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Concurrent Objects 

A concurrent object is a data object “shared” 
by concurrently executing processes. 
 

Each object has a type, which defines a set of 
possible values and a set of primitive operations 
that provide the only means to create and 
manipulate that object.  
 

Concurrent objects have been proposed as 
building blocks for the construction of more 
complex multi-processing systems. 

 

Leads to a system that is simple and well-structured.  
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Basic Concurrent Objects 

Multi-Writer (MW) Register 
• All processes are allowed to execute update operations to the 

register 
 
Single-Writer (SW) Register 
• Only one process is allowed to execute update operations to the 

register. 
 
Register size 
• A register is of bounded size if the set of values it may store is 

bounded. In the opposite case, we say that the register size is 
unbounded. 

 
 Different machines support different sets of these operations 

in hardware.  
 The hardware, then, guarantees that these operations are 

executed atomically.  
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Global State Predicate Evaluation 

In many problems of distributed computing, 
some action should take place only if some 
global predicate evaluates to TRUE.  
 
Examples 
 

•deadlock detection 
 

•termination detection 
 

•garbage collection 
 

•check-pointing & restarting 
 
 

•monitoring & debugging 
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Debugging Distributed Algorithms 

 The biggest difficulty in proving that a distributed 
algorithm is correct is the necessity to argue based 
on non-consistent versions of the shared variables. 
 

 Calculating consistent views of the shared variables 
facilitates the verification of correctness of 
distributed algorithms. 
 

 Calculating such consistent views is not however an 
easy problem.  
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Snapshot Object 

 A snapshot object is a concurrent 
object that is composed by an 
array of m components, A1, …, Am, 
each capable to store a value 
from some set. 

 The snapshot object supports two 
operations: 
  UPDATE(i,v): writes v to component 

Ai. 
  SCAN: returns a vector of 

consistent values, one for each 
component. 

 Snapshot objects provide 
“consistent views” of a set of 
shared variables given that 
UPDATE operations may 
concurrently change the values of 
these variables. 
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Snapshot Objects 

Single-Writer Snapshot 
– Only process pi is allowed to execute UPDATES on 

component Ai. 
 

Multi-Writer Snapshot 
– All processes are allowed to execute UPDATES on 

every component. 
 

 
 

Snapshots simplify the task of designing distributed 
algorithms!  

 

They are too complicated to be provided by the 
hardware.  
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Applications of Snapshots 

 Verification of global predicates 

 Mutual Exclusion [Κatseff – ACM STOC’78, Lamport – J. of the ACM’86, 
Dolev & Gafni & Shavit – ACM STOC’88]. 

 Concurrent Timestamps  [Dolev & Shavit –STOC’88 & SIAM J. on 
Computing (SICOMP)’97]. 

 Simplify the design of concurrent data structures [Aspnes & 
Herlihy – SPAA’90, Herlihy – PODC’91]. 

 Simplify the design of other concurrent objects [Vitanyi & 
Awerbuch - FOCS’86, Bloom – PODC’87, Peterson & Burns – FOCS’87]. 

 Simplify the design of software transactional memory 
[Shavit & Touitou - PODC’95, Herlihy & Luchangco & Moir & Scherer - 
PODC’03, Marathe & Scott - PODC’05]. 



CS586 - Panagiota Fatourou 9 

The Problem 

• Can we implement snapshot objects in 
systems that provide only r/w 
registers? 

 

• If yes, how efficient can their 
implementation be in terms of: 
– Time complexity? 

– Space omplexity? 
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Model 

• Concurrent Execution 
– n processes are executed concurrently  
 

• Asynchrony 
 

• Communication via Shared Memory 
 

• Failures 
– Processes may crash at any point of their 

execution. A crashed process stops executing and 
never recovers. 
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Implementations of Snapshots from  
r/w registers 

• Use the registers to store the values of the 
snapshot components. 

• Provide algorithms to implement SCAN and 
UPDATE. 

