
HELLENIC REPUBLIC
UNIVERSITY OF CRETE

Distributed Computing
Graduate Course

Section 3: Spin Locks and Contention

Panagiota Fatourou
Department of Computer Science

ΗΥ586 - Panagiota Fatourou 2

Spin Locks and Contention

• In contrast to uniprocessor programming, in
multiprocessor programming, it is crucial to
understand the underlying machine
architecture.

• What do you do if you cannot acquire the lock
(i.e., if you cannot enter the critical section)?
– Spinning (or busy waiting)

• Sensible when you expect the lock delay to be short
– Blocking

• Sensible when you expect the lock delay to be long

• Many Operating Systems (OS) apply a
combination of both techniques

• Here, we turn our attention to spin locks.

ΗΥ586 - Panagiota Fatourou 3

Welcome to Real World:
Peterson’s algorithm

Experiment

• In practice, once both threads have finished
 the execution of the 5000000 accesses to
 the CS, we may discover that the shared
 counter’s final value may be slightly off from
 the expected value.

 Even if this is a tiny error, why is there
 any error at all?

shared int count = shared int count = 00;;

Code for Process pCode for Process pii

while (lcnt++ < while (lcnt++ < 55..000000..000000) {) {
 i = ThreadId.get(); i = ThreadId.get(); // either // either 0 0 or or 11

 flag[i] = trueflag[i] = true
 turn = turn = 11--ii
 while (flag[while (flag[11--i] and turn == i] and turn == 11--i)i)
 noop;noop;

 count++; count++; // critical section// critical section

 flag[i] = falseflag[i] = false

 remainder section;remainder section;
}}

 Compilers re-order instructions to enhance
 performance!

 Program order is preserved for each
 individual variable but not always
 across multiple variables.

 Due to hardware, writes to multiprocessor
 memory do not necessarily take effect when they are issued!

 Writes to shared memory are buffered in a special write (or store) buffer,
 to be written to memory only when needed.

ΗΥ586 - Panagiota Fatourou 4

Welcome to Real World
Memory Fences (or memory barriers)
• A memory fence forces outstanding

operations to take effect!
• It is usually an expensive operation!
• Stronger primitives, like Get&Set()

or Compare&Swap(), as well as reads
and writes to volatile vars do not
cause such errors (usually because
they are implemented using memory
fences).

ATOMIC boolean
 Test&Set(MemoryByte *pB) {
 boolean tmp = *pB;
 *pB = 1;
 return tmp;
}

ATOMIC void Reset(MemoryByte *pB) {
 *pB = 0;
}

ATOMIC Value
 Get&Set(MemoryWord *pW, Value nv) {
 Value tmp = *pW;
 *pW = nv;
 return tmp;
}

ATOMIC boolean Compare&Swap(
MemoryWord *pW, Value old, Value new) {
 Value tmp = *pW;
 if (*pW == old) {
 *pW = new;
 return TRUE;
 }
 return FALSE;
}

ATOMIC int Fetch&Inc(MemoryWord *pW) {
 int tmp = *pW;
 *pW = *pW + 1;
 return tmp;
}

 Given that memory fences cost as much as synchronization instructions, it
may make sense to design ME algorithms directly from such synchronization
primitives!

ΗΥ586 - Panagiota Fatourou 5

The TAS and TTAS Locks

THE TAS LOCK

void lock(MemoryByte *pB) {

 while (Test&Set(pB)) noop;

 // wait until Test&Set(pB) returns 0
}

void unlock(MemoryByte *pB) {

 reset(pB);
}

Theorem
The algorithm above is a correct

ME algorithm.

• Is it possible for some process

to starve in this algorithm?

The TTAS Lock

void lock(MemoryByte *pB) {
 while (TRUE) {
 while (*pB == TRUE) noop;
 if (Test&Set(pB) == FALSE)
 return;
 }
}

void unlock(MemoryByte *pB) {
 reset(pB);
}

Theorem
The algorithm above is a

correct ME algorithm.

 The TAS and TTAS Locks are equivalent in terms of correctness!

