
HELLENIC REPUBLIC
UNIVERSITY OF CRETE

Distributed Computing
Graduate Course

Section 4: Concurrent Objects –
Correctness, Progress and Efficiency

Panagiota Fatourou
Department of Computer Science

CS586 - Panagiota Fatourou 2

Concurrent Objects

A concurrent object is a data object “shared”
by concurrently executing processes.

Each object has a type, which defines a set of
possible values and a set of primitive operations
that provide the only means to create and
manipulate that object.

Concurrent objects have been proposed as
building blocks for the construction of more
complex multi-processing systems.

Leads to a system that is simple and well-structured.

CS586 - Panagiota Fatourou 3

Basic Concurrent Objects

Multi-Writer (MW) Register
• All processes are allowed to execute update operations to the

register

Single-Writer (SW) Register
• Only one process is allowed to execute update operations to the

register.

Register size
• A register is of bounded size if the set of values it may store is

bounded. In the opposite case, we say that the register size is
unbounded.

 Different machines support different sets of these operations

in hardware.
 The hardware, then, guarantees that these operations are

executed atomically.

CS586 - Panagiota Fatourou 4

Global State Predicate Evaluation

In many problems of distributed computing,
some action should take place only if some
global predicate evaluates to TRUE.

Examples

•deadlock detection

•termination detection

•garbage collection

•check-pointing & restarting

•monitoring & debugging

p1 p2

R1

R2

requests

requests

allocated

allocated

p1 p2

active passive

Shall I
terminate?

record global
state

record global
state

record global
state

execution
X

failure

restart execution
from this point

p1

p2

p3

unused shared
object

CS586 - Panagiota Fatourou 5

Debugging Distributed Algorithms

 The biggest difficulty in proving that a distributed
algorithm is correct is the necessity to argue based
on non-consistent versions of the shared variables.

 Calculating consistent views of the shared variables
facilitates the verification of correctness of
distributed algorithms.

 Calculating such consistent views is not however an
easy problem.

CS586 - Panagiota Fatourou 6

Snapshot Object

 A snapshot object is a concurrent
object that is composed by an
array of m components, A1, …, Am,
each capable to store a value
from some set.

 The snapshot object supports two
operations:
 UPDATE(i,v): writes v to component

Ai.
 SCAN: returns a vector of

consistent values, one for each
component.

 Snapshot objects provide
“consistent views” of a set of
shared variables given that
UPDATE operations may
concurrently change the values of
these variables.

A1
A2

.

.

.

Am
Snapshot Object A

CS586 - Panagiota Fatourou 7

Snapshot Objects

Single-Writer Snapshot
– Only process pi is allowed to execute UPDATES on

component Ai.

Multi-Writer Snapshot
– All processes are allowed to execute UPDATES on

every component.

Snapshots simplify the task of designing distributed
algorithms!

They are too complicated to be provided by the
hardware.

CS586 - Panagiota Fatourou 8

Applications of Snapshots

 Verification of global predicates

 Mutual Exclusion [Κatseff – ACM STOC’78, Lamport – J. of the ACM’86,
Dolev & Gafni & Shavit – ACM STOC’88].

 Concurrent Timestamps [Dolev & Shavit –STOC’88 & SIAM J. on
Computing (SICOMP)’97].

 Simplify the design of concurrent data structures [Aspnes &
Herlihy – SPAA’90, Herlihy – PODC’91].

 Simplify the design of other concurrent objects [Vitanyi &
Awerbuch - FOCS’86, Bloom – PODC’87, Peterson & Burns – FOCS’87].

 Simplify the design of software transactional memory
[Shavit & Touitou - PODC’95, Herlihy & Luchangco & Moir & Scherer -
PODC’03, Marathe & Scott - PODC’05].

CS586 - Panagiota Fatourou 9

The Problem

• Can we implement snapshot objects in
systems that provide only r/w
registers?

• If yes, how efficient can their
implementation be in terms of:
– Time complexity?

– Space omplexity?