1 

r 

1 

m 

registers 

snapshot 

Efficiency 

• Step Complexity (SCAN or UPDATE)  
– Maximum number of steps executed  

by any process in any execution in order 
to perform an operation. 

 

• Space Complexity 
– Number (and size) of registers needed. 
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Correctness and Termination 
Wait-Freedom 
• Each process finishes the execution of its operation within a 

bounded number of its own steps.  
 
 
 
 

Linearizability Intuitively 

• In each execution α, each SCAN and UPDATE  
should have the same response as if it has executed 
serially (or atomically) at some point in its execution 
interval. This point is called linearization point of 
the operation.  
 

and slightly more formally: 
• For each (parallel) execution α produced by the 

implementation, there is a serial execution σ of the operations 
(SCAN and UPDATE) executed in α, s.t.:  

– each operation has the same response in σ as in a, and 
– σ respects the partial order determined by the execution 

intervals of the operations. 
 

 

  WaitWait--free algorithms are highly faultfree algorithms are highly fault--toleranttolerant! !  
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Linearizability – Even more Formally 

We say that an execution a is linearizable if it is 
possible to do all of the following: 

1. For each completed operation π, to insert a 
linearization point *π somewhere between π’s 
invocation and response in a. 

2. To select a subset Φ of the incomplete operations, 
and for each operation ρ in Φ: 

– to select a response, and  
– to insert a linearization point *ρ somewhere after ρ’s 

invocation in a. 

3. These operations and responses should be selected 
and these linearization points should be inserted, so 
that, in the sequential execution constructed by 
serially executing each operation at the point that 
its linearization point has been inserted, the 
response of each operation is the same as that in a.  
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Linearizability - Examples 

pp22: : SCAN()SCAN() 

  **     ** timetime 

?* ?* ?* * 

Example of non-linearizable execution 

Example of linearizable execution 

pp11: : UPDATE(ΑUPDATE(Α11, 1), 1) pp11: : UPDATE(ΑUPDATE(Α22, 2), 2) 

        timetime 

?* ?* ?* 

* * 

Χ    Χ      Χ 

p1: ok(A1) p1: ok(A2) 

 p2: ok() --> <1, 0>> <1, 0>  

pp11: : UPDATE(ΑUPDATE(Α11, 1), 1) p1: ok(A1) pp11: : UPDATE(ΑUPDATE(Α22, 2), 2) p1: ok(A2) 

pp22: : SCAN()SCAN()  p2: ok() --> <> <0,20,2>>  
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Linearizability - Examples 
 A FIFO queue Q supports the following two operations: 

 enq(Q,v): add an element with value v as the last element of Q 

 deq(Q): deletes and returns the first element of Q 

 In a concurrent FIFO queue, several processes try to 
apply enq() and deq() operations concurrently.  

 

 

 

 

 Concurrent FIFO queues can be implemented by simpler 
concurrent objects, such as Test-And-Set and LL/SC 
registers.  

 The same is true for other concurrent objects, such as 
stacks, lists, skip lists, graphs, etc. 

head tail 
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Linearizable Executions 

 
 

 
 

 
 

(a) 

(b) 

(c) 

(d) 

 ... 

p1: enq(Q, x) 

p2: enq(Q, y) 
p2: deq(Q) 

p1: deq(Q) 
p1: enq(Q, z) 

p1: ok() 

p2: ok() p2: ok() -> x 

p1: ok() ->y 

p1: enq(Q, x) 

p2: enq(Q, y) 

p1: ok() 

p2: ok() p2: deq(Q) 

p1: deq(Q) 

p2: ok() -> y 

p1: ok() ->x 

p2: deq(Q) p2: ok() -> NULL 

p1: enq(Q, x) p1: ok() 

p1: enq(Q, x) p1: ok() 

p2: deq(Q) p2: ok() -> x 

* * 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 
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Linearizable Executions 

 

 

 ... 

 ... 

