 
The algorithm above is a correct 

ME  algorithm.  
 
• Is it possible for some process 

to starve in this algorithm? 
 

 
The TTAS Lock 
 
void lock(MemoryByte *pB) { 
    while (TRUE) { 
         while (*pB == TRUE) noop; 
         if (Test&Set(pB) == FALSE)  
   return; 
    } 
} 

 
void unlock(MemoryByte *pB) { 
    reset(pB);  
} 
 

Theorem 
The algorithm above is a 

correct ME  algorithm.  
 

 
 The TAS and TTAS Locks are equivalent in terms of correctness!  
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The TAS and TTAS Locks 

 But are they equivalent in terms of 
performance?  
 

• The TAS Lock performs very poorly! 
• The TTAS Lock performs substantially better 

but still falls far short from the ideal! 
 

The TAS Lock – Some remarks 
• Each Test&Set() call causes: 

–  a broadcast on the bus, and 
– all other processors to discard their own 

cached copies of the lock! 
• Additionally, when the thread holding the lock 

tries to release it, it may be delayed due to 
bus traffic caused by the spinners! 

 
The TTAS Lock – Some important points 
• What happens the first time a thread B 

reads the lock? 
• What happens each time B rereads the lock 

(finding it occupied)? 
• Is a thread that releases the lock delayed 

by other threads? 
• What happens when the lock is released by 

its holder thread  A? 
 

 

 

 

 

 

Ideal 
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# of threads 

TTAS 

TAS 

Figure B.4: M. Herlihy and N. Shavit, The Art of 
Multiprocessor Programming, Morgan Kauffman, 2008  
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Exponential Backoff 
The idea 
• If some other thread acquires the lock 

between the read step and the Test&Set 
step in the TTAS algorithm, there is 
probably high contention for the lock. 
Therefore, we’ll back off for some time, 
giving to the competing threads a chance 
to finish. 
 

How long should the thread backoff before it 
retries? 

• The larger the number of unsuccessful 
tries, the higher the likely contention and 
the longer the thread should backoff. 

 
Strategy 
• The thread backoffs for a random 

duration. 
• Each time the thread tries and fails to 

get the lock, it doubles the expected 
back-off time, up to a fixed maximum. 
 

#define MIN_DELAY … 
#define MAX_DELAY … 

void BackOff(void) { 
    static int limit = MIN_DELAY; 
    int delay = rand_next(limit); 
     // if 0 < limit < 32, that many low-order bits of the 
      // returned value will be independently chosen bit  

      //values  

    limit = min{MAX_DELAY, 2*limit); 
    usleep(delay); 
}  
The Exponential BackOff TTAS Lock 
 
void lock(MemoryByte *pB) { 
    while (TRUE) { 
         while (*pB == TRUE) noop; 
         if (Test&Set(pB) == FALSE)  

   return; 
    else BackOff(); 

    } 
} 
void unlock(MemoryByte *pB) { 
    reset(pB);      } 

 



ΗΥ586 - Panagiota Fatourou 8 

Exponential Backoff 
Advantages 
• Easy to implement 
• Has better performance than  

TTAS Lock 
 
Drawbacks 
• Must choose parameters carefully 
• Not portable across different architectures 
 
Problems 
• Cache-Coherence Traffic  

– All threads spin on the same shared location causing cache-
coherence traffic on every successful lock access. 

• Critical Section Underutilization  
– Threads might back off for too long causing the critical 

section to be underutilized. 

Backoff TTAS 
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Queue Locks 

Idea 

• A queue is formed. 
– In a queue, every thread can learn if his turn 

has arrived by checking whether his 
predecessor has finished. 

 

– A queue has better utilization of the critical 
section because there is no need a thread to 
guess when is its turn. 
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Anderson’s Algorithm: The Array-Based Lock 

#define n <number-of-processes>  
 
shared integer Tail = 0;  
shared BOOLEAN flag[n] =  
          {TRUE,FALSE,FALSE,... ,FALSE};  
 
/* Code for process $p_i$ */  

int slot = -1;  /* global variable for process $p_i$; */  
 

void lock(void) {  
 slot = Fetch&Inc(&Tail);  
 while (!Flag[slot % n]) noop;  
}  
 
void unlock(void) {  
 flag[slot % n] = FALSE;  
 flag[(slot + 1) % n] = TRUE;  
} 

FALSE FALSE TRUE FALSE FALSE FALSE FALSE 

The Flag Array 

0 

Tail 

1 n-1 



ΗΥ586 - Panagiota Fatourou 11 

Anderson’s Algorithm: The Array-Based 
Lock 

Advantages 

 At any given time, each thread spins on 
its locally cached copy of a single array 
location  

 Shorter handover than backoff 

 Curve is practically flat 

 Better Scalability 

 FIFO Fairness Anderson’s queue 

Backoff TTAS 

 

 

 

 

 

ti
m

e
 

# of threads 

TTAS 



ΗΥ586 - Panagiota Fatourou 12 

Anderson’s Algorithm: The Array-Based Lock 

Drawbacks 

 Padding is required, so 
that distinct elements 
are mapped to distinct 
cache lines in order 
for false sharing to be 
avoided.  