ΗΥ586 - Panagiota Fatourou 6

The TAS and TTAS Locks

 But are they equivalent in terms of
performance?

• The TAS Lock performs very poorly!
• The TTAS Lock performs substantially better

but still falls far short from the ideal!

The TAS Lock – Some remarks
• Each Test&Set() call causes:

– a broadcast on the bus, and
– all other processors to discard their own

cached copies of the lock!
• Additionally, when the thread holding the lock

tries to release it, it may be delayed due to
bus traffic caused by the spinners!

The TTAS Lock – Some important points
• What happens the first time a thread B

reads the lock?
• What happens each time B rereads the lock

(finding it occupied)?
• Is a thread that releases the lock delayed

by other threads?
• What happens when the lock is released by

its holder thread A?

Ideal

ti
m

e

of threads

TTAS

TAS

Figure B.4: M. Herlihy and N. Shavit, The Art of
Multiprocessor Programming, Morgan Kauffman, 2008

ΗΥ586 - Panagiota Fatourou 7

Exponential Backoff
The idea
• If some other thread acquires the lock

between the read step and the Test&Set
step in the TTAS algorithm, there is
probably high contention for the lock.
Therefore, we’ll back off for some time,
giving to the competing threads a chance
to finish.

How long should the thread backoff before it
retries?

• The larger the number of unsuccessful
tries, the higher the likely contention and
the longer the thread should backoff.

Strategy
• The thread backoffs for a random

duration.
• Each time the thread tries and fails to

get the lock, it doubles the expected
back-off time, up to a fixed maximum.

#define MIN_DELAY …
#define MAX_DELAY …

void BackOff(void) {
 static int limit = MIN_DELAY;
 int delay = rand_next(limit);
 // if 0 < limit < 32, that many low-order bits of the
 // returned value will be independently chosen bit

 //values

 limit = min{MAX_DELAY, 2*limit);
 usleep(delay);
}
The Exponential BackOff TTAS Lock

void lock(MemoryByte *pB) {
 while (TRUE) {
 while (*pB == TRUE) noop;
 if (Test&Set(pB) == FALSE)

 return;
 else BackOff();

 }
}
void unlock(MemoryByte *pB) {
 reset(pB); }

ΗΥ586 - Panagiota Fatourou 8

Exponential Backoff
Advantages
• Easy to implement
• Has better performance than

TTAS Lock

Drawbacks
• Must choose parameters carefully
• Not portable across different architectures

Problems
• Cache-Coherence Traffic

– All threads spin on the same shared location causing cache-
coherence traffic on every successful lock access.

• Critical Section Underutilization
– Threads might back off for too long causing the critical

section to be underutilized.

Backoff TTAS

Ideal

ti
m

e

of threads

TAS

TTAS

ΗΥ586 - Panagiota Fatourou 9

Queue Locks

Idea

• A queue is formed.
– In a queue, every thread can learn if his turn

has arrived by checking whether his
predecessor has finished.

– A queue has better utilization of the critical
section because there is no need a thread to
guess when is its turn.

ΗΥ586 - Panagiota Fatourou 10

Anderson’s Algorithm: The Array-Based Lock

#define n <number-of-processes>

shared integer Tail = 0;
shared BOOLEAN flag[n] =
 {TRUE,FALSE,FALSE,... ,FALSE};

/* Code for process p_i */

int slot = -1; /* global variable for process p_i; */

void lock(void) {
 slot = Fetch&Inc(&Tail);
 while (!Flag[slot % n]) noop;
}

void unlock(void) {
 flag[slot % n] = FALSE;
 flag[(slot + 1) % n] = TRUE;
}

FALSE FALSE TRUE FALSE FALSE FALSE FALSE

The Flag Array

0

Tail

1 n-1

ΗΥ586 - Panagiota Fatourou 11

Anderson’s Algorithm: The Array-Based
Lock

Advantages

 At any given time, each thread spins on
its locally cached copy of a single array
location

 Shorter handover than backoff

 Curve is practically flat

 Better Scalability

 FIFO Fairness Anderson’s queue

Backoff TTAS

ti
m

e

of threads

TTAS

ΗΥ586 - Panagiota Fatourou 12

Anderson’s Algorithm: The Array-Based Lock

Drawbacks

 Padding is required, so
that distinct elements
are mapped to distinct
cache lines in order
for false sharing to be
avoided.