(a) 

(b) 

p1: enq(Q, x) 

p2: deq(Q) p2: ok() -> x 

p1: enq(Q, x) 

p2: deq(Q) p2: ok() -> NULL 
p2: deq(Q) p2: ok() -> x 

* 

* 

* 

* 

* 
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Non-Linearizable Executions 

 ... 

(a) 

(b) 

(c) 

p1: enq(Q, x) 

p2: enq(Q, y) 

p1: deq(Q) 
p1: ok() 

p1: ok() ->y 

p2: ok() 

p1: deq(Q) p1: ok() ->x p1: enq(Q, x) 

p1: enq(Q, x) 

p2: enq(Q, y) p2: deq(Q) 

p1: deq(Q) p1: ok() 

p2: ok() p2: ok() -> x 

p1: ok() ->y 
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More Examples - Register Executions 

p2: w(R, 1) p2: r(R)->0 

(a) linearizable 

(b) non-linearizable 

p1: w(R, 0) p3: w(R, 0) p1: r(R) 

p2: w(R, 1) p2: r(R) 

p1: ok() p1: ok()->1 

p2: ok() 

p3: ok() 

p2: ok()->1 

p1: w(R, 0) p3: w(R, 0) p1: r(R) p1: ok() p1: ok()->1 p3: ok() 
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Histories 
• A history H is a finite sequence of operation 

invocation and response events.  
• A subhistory of H is a subsequence of the events of 

H.  
• The invocation of an operation is denoted by  

<pi: op(O, args*)>, where O is an object’s name, op is 
an operation name, args* denotes a sequence of 
argument values and pι is a process name. 

• The response of an operation is denoted by  
<pi: term(O)->res*>, where term is a termination 
condition, and res* is a list of results.  

• A response matches an invocation if their object 
names agree and their process names agree.  

• complete(H): maximal subsequence of H consisting 
only of invocations and matching responses. 
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Histories 

• A process subhistory, HP, of a history H is the 
subsequence of all events in H whose process names 
are P. 

• An object subhistory, HO, is similarly defined for an 
object O.  

• A history H is sequential if: 
– The first event of H is an invocation, and 
– Each invocation, except possibly the last one, is immediately 

followed by a matching response. Each response is 
immediately followed by an invocation from the same process.  

• A history that is not sequential is concurrent.  
• A history H is well-formed if, for every process p, Hp 

is sequential.  
• Two histories, H and H’, are equivalent if  for every 

process p, Hp = H’p 
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Histories - Example 

 ... 

H: 
p1: enq(Q, x) 

p2: enq(Q, y) 
p2: ok(Q) 
p1: ok(Q) 
p2: deq(Q) 
p2: ok(Q)->x 
p1: deq(Q) 
p1: ok(Q)->y 
p1:enq(Q,z) 

complete(H): 
p1: enq(Q, x) 

p2: enq(Q, y) 
p2: ok(Q) 
p1: ok(Q) 
p2: deq(Q) 
p2: ok(Q)->x 
p1: deq(Q) 
p1: ok(Q)->y 
 

Hp1: 
p1: enq(Q, x) 

p1: ok(Q) 
p1: deq(Q) 
p1: ok(Q)->y 
p1:enq(Q,z) 
Hp2: 
p2: enq(Q, y) 
p2: ok(Q) 
p2: deq(Q) 
p2: ok(Q)->x 
 

p1: enq(Q, x) 

p2: enq(Q, y) 
p2: deq(Q) 

p1: deq(Q) p1: enq(Q, z) 
p1: ok() 

p2: ok() -> x 

p1: ok() ->y 

* 
p2: ok() 
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Partial Order induced by histories 

• A history H induces an irreflexive partial order <H on 
operations: 
– e0 <H e1 if res(e0) precedes inv(e1) in H 

• Informally, <H captures the real time precedence ordering 
of operations in H. 