Figure 7.8: M. Herlihy and N. Shavit, The Art of 
Multiprocessor Programming, Morgan Kauffman, 2008  
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Anderson’s Algorithm: The Array-Based Lock 

Drawbacks 
• Not very space-efficient.  

– It allocates an array of size O(n) per lock. Synchronizing L 
distinct objects requires O(Ln) space, even if a thread 
accesses only one lock at a time  

• On cache-less NUMA architectures, the algorithm does not 
have a good performance since spinning during lock() might be 
performed on a remote variable  

 

 

Cache-less NUMA architecture SMP architecture with caches 

Figure B.4: M. Herlihy and N. Shavit, The Art of 
Multiprocessor Programming, Morgan Kauffman, 2008  
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The CLH Lock 
A more space-efficient Algorithm 

typedef struct node {  
 BOOLEAN locked;  
} NODE;  
 

 
shared NODE *Tail;  
/* initially, points to a NODE n with n.locked == FALSE */  
 

 
/* Section of global variables for process $p_i$ */  

NODE *MyNode, *MyPred = NULL;    
            /* Variable MyNode initially points to a struct NODE  
 

void lock(void) {  
 MyNode->locked = TRUE;  
 MyPred = Get&Set(&Tail, MyNode);  
 while (MyPred->locked == TRUE) noop;  
}  
 

void unlock(void) {  
 MyNode->locked = FALSE;  
 MyNode = MyPred;   
                         /* recycling of nodes */  

} 

Brief DescriptionBrief Description  
  An implicit list of NODES isAn implicit list of NODES is  
        created. Each thread allocatescreated. Each thread allocates  
        just one NODE. just one NODE.   
  NODEs are not connected toNODEs are not connected to  
        each other. Rather, each threadeach other. Rather, each thread  
        refers to its predecessor threadrefers to its predecessor thread  
        through a (nonthrough a (non--shared) globalshared) global  
        variable, called MyPred. variable, called MyPred.   
  NODEs are reNODEs are re--cycled by havingcycled by having  
        each thread using the NODE each thread using the NODE   
        pointed to by its MyPredpointed to by its MyPred  
        Variable as its current NODEVariable as its current NODE  
        the next time it requires thethe next time it requires the  
        lock. lock.   
  An initial NODE is placed in theAn initial NODE is placed in the  
        queue implementing each lock.queue implementing each lock.  
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The CLH Lock 

initially 

A: unlock() 
B: lock() 

Figure 7.11: M. Herlihy and N. Shavit, The Art of 
Multiprocessor Programming, Morgan Kauffman, 2008  
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The CLH Lock 

 
 

Advantages 
 Requires much less space than the Anderson’s algorithm  

 Synchronizing L distinct objects requires O(L+n) space 
(much better than the Array-based Lock).  

 Does not require knowledge of the number of processes 
that might access the lock.  

 Has all the performance advantages of the Anderson’s 
algorithm.  

 
Drawbacks 
 Like Anderson’s algorithm, on cache-less NUMA 

architectures, the CLH algorithm does not have good 
performance since it causes a lot of Remote Memory 
References (RMRs); i.e., spinning is performed on a 
remote variable. 
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The MCS Lock 
typedef struct node {  
 BOOLEAN locked;  
 struct node *next;  
} NODE;  
 
/* shared variables section */  
shared NODE *Tail = NULL;  
 
/* Section of global variables for process $p_i$ */  
NODE *MyNode, *MyPred = NULL;   
/* Variable MyNode initially points to a NODE */  
 

void lock {  
 MyPred = Get&Set(&Tail, MyNode);  
 if (MyPred != NULL) {  
  MyNode->locked = TRUE;  
  MyPred->next = MyNode;  
  while (MyNode->locked) noop;  
 }  
}  
 

void unlock {  
 if (MyNode->next == NULL) {  
  if (Compare&Swap(&Tail, MyNode, NULL) == TRUE) return; 
   while (MyNode->next == NULL) noop;  
 }  
 MyNode->next->locked = FALSE;  
 MyNode->next = NULL;  