Figure 7.8: M. Herlihy and N. Shavit, The Art of
Multiprocessor Programming, Morgan Kauffman, 2008

ΗΥ586 - Panagiota Fatourou 13

Anderson’s Algorithm: The Array-Based Lock

Drawbacks
• Not very space-efficient.

– It allocates an array of size O(n) per lock. Synchronizing L
distinct objects requires O(Ln) space, even if a thread
accesses only one lock at a time

• On cache-less NUMA architectures, the algorithm does not
have a good performance since spinning during lock() might be
performed on a remote variable

Cache-less NUMA architecture SMP architecture with caches

Figure B.4: M. Herlihy and N. Shavit, The Art of
Multiprocessor Programming, Morgan Kauffman, 2008

ΗΥ586 - Panagiota Fatourou 14

The CLH Lock
A more space-efficient Algorithm

typedef struct node {
 BOOLEAN locked;
} NODE;

shared NODE *Tail;
/* initially, points to a NODE n with n.locked == FALSE */

/* Section of global variables for process p_i */

NODE *MyNode, *MyPred = NULL;
 /* Variable MyNode initially points to a struct NODE

void lock(void) {
 MyNode->locked = TRUE;
 MyPred = Get&Set(&Tail, MyNode);
 while (MyPred->locked == TRUE) noop;
}

void unlock(void) {
 MyNode->locked = FALSE;
 MyNode = MyPred;
 /* recycling of nodes */

}

Brief DescriptionBrief Description
 An implicit list of NODES isAn implicit list of NODES is
 created. Each thread allocatescreated. Each thread allocates
 just one NODE. just one NODE.
 NODEs are not connected toNODEs are not connected to
 each other. Rather, each threadeach other. Rather, each thread
 refers to its predecessor threadrefers to its predecessor thread
 through a (nonthrough a (non--shared) globalshared) global
 variable, called MyPred. variable, called MyPred.
 NODEs are reNODEs are re--cycled by havingcycled by having
 each thread using the NODE each thread using the NODE
 pointed to by its MyPredpointed to by its MyPred
 Variable as its current NODEVariable as its current NODE
 the next time it requires thethe next time it requires the
 lock. lock.
 An initial NODE is placed in theAn initial NODE is placed in the
 queue implementing each lock.queue implementing each lock.

ΗΥ586 - Panagiota Fatourou 15

The CLH Lock

initially

A: unlock()
B: lock()

Figure 7.11: M. Herlihy and N. Shavit, The Art of
Multiprocessor Programming, Morgan Kauffman, 2008

ΗΥ586 - Panagiota Fatourou 16

The CLH Lock

Advantages
 Requires much less space than the Anderson’s algorithm

 Synchronizing L distinct objects requires O(L+n) space
(much better than the Array-based Lock).

 Does not require knowledge of the number of processes
that might access the lock.

 Has all the performance advantages of the Anderson’s
algorithm.

Drawbacks
 Like Anderson’s algorithm, on cache-less NUMA

architectures, the CLH algorithm does not have good
performance since it causes a lot of Remote Memory
References (RMRs); i.e., spinning is performed on a
remote variable.

ΗΥ586 - Panagiota Fatourou 17

The MCS Lock
typedef struct node {
 BOOLEAN locked;
 struct node *next;
} NODE;

/* shared variables section */
shared NODE *Tail = NULL;

/* Section of global variables for process p_i */
NODE *MyNode, *MyPred = NULL;
/* Variable MyNode initially points to a NODE */

void lock {
 MyPred = Get&Set(&Tail, MyNode);
 if (MyPred != NULL) {
 MyNode->locked = TRUE;
 MyPred->next = MyNode;
 while (MyNode->locked) noop;
 }
}

void unlock {
 if (MyNode->next == NULL) {
 if (Compare&Swap(&Tail, MyNode, NULL) == TRUE) return;
 while (MyNode->next == NULL) noop;
 }
 MyNode->next->locked = FALSE;
 MyNode->next = NULL;