• Operations unrelated by <H are said to be concurrent. 
• If H is sequential, <H is a total order. 
Example 
 
 
 
 
<H = {<[p1: enq(Q, x)/p1: ok(Q)], [p2: deq(Q)/p2: ok(Q)->x]>,  

   <[p1: enq(Q, x)/p1: ok(Q)], [p1: deq(Q)/p1: ok(Q)->y]>,  
   <[p2: enq(Q, y)/p2: ok(Q)],[p2: deq(Q)/p2: ok(Q)->x]> 

        <[p2: enq(Q, y)/p2: ok(Q)], [p1: deq(Q)/p1: ok(Q)->y]> 
        <[p2: deq(Q)/p2: ok(Q)->x], [p1:deq(Q)/p1: ok(Q)->y]> } 

  

(a) 

p1: enq(Q, x) 

p2: enq(Q, y) 
p2: deq(Q) 

p1: deq(Q) p1: ok() 

p2: ok() -> x 

p1: ok() ->y 

p2: ok() 
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Linearizability defined in terms 
of Histories 

• A history H is linearizable if it can be extended (by 
appending zero or more response events) to some 
history H’ such that: 

– L1: complete(H’) is equivalent to some legal sequential 
history S, and 

– L2: <H  <S 

 
• S is called a linearization of H. 

 
• Nondeterminism is inherent in the notion of 

linearizability: 
1. There may be more than one extension H’ satisfying the 

two conditions, L1 and L2. 
2. For each extension H’, there may be more than one 

linearization S 
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Properties of Linearizability - 
Locality 

• A property P of a concurrent system is said to be local if the 
system as a whole satisfies P whenever each individual object 
satisfies P. 
 

Theorem  
H is linearizable if and only if, for each object O, HO is linearizable. 
 
This theorem has two parts: 
• If part: If for each object O, H0 is linearizable, then H is 

linearizable. 
• Only-if part: If H is linearizable, then for each object O, H0 is 

linearizable.  
 

• The only-if part is obvious.  
• The if part requires a proof (see original paper by Herlihy and 

Wing Proof of Theorem 1). 
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Locality 

• Locality is important because it allows 
concurrent systems to be designed and 
constructed in a modular fashion. 

• Linearizable objects can be 
implemented, verified and executed 
independently. 

• Locality should not taken for granted; 
alternative correctness properties that 
have been proposed in the literature are 
not local.  
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Linearizable implementations 

An implementation is linearizable 
if all the executions (histories) it 
produces are linearizable. 

 In this course, an 
implementation of a concurrent 
object is called correct, if it is 
linearizable. 
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Comparison to other correctness conditions 

Sequential Consistency (Intuitively) 
• In each execution α, each operation 

should have the same response as if it 
has executed serially (or atomically).  
 

and slightly more formally: 
For each (parallel) execution α produced by the 

implementation, there is a serial execution σ 
of the operations executed in α, s.t.,  

• each operation has the same response in σ as 
in a. 

 
• for each process pi, if op by pi precedes  op’ 

by pi then op appears in σ before op’.  
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Sequential Consistency 

even more formally: 
We say that an execution a is sequntially consistent if it is possible to do 

all of the following: 
1. For each completed operation π, to insert a serialization point *π. 
2. To select a subset Φ of the incomplete operations, and for each 

operation π in Φ: 
– to select a response for it, and  
– to insert a linearization point *π for it. 

3. These operations and responses should be selected and these 
linearization points should be inserted, so that, in the sequential 
execution constructed by serially executing each operation at the 
point that its linearization point has been inserted, the response of 
each operation is the same as that in a. 
 

and finally: 
• A history H is sequentially consistent if it can be extended 

(by appending zero or more response events) to some history 
H’ such that complete(H’) is equivalent to some legal sequential 
history S. 
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Comparison to other correctness conditions 

• The above history is sequentially consistent! 

 

 

 

 

• However, it is not linearizable (since p2 should return x instead of y). 