}  

Major IdeasMajor Ideas  
  The created list of NODEs is now The created list of NODEs is now   
        explicit. explicit.   
  Each thread does not spin on the Each thread does not spin on the   
        NODE pointed to by MyPred but on NODE pointed to by MyPred but on   
        that pointed to by MyNode (which is athat pointed to by MyNode (which is a  
        variable in the thread's local memory) variable in the thread's local memory)   
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The MCS Lock 

initially 

A: unlock() 
B: lock() 

Figure 7.14: M. Herlihy and N. Shavit, The Art of 
Multiprocessor Programming, Morgan Kauffman, 2008  
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The MCS Lock 

Advantages 
 Each unlock causes just one invalidation (as 

with CLH)  
 Lock/Unlock causes just O(1) RMRs on a 

NUMA architecture 
 Recycling can be applied (as in CLH) to obtain 

space overhead O(n) 
 

Drawbacks 
 Releasing a lock requires spinning. 
 The algorithm executes more reads and 

writes to execute lock/unlock, and it requires 
Compare&Swap() for unlock.  

J. Mellor-Crumney and M. Scott, “Algorithms for Scalable Synchronization on shared-memory multiprocessors”, ACM Transactions on Computer 
Systems, 9(1):21-65, 1991. 
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Lower Bounds 
Fetch&Φ Primitives 
atomic Value fetch&φ(MemoryWord *pW, InputStruct input) { 
 old = *pW; 
 *pW = φ(old, input); 
 return(old); 
} 

 
• A comparison primitive conditionally updates a shared variable after 

first testing that its value meets some condition. 
– Compare&Swap() 
– Test&Set() 

 

• Non-comparison primitives update variables unconditionally 
– Fetch&Increment, Fetch&Add 
– Fetch&Store 

 

• Lower Bound [Anderson & Kim, J. of Parallel and Distributed 
Computing] 

 Any n-process mutual exclusion algorithm based on reads, writes and 
comparison primitives causes Ω(logn / log log n) remote memory 
references. 

 

• Several algorithms with constant RMR complexity exist when non-
comparison primitives are used. A generic algorithm using (any non-
comparison) fetch&φ  primitive is presented by Anderson and Kim. 
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Drawbacks of Queue Locks 

• They perform well only in cases of no 
oversubscribing  

• If oversubscribing occurs, their 
performance deteriorates significantly 

• Binding may also affect their 
performance  
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One Lock To Rule Them All? 
 

• TTAS+Backoff, CLH, MCS. 
 

• Each better than others in some way 
 

• There is not one solution 
 

• Lock we pick really depends on: 
–  the application 
–  the hardware 
–  which properties are important 
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The Basics of the Combining 
Technique 

• A thread attempts to become a combiner and 
serve in addition to its own request, active 
requests by other threads 

• After announcing their requests , other 
threads may: 
– either perform the same actions (although not 

always “successfully”)  
• synchronization by employing CAS or other similar 

primitives 

– or perform local spinning until the combiner 
performs their requests 

• synchronization by employing a coarse-grain lock 

23 Concurrent Computing   1st Seminar   Panagiota Fatourou 
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Blocking Combining: CC-Synch 

Tail 

dummy node 

Initially 

new dummy node node assigned to p1 

= nill next  

req =  

ret =  

wait = F 

completed = F 

next  

req = <reqh-1> 

ret =  

wait = T 

completed = F 

next  

req = <reqh> 

ret =  

wait = T 

completed = F 

next  

req =  

ret =  

wait = T 

completed = F 

= nill 

… 
= nill = nill 

… 
= nill next  

req =  

ret =  

wait = F 

completed = F 

next  

req =  

ret =  

wait = T 

completed = F 

node 0 node h-1 node h-2 

next  

req =  

ret =  

wait = T 

completed = F 

node 1 

next  

req =  

ret =  

wait = T 

completed = F 

node m 

thread p1 

= nill 

= nill 

thread p2 

= nill 

req1 
req2 

new dummy node 

thread ph-1 
thread ph 

node assigned to p2 new dummy node 

F 

T 

F 

T 

F F 

Swap object 

32 Revisiting the Combining Synchronization Technique P. Fatourou & N. Kallimanis PPoPP’12 
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Properties of CC-Synch 

Fairness 
• CC-Synch provides a strong notion of fairness: it serves requests in the 

order they enter the announced list. 
 
Progress 
• In CC-Synch, no thread ever starves. 
 
Performance 
• The lock is implemented using a highly-efficient queue-like lock. 