CS586 - Panagiota Fatourou 10

Model

• Concurrent Execution
– n processes are executed concurrently

• Asynchrony

• Communication via Shared Memory

• Failures
– Processes may crash at any point of their

execution. A crashed process stops executing and
never recovers.

CS586 - Panagiota Fatourou 11

Implementations of Snapshots from
r/w registers

• Use the registers to store the values of the
snapshot components.

• Provide algorithms to implement SCAN and
UPDATE.

1

r

1

m

registers

snapshot

Efficiency

• Step Complexity (SCAN or UPDATE)
– Maximum number of steps executed

by any process in any execution in order
to perform an operation.

• Space Complexity
– Number (and size) of registers needed.

CS586 - Panagiota Fatourou 12

Correctness and Termination
Wait-Freedom
• Each process finishes the execution of its operation within a

bounded number of its own steps.

Linearizability Intuitively

• In each execution α, each SCAN and UPDATE
should have the same response as if it has executed
serially (or atomically) at some point in its execution
interval. This point is called linearization point of
the operation.

and slightly more formally:
• For each (parallel) execution α produced by the

implementation, there is a serial execution σ of the operations
(SCAN and UPDATE) executed in α, s.t.:

– each operation has the same response in σ as in a, and
– σ respects the partial order determined by the execution

intervals of the operations.

 WaitWait--free algorithms are highly faultfree algorithms are highly fault--toleranttolerant! !

CS586 - Panagiota Fatourou 13

Linearizability – Even more Formally

We say that an execution a is linearizable if it is
possible to do all of the following:

1. For each completed operation π, to insert a
linearization point *π somewhere between π’s
invocation and response in a.

2. To select a subset Φ of the incomplete operations,
and for each operation ρ in Φ:

– to select a response, and
– to insert a linearization point *ρ somewhere after ρ’s

invocation in a.

3. These operations and responses should be selected
and these linearization points should be inserted, so
that, in the sequential execution constructed by
serially executing each operation at the point that
its linearization point has been inserted, the
response of each operation is the same as that in a.

CS586 - Panagiota Fatourou 14

Linearizability - Examples

pp22: : SCAN()SCAN()

 ** ** timetime

?* ?* ?* *

Example of non-linearizable execution

Example of linearizable execution

pp11: : UPDATE(ΑUPDATE(Α11, 1), 1) pp11: : UPDATE(ΑUPDATE(Α22, 2), 2)

 timetime

?* ?* ?*

* *

Χ Χ Χ

p1: ok(A1) p1: ok(A2)

 p2: ok() --> <1, 0>> <1, 0>

pp11: : UPDATE(ΑUPDATE(Α11, 1), 1) p1: ok(A1) pp11: : UPDATE(ΑUPDATE(Α22, 2), 2) p1: ok(A2)

pp22: : SCAN()SCAN() p2: ok() --> <> <0,20,2>>

CS586 - Panagiota Fatourou 15

Linearizability - Examples
 A FIFO queue Q supports the following two operations:

 enq(Q,v): add an element with value v as the last element of Q

 deq(Q): deletes and returns the first element of Q

 In a concurrent FIFO queue, several processes try to
apply enq() and deq() operations concurrently.

 Concurrent FIFO queues can be implemented by simpler
concurrent objects, such as Test-And-Set and LL/SC
registers.

 The same is true for other concurrent objects, such as
stacks, lists, skip lists, graphs, etc.

head tail

CS586 - Panagiota Fatourou 16

Linearizable Executions

(a)

(b)

(c)

(d)

 ...

p1: enq(Q, x)

p2: enq(Q, y)
p2: deq(Q)

p1: deq(Q)
p1: enq(Q, z)

p1: ok()

p2: ok() p2: ok() -> x

p1: ok() ->y

p1: enq(Q, x)

p2: enq(Q, y)

p1: ok()

p2: ok() p2: deq(Q)

p1: deq(Q)

p2: ok() -> y

p1: ok() ->x

p2: deq(Q) p2: ok() -> NULL

p1: enq(Q, x) p1: ok()

p1: enq(Q, x) p1: ok()

p2: deq(Q) p2: ok() -> x

* *

*

*

*

*

*

*

*

*

*

*

CS586 - Panagiota Fatourou 17

Linearizable Executions

 ...