  

  

* * 

* 

p1: enq(Q, x) 

p2: enq(Q, y) p2: deq(Q) 

  

p1: enq(Q, x) 

p2: enq(Q, y) p2: deq(Q) 

error! 
Linearizability is stronger than sequential consistency: 

•  Any linearizable execution is sequentially 
consistent! 
•  The opposite is not TRUE! 

p1: enq(Q, x) 

p2: enq(Q, y) p2: deq(Q) 

p1: ok() 

p2: ok() p2: ok() -> y 

p1: ok() 

p2: ok() p2: ok() -> y 

p1: ok() 

p2: ok() p2: ok() -> y 
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Comparison to other correctness conditions 

• Sequential consistency is not a local property! 

 
p1: enq(Q1, x) p1: enq(Q2, x) p1: deq(Q1) 

p2: enq(Q2, y) p2: enq(Q1, y) p2: deq(Q2) 

p1: ok(Q1) p1: ok(Q1) ->y 

p2: ok(Q2) 

p1: ok(Q2) 

p2: ok(Q1) p2: ok(Q2)-> x 

p1: enq(Q1, x) p1: deq(Q1) 

p2: enq(Q1, y) 

p1: ok(Q1) p1: ok(Q1) ->y 

p2: ok(Q1) 

p1: enq(Q2, x) 

p2: enq(Q2, y) p2: deq(Q2) p2: ok(Q2) 

p1: ok(Q2) 

p2: ok(Q2)-> x 

HQ2 

HQ1 
* 

* * 

* * 

* 

sequentially 
consistent! 

sequentially 
consistent! 

H 

not sequentially consistent! 
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The Problem 

• Can we implement snapshot objects in 
systems that provide only r/w 
registers? 
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The trivial solution does not work! 

•  Assign a register Ri to each component Αi. 

• UPDATE(i,v): write(Ri,v); 

• SCAN(): Read all registers and return a vector 
consisting of the values you read. 

 

 This algorithm is not linearizable! 
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The trivial solution does not work! 

•  Assign a register Ri to each component Αi. 

• UPDATE(i,v): write(Ri,v); 

• SCAN(): Read all registers and return a vector 
consisting of the values you read. 

 

Processes Register Values 

P Q R1 R2 

read(R1)  0 0 

write(R1,1) 

1 0 

write(R2,2) 

1 2 

read(R2) 
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The trivial solution does not work! 

Processes Register Values 

P Q R1 R2 

read(R1)  0 0 

write(R1,1) 

1 0 

write(R2,2) 

1 2 

read(R2) 

SCAN() SCAN() --> <0, 2>> <0, 2> 

        timetime 

?* ?* ?* 

UPDATE(ΑUPDATE(Α11, 1), 1) UPDATE(ΑUPDATE(Α22, 2), 2) 

* * 

Χ    Χ      Χ 
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The trivial solution does not work! 

Are there wait-free, linearizable 
implementations of atomic snapshot objects? 
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Snapshot Implementations from 
Registers 

• Anderson – PODC’90, PODC’93, DISC’91 
• Afek, Attiya, Dolev, Gafni, Merritt and Shavit – 

PODC’90 + JACM’93 
• Attiya, Herlihy & Rachman - DISC’92 
• Attiya & Rachman – PODC’93 + SICOMP’98  
• Israeli & Shaham – PODC’92 
• Israeli, Shaham & Shirazi – DISC’93 
• Inoue, Chen, Masuzawa & Tokura – DISC’94 
• Afek, Stupp & Touitou – FOCS’99 
• Afek, Attiya, Fouren, Stupp & Touitou – PODC’99 
• Attiya & Fouren – SICOMP’01 
• Jayanti – PODC’02, STOC’05  
• Fatourou, Fich & Ruppert - STOC’03 
• Fatourou & Kallimanis – PODC’06, PODC’07 
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A simple implementation using 
unbounded-size registers 

• Each component, Aj, 1 ≤ j ≤ n, can be updated only by 
process pj (single-writer snapshot).  