}

Major IdeasMajor Ideas
 The created list of NODEs is now The created list of NODEs is now
 explicit. explicit.
 Each thread does not spin on the Each thread does not spin on the
 NODE pointed to by MyPred but on NODE pointed to by MyPred but on
 that pointed to by MyNode (which is athat pointed to by MyNode (which is a
 variable in the thread's local memory) variable in the thread's local memory)

ΗΥ586 - Panagiota Fatourou 18

The MCS Lock

initially

A: unlock()
B: lock()

Figure 7.14: M. Herlihy and N. Shavit, The Art of
Multiprocessor Programming, Morgan Kauffman, 2008

ΗΥ586 - Panagiota Fatourou 19

The MCS Lock

Advantages
 Each unlock causes just one invalidation (as

with CLH)
 Lock/Unlock causes just O(1) RMRs on a

NUMA architecture
 Recycling can be applied (as in CLH) to obtain

space overhead O(n)

Drawbacks
 Releasing a lock requires spinning.
 The algorithm executes more reads and

writes to execute lock/unlock, and it requires
Compare&Swap() for unlock.

J. Mellor-Crumney and M. Scott, “Algorithms for Scalable Synchronization on shared-memory multiprocessors”, ACM Transactions on Computer
Systems, 9(1):21-65, 1991.

ΗΥ586 - Panagiota Fatourou 20

Lower Bounds
Fetch&Φ Primitives
atomic Value fetch&φ(MemoryWord *pW, InputStruct input) {
 old = *pW;
 *pW = φ(old, input);
 return(old);
}

• A comparison primitive conditionally updates a shared variable after

first testing that its value meets some condition.
– Compare&Swap()
– Test&Set()

• Non-comparison primitives update variables unconditionally
– Fetch&Increment, Fetch&Add
– Fetch&Store

• Lower Bound [Anderson & Kim, J. of Parallel and Distributed
Computing]

 Any n-process mutual exclusion algorithm based on reads, writes and
comparison primitives causes Ω(logn / log log n) remote memory
references.

• Several algorithms with constant RMR complexity exist when non-
comparison primitives are used. A generic algorithm using (any non-
comparison) fetch&φ primitive is presented by Anderson and Kim.

ΗΥ586 - Panagiota Fatourou 21

Drawbacks of Queue Locks

• They perform well only in cases of no
oversubscribing

• If oversubscribing occurs, their
performance deteriorates significantly

• Binding may also affect their
performance

ΗΥ586 - Panagiota Fatourou 22

One Lock To Rule Them All?

• TTAS+Backoff, CLH, MCS.

• Each better than others in some way

• There is not one solution

• Lock we pick really depends on:
– the application
– the hardware
– which properties are important

ΗΥ586 - Panagiota Fatourou 23

The Basics of the Combining
Technique

• A thread attempts to become a combiner and
serve in addition to its own request, active
requests by other threads

• After announcing their requests , other
threads may:
– either perform the same actions (although not

always “successfully”)
• synchronization by employing CAS or other similar

primitives

– or perform local spinning until the combiner
performs their requests

• synchronization by employing a coarse-grain lock

23 Concurrent Computing 1st Seminar Panagiota Fatourou

ΗΥ586 - Panagiota Fatourou 32

Blocking Combining: CC-Synch

Tail

dummy node

Initially

new dummy node node assigned to p1

= nill next

req =

ret =

wait = F

completed = F

next

req = <reqh-1>

ret =

wait = T

completed = F

next

req = <reqh>

ret =

wait = T

completed = F

next

req =

ret =

wait = T

completed = F

= nill

…
= nill = nill

…
= nill next

req =

ret =

wait = F

completed = F

next

req =

ret =

wait = T

completed = F

node 0 node h-1 node h-2

next

req =

ret =

wait = T

completed = F

node 1

next

req =

ret =

wait = T

completed = F

node m

thread p1

= nill

= nill

thread p2

= nill

req1
req2

new dummy node

thread ph-1
thread ph

node assigned to p2 new dummy node

F

T

F

T

F F

Swap object

32 Revisiting the Combining Synchronization Technique P. Fatourou & N. Kallimanis PPoPP’12

ΗΥ586 - Panagiota Fatourou 33

Properties of CC-Synch

Fairness
• CC-Synch provides a strong notion of fairness: it serves requests in the

order they enter the announced list.