 
• CC-Synch is the first that provides bounds on the number of RMRs it 

executes: 
– A combiner thread performs O(h+t) RMRs, where h is an upper bound on the 

number of requests that a combiner may serve, and t is the size of the 
shared data that should be accessed in order to execute the h requests.  

– Other threads perform just a constant number of RMRs.  
– The amortized number of RMRs performed is O(d), where d is the average 

number of RMRs required to serve a single request.  
 
Required Primitives 
• Only a swap object is used (no CAS) and r/w registers. 

33 Revisiting the Combining Synchronization Technique P. Fatourou & N. Kallimanis PPoPP – Feb 2012 
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Hierarchically Structured systems 
The H-Synch Algorithm 

• H-Synch is an 
hierarchical version 
of CC-Synch  

 Exploits 
hierarchical 
communication 
nature to achieve 
better performance 

 

Fast communication  Fast communication  

Fast communication  Fast communication  

cluster 1 cluster 2 

cluster 4 cluster 3 

34 Revisiting the Combining Synchronization Technique P. Fatourou & N. Kallimanis PPoPP’12 
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H-Synch – More Details 

combiner 

combiner combiner 

combiner 

CLH queue lock 

CC-Synch instance CC-Synch instance 

CC-Synch instance 
CC-Synch instance 

serves all requests 
initialized in its cluster 

35 Revisiting the Combining Synchronization Technique P. Fatourou & N. Kallimanis PPoPP’12 
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Experimental Analysis 

Machines on which the experiments were 
performed 

• 32-core machine consisting of 4 AMD 
Opteron 6134 processors (Magny Cours) 

• 128-way Sun consisting of 2 UltraSPARC-
T2 processors (Niagara 2) 

 
Synchronization approaches that were 

compared 
• CC-synch and DSM-Synch 
• P-Sim (Fatourou and Kallimanis, SPAA 

2011) 
• Flat-combining 
• CLH-spin locks 
• OyamaAlg 
• Simple lock-free implementation 
• H-Synch and Hierarchical NUMA lock 

(Marathe et al., SPAA 2011) in Niagara 2 
machines 

Experiment 

A simple Fetch&Multiply 
object is simulated: 

We measure the average 
throughput (number of 
Fetch&Multiply executed 
per second) that each 
approach exhibits when it 
executes 107 Fetch&Multiply 
requests for different 
values of n. 

A random number of dummy 
loop iterations are executed 
between the execution of 
two consecutive 
Fetch&Multoply by the same 
thread. 

 

36 Revisiting the Combining Synchronization Technique P. Fatourou & N. Kallimanis PPoPP – Feb 2012 
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Experimental Analysis 
Niagara 2 

CC-Synch and DSM-Synch are  
 1.4 faster than flat-combining CC-Synch slightly outperforms 
even the hierarchical NUMA lock! 

H-Synch is 2.65 times faster than 
the hierarchical NUMA lock and 3 
times faster than flat-combining 

37 Revisiting the Combining Synchronization Technique P. Fatourou & N. Kallimanis PPoPP’12 
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Cache Misses – Memory Stalls 

Algorithm cache misses 
cpu cycles spent in 

memory stalls 

CC-Synch 4.1 2747 

Flat-combining 5.8 6501 

Revisiting the Combining Synchronization Technique P. Fatourou & N. Kallimanis PPoPP – Feb 2012 38 
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Why is CC-Synch Efficient? 
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39 Concurrent Computing   1st Seminar   Panagiota Fatourou 
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Scheduling-Aware  
Synchronization 

HYDRA 
• Blocking combining  

implementation  
– employs user-level threads  
– schedules them appropriately 

 

PSimX  
• Simple (wait-free) variant of PSim employing user-

level threads 
 

Performance Advantages 
• The throughput of HYDRA is better than that of CC-

Synch by a multiplicative factor of up to 7.9 
• The throughput of PSimX is better than that of PSim 

by a multiplicative factor of up to 5.6.  
• The throughput of HYDRA and PSimX are very close 

to the ideal. 

40 Scheduling-Aware Synchronization  P. Fatourou & N. Kallimanis 
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PART III: Limitations of the 
Combining Technique 

• What is the cost to apply 
k concurrent search 
operations on a tree? 
 

• A “sophisticated” 
concurrent 
implementation could 
allow multiple searches 
proceeding in parallel and 
being executed in O(h) 
time in total, where h is 
the height of the tree. 
 
 
 

A 

B C 

D E F 

G H 
I J 

K 

41 Highly Efficient Concurrent Data Structures – Panagiota Fatourou 
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