• The implementation uses n registers R1, .., Rn, one for 
each component. A register Rj has been assigned to 
each component Aj. UPDATE operations on Aj write 
only into Rj. Each register Rj is written only by pi but 
it can be read by all processes (single-writer 
registers). 

• Each register Rj is big enough to store the following 
information:  
– valj: the current value of Aj 

– tagj: a timestamp used by pj to differentiate the UPDATE 
operations it initiates 

– viewj: a vector of n values, one for each component. 

• This assumption is not realistic (since the registers 
are too big to be provided by the hardware).  

• However, for the time being, we are only interested 
to design a simple such algorithm. 
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The UnboundedSnapshot Algorithm 

Step Complexity = O(n2) for SCAN and UPDATE. 
The implementation uses n SW registers of unbounded 
size.  

SCAN, code for process pi: 
 
repeatedly read R1, …, Rn until:  
1. Two sets of reads return the 

same Rj.tag for every j; then, 
return the vector of values Rj.val, 
1 ≤ j ≤ n, returned by the second 
set of reads, or 

2.  For some j, three distinct values 
of Rj.tag have been seen; return 
the vector of values in Rj.view 
associated with the last of the 
three values read in Rj.tag. 

UPDATE(v), code for process pi: 
 
view := SCAN(); 
tag := increment pi’s tag by 1; 
write(Ri,<v, tag,view>); 
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Linearizability 

Definition: A SCAN operation S returns a 
consistent vector if, for each component Αi, S 
returns for Αi the value written by the last 
UPDATE on Αi for which the linearization point 
precedes the linearization point of S (or the 
initial value if such an UPDATE does not exist). 

 

 
• To prove that the implementation is 

linearizable, we have to do the following:  
– assign linearization points to the operations of any 

execution 
– prove that the linearization point of each operation 

is within its execution interval, and 
– prove that each SCAN returns a consistent vector 
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The UnboundedSnapshot Algorithm 

SCAN S that returns 
the view field of some 
register Ri.  

first read  of Ri by p  v1 second read  of Ri by p  v2 v1 third read  of Ri by p  v3  v2  
 

... ... 

All pk1, …, pkn are simultaneously active. Since we have n processes in the system, 
the embedded SCAN executed by pkn terminates by evaluating condition (1) of the 
SCAN code to TRUE. 

 

pk1 
pk2 pk3 pkn 

SCANS or embedded 
SCANS 

UPDATE that writes view in Ri and its embedded SCAN  

 If process j, while performing repeated sets of reads on behalf of a 
SCAN, ever sees the same register Ri with three different tags, then  it 
knows that some UPDATEi is completely contained within the execution 
interval of the SCAN 
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The UnboundedSnapshot Algorithm 

Assignment of Linearization Points 
UPDATE Operations 
• We insert the linearization point of an UPDATE at 

the point where its write occurs. 
SCAN operations 
• We assign linearization points not just to SCANs but 

also to embedded SCANs. 
• We partition SCANs in two categories: 

– Direct SCANs: those that terminate by evaluating condition 
(1) to TRUE 

– Indirect SCAN: those that terminate by evaluating condition 
(2) to TRUE 

• The linearization point of a direct SCAN can be 
placed anywhere within the end of the first of its last 
two sets of reads and the beginning of its second. 
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The UnboundedSnapshot Algorithm 

Linearization points of indirect SCANs 

By induction on their response events 
(i.e., we linearize these SCANs one 
by one, in the order of their response 
events). 

 

 

 

 

1 

2 

4 

3 
5 

6 
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The UnboundedSnapshot Algorithm 

Induction Base: Linearization point of indirect SCAN 
S which responds first. 

• S returns a vector of values written by an UPDATE U 
(i.e., this vector has been calculated by the embedded 
SCAN S’ of U).  

• The execution interval of U and therefore also of S’ 
(which is executed by U) is included in the execution 
interval of S. 

• S’ is a direct SCAN (since otherwise, the indirect 
SCAN that has the first response event would be S’ 
and not S).  