Progress
• In CC-Synch, no thread ever starves.

Performance
• The lock is implemented using a highly-efficient queue-like lock.

• CC-Synch is the first that provides bounds on the number of RMRs it

executes:
– A combiner thread performs O(h+t) RMRs, where h is an upper bound on the

number of requests that a combiner may serve, and t is the size of the
shared data that should be accessed in order to execute the h requests.

– Other threads perform just a constant number of RMRs.
– The amortized number of RMRs performed is O(d), where d is the average

number of RMRs required to serve a single request.

Required Primitives
• Only a swap object is used (no CAS) and r/w registers.

33 Revisiting the Combining Synchronization Technique P. Fatourou & N. Kallimanis PPoPP – Feb 2012

ΗΥ586 - Panagiota Fatourou 34

Hierarchically Structured systems
The H-Synch Algorithm

• H-Synch is an
hierarchical version
of CC-Synch

 Exploits
hierarchical
communication
nature to achieve
better performance

Fast communication Fast communication

Fast communication Fast communication

cluster 1 cluster 2

cluster 4 cluster 3

34 Revisiting the Combining Synchronization Technique P. Fatourou & N. Kallimanis PPoPP’12

ΗΥ586 - Panagiota Fatourou 35

H-Synch – More Details

combiner

combiner combiner

combiner

CLH queue lock

CC-Synch instance CC-Synch instance

CC-Synch instance
CC-Synch instance

serves all requests
initialized in its cluster

35 Revisiting the Combining Synchronization Technique P. Fatourou & N. Kallimanis PPoPP’12

ΗΥ586 - Panagiota Fatourou 36

Experimental Analysis

Machines on which the experiments were
performed

• 32-core machine consisting of 4 AMD
Opteron 6134 processors (Magny Cours)

• 128-way Sun consisting of 2 UltraSPARC-
T2 processors (Niagara 2)

Synchronization approaches that were

compared
• CC-synch and DSM-Synch
• P-Sim (Fatourou and Kallimanis, SPAA

2011)
• Flat-combining
• CLH-spin locks
• OyamaAlg
• Simple lock-free implementation
• H-Synch and Hierarchical NUMA lock

(Marathe et al., SPAA 2011) in Niagara 2
machines

Experiment

A simple Fetch&Multiply
object is simulated:

We measure the average
throughput (number of
Fetch&Multiply executed
per second) that each
approach exhibits when it
executes 107 Fetch&Multiply
requests for different
values of n.

A random number of dummy
loop iterations are executed
between the execution of
two consecutive
Fetch&Multoply by the same
thread.

36 Revisiting the Combining Synchronization Technique P. Fatourou & N. Kallimanis PPoPP – Feb 2012

ΗΥ586 - Panagiota Fatourou 37

Experimental Analysis
Niagara 2

CC-Synch and DSM-Synch are
 1.4 faster than flat-combining CC-Synch slightly outperforms
even the hierarchical NUMA lock!

H-Synch is 2.65 times faster than
the hierarchical NUMA lock and 3
times faster than flat-combining

37 Revisiting the Combining Synchronization Technique P. Fatourou & N. Kallimanis PPoPP’12

ΗΥ586 - Panagiota Fatourou 38

Cache Misses – Memory Stalls

Algorithm cache misses
cpu cycles spent in

memory stalls

CC-Synch 4.1 2747

Flat-combining 5.8 6501

Revisiting the Combining Synchronization Technique P. Fatourou & N. Kallimanis PPoPP – Feb 2012 38

ΗΥ586 - Panagiota Fatourou 39

Why is CC-Synch Efficient?