• Thus, a linearization point for S’ has already been 
assigned.  

• We linearize S at the same place as S’.  
S  

S’ U
  *S’ *S 
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The UnboundedSnapshot Algorithm 
Induction Hypothesis  
• Let S be the indirect SCAN which has the k-th respond 

event. Assume that we have assigned linearization points 
to all SCAN operations for which it holds that their 
response events precede that of S. 

Induction Step: We assign a linearization point to S. 
• S returns a vector of values written by an UPDATE U (i.e., 

this vector has been calculated by the embedded SCAN S’ 
of U).  

• The execution interval of U and therefore also of S’ 
(which is executed by U) is included in the execution 
interval of S. 

• If S’ is an indirect SCAN, by induction hypothesis, a 
linearization point has been assigned to S’. The same is 
TRUE for all direct SCANs.  

• We linearize S at the same place as S’.  

S  

S’ U
  *S’ *S 
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The UnboundedSnapshot Algorithm 

• Lemma: The linearization point of each SCAN or 
UPDATE is within its execution interval. 

• Proof: For UPDATES and direct SCANS this is 
obvious.  

• We prove the claim for indirect SCANS by induction 
on the order of their response events. 

• Induction Base 
– Recall that the indirect SCAN S with the first response event 

is linearized at the same point as the direct SCAN S’ from 
which it borrows its vector. Moreover, the execution interval 
of S’ is included in the execution interval of S.  

– The linearization point of S’ is in its execution interval  
Thus, the linearization point of S  is in its execution interval. 

S  

S’ U
  

*S’ *S 
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The UnboundedSnapshot Algorithm 
• Induction Step: We prove the claim for the indirect 

SCAN S with the k-th response event.  
• S returns a vector of values written by an UPDATE U 

(i.e., this vector has been calculated by the embedded 
SCAN S’ of U).  

• The execution interval of U and therefore also of S’ 
(which is executed by U) is included in the execution 
interval of S. 

• If S’ is a direct SCAN, its linearization point is obviously 
within its execution interval. The same is TRUE, if S’ is an 
indirect SCAN (by induction hypothesis since the 
execution interval of S’ is included in the execution 
interval of S, and therefore the response event of S’ 
precedes that of S).  

• The linearization point of S is placed at the same point as 
that of S’  thus, the linearization point of S is within its 
execution interval. 

S  

S’ U
  *S’ *S 
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The UnboundedSnapshot Algorithm 
A1 A2 A3 Vals Scans 

U(1) [1,0,0] 

U(1) [1,1,0] 

S1 

U(3) [3,1,0] 

U(4) [3,4,0] 

U(5) [3,4,5] 

U(6) [3,4,6] 

S2 

S3 

S4 

• Lemma: In every execution of 
UnboundedSnapshot, each SCAN operation 
returns a consistent vector of values. 

• Proof: Obviously true for direct SCANs. 
• For indirect SCANs, the claim will be proved 

by induction on the order of response events 
• Induction Base: The indirect SCAN S which 

responds first, is linearized at the same 
point as the direct SCAN S’ from which it 
borrows its vector. Since S’ returns a 
consistent vector, the same holds for S. 

• Induction Step: We prove the claim for the 
indirect SCAN S that has the kth response 
event. S returns the same vector of values 
as an embedded SCAN S’ and is linearized at 
the same point as S’. Moreover, the 
execution interval of S’ is within the 
execution interval of S. 

• If S’ is direct, it obviously returns a 
consistent vector. If S’ is an indirect SCAN, 
by the induction hypothesis (since the 
response event of S’ precedes that of S), it 
follows that it returns a consistent vector. 
Thus, S returns a consistent vector. 

time 
*U(1,1)

[1,0,0] *U(2,1)
[1,1,0] *S1 *U(1,3)

[3,1,0] *U(2,4)
[3,4,0] *U(3,5)

[3,4,5] *U(3,6)
[3,4,6] *S2 *S3 *S4 
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