0

10

20

30

40

50

60

70

80

90

100

1 4 8 12 16 20 24 28 32

av
e

ra
ge

 c
o

m
b

in
in

g

of threads

CC-Synch DSM-Synch

P-Sim Flat-Combining

Factors that significantly impact performance

• Combining degree

• Number of primitives performed

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

1 4 8 12 16 20 24 28 32

at
o

m
ic

 in
st

ru
ct

io
n

s
p

e
r

o
p

e
ra

ti
o

n

of threads

CC-Synch DSM-Synch
P-Sim Flat-Combining
OyamaAlg Lock-Free
CLH

39 Concurrent Computing 1st Seminar Panagiota Fatourou

ΗΥ586 - Panagiota Fatourou 40

Scheduling-Aware
Synchronization

HYDRA
• Blocking combining

implementation
– employs user-level threads
– schedules them appropriately

PSimX
• Simple (wait-free) variant of PSim employing user-

level threads

Performance Advantages
• The throughput of HYDRA is better than that of CC-

Synch by a multiplicative factor of up to 7.9
• The throughput of PSimX is better than that of PSim

by a multiplicative factor of up to 5.6.
• The throughput of HYDRA and PSimX are very close

to the ideal.

40 Scheduling-Aware Synchronization P. Fatourou & N. Kallimanis

ΗΥ586 - Panagiota Fatourou 41

PART III: Limitations of the
Combining Technique

• What is the cost to apply
k concurrent search
operations on a tree?

• A “sophisticated”
concurrent
implementation could
allow multiple searches
proceeding in parallel and
being executed in O(h)
time in total, where h is
the height of the tree.

A

B C

D E F

G H
I J

K

41 Highly Efficient Concurrent Data Structures – Panagiota Fatourou

ΗΥ586 - Panagiota Fatourou 42

Bibliography

These slides are based on material that appears
in the following books and papers:

• M. Herlihy and N. Shavit, The Art of
Multiprocessor Programming, Morgan
Kauffman, 2008 (Chapter 7)

• Panagiota Fatourou, Nikolaos D. Kallimanis:
Revisiting the combining synchronization
technique. PPOPP 2012: 257-266

• Panagiota Fatourou, Nikolaos D. Kallimanis: A
highly-efficient wait-free universal
construction. SPAA 2011: 325-334

http://www.informatik.uni-trier.de/~ley/pers/hd/k/Kallimanis:Nikolaos_D=.html
http://www.informatik.uni-trier.de/~ley/db/conf/ppopp/ppopp2012.html
http://www.informatik.uni-trier.de/~ley/pers/hd/k/Kallimanis:Nikolaos_D=.html
http://www.informatik.uni-trier.de/~ley/db/conf/spaa/spaa2011.html

End of Section

Financing
• The present educational material has been developed as part of

the educational work of the instructor.

• The project “Open Academic Courses of the University of
Crete” has only financed the reform of the educational material.

• The project is implemented under the operational program
“Education and Lifelong Learning” and funded by the European
Union (European Social Fund) and National Resources

Notes

Licensing Note
• The current material is available under the Creative Commons

Attribution-NonCommercial-NoDerivs 4.0[1] International license or
later International Edition. The individual works of third parties are
excluded, e.g. photographs, diagrams etc. They are contained therein and
covered under their conditions of use in the section «Use of Third
Parties Work Note».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

• As Non-Commercial is defined the use that:

 Does not involve direct or indirect financial benefits from the use of the
work for the distributor of the work and the license holder

 Does not include financial transaction as a condition for the use or access to
the work

 Does not confer to the distributor and license holder of the work indirect
financial benefit (e.g. advertisements) from the viewing of the work on
website

• The copyright holder may give to the license holder a separate license to
use the work for commercial use, if requested.

Reference Note

Copyright University of Crete , Panagiota Fatourou 2015. Panagiota
Fatourou. «Distributed Computing. Section 3: Spin Locks and
Contention». Edition: 1.0. Heraklion 2015. Available at:
https://opencourses.uoc.gr/courses/course/view.php?id=359.

Preservation Notices

Any reproduction or adaptation of the material should
include:

• the Reference Note

• the Licensing Note

• the declaration of Notices Preservation

• the Use of Third Parties Work Note (if is available)

together with the accompanied URLs.