 ...

(a)

(b)

p1: enq(Q, x)

p2: deq(Q) p2: ok() -> x

p1: enq(Q, x)

p2: deq(Q) p2: ok() -> NULL
p2: deq(Q) p2: ok() -> x

*

*

*

*

*

CS586 - Panagiota Fatourou 18

Non-Linearizable Executions

 ...

(a)

(b)

(c)

p1: enq(Q, x)

p2: enq(Q, y)

p1: deq(Q)
p1: ok()

p1: ok() ->y

p2: ok()

p1: deq(Q) p1: ok() ->x p1: enq(Q, x)

p1: enq(Q, x)

p2: enq(Q, y) p2: deq(Q)

p1: deq(Q) p1: ok()

p2: ok() p2: ok() -> x

p1: ok() ->y

CS586 - Panagiota Fatourou 19

More Examples - Register Executions

p2: w(R, 1) p2: r(R)->0

(a) linearizable

(b) non-linearizable

p1: w(R, 0) p3: w(R, 0) p1: r(R)

p2: w(R, 1) p2: r(R)

p1: ok() p1: ok()->1

p2: ok()

p3: ok()

p2: ok()->1

p1: w(R, 0) p3: w(R, 0) p1: r(R) p1: ok() p1: ok()->1 p3: ok()

CS586 - Panagiota Fatourou 20

Histories
• A history H is a finite sequence of operation

invocation and response events.
• A subhistory of H is a subsequence of the events of

H.
• The invocation of an operation is denoted by

<pi: op(O, args*)>, where O is an object’s name, op is
an operation name, args* denotes a sequence of
argument values and pι is a process name.

• The response of an operation is denoted by
<pi: term(O)->res*>, where term is a termination
condition, and res* is a list of results.

• A response matches an invocation if their object
names agree and their process names agree.

• complete(H): maximal subsequence of H consisting
only of invocations and matching responses.

CS586 - Panagiota Fatourou 21

Histories

• A process subhistory, HP, of a history H is the
subsequence of all events in H whose process names
are P.

• An object subhistory, HO, is similarly defined for an
object O.

• A history H is sequential if:
– The first event of H is an invocation, and
– Each invocation, except possibly the last one, is immediately

followed by a matching response. Each response is
immediately followed by an invocation from the same process.

• A history that is not sequential is concurrent.
• A history H is well-formed if, for every process p, Hp

is sequential.
• Two histories, H and H’, are equivalent if for every

process p, Hp = H’p

CS586 - Panagiota Fatourou 22

Histories - Example

 ...

H:
p1: enq(Q, x)

p2: enq(Q, y)
p2: ok(Q)
p1: ok(Q)
p2: deq(Q)
p2: ok(Q)->x
p1: deq(Q)
p1: ok(Q)->y
p1:enq(Q,z)

complete(H):
p1: enq(Q, x)

p2: enq(Q, y)
p2: ok(Q)
p1: ok(Q)
p2: deq(Q)
p2: ok(Q)->x
p1: deq(Q)
p1: ok(Q)->y

Hp1:
p1: enq(Q, x)

p1: ok(Q)
p1: deq(Q)
p1: ok(Q)->y
p1:enq(Q,z)
Hp2:
p2: enq(Q, y)
p2: ok(Q)
p2: deq(Q)
p2: ok(Q)->x

p1: enq(Q, x)

p2: enq(Q, y)
p2: deq(Q)

p1: deq(Q) p1: enq(Q, z)
p1: ok()

p2: ok() -> x

p1: ok() ->y

*
p2: ok()

CS586 - Panagiota Fatourou 23

Partial Order induced by histories

• A history H induces an irreflexive partial order <H on
operations:
– e0 <H e1 if res(e0) precedes inv(e1) in H

• Informally, <H captures the real time precedence ordering
of operations in H.

• Operations unrelated by <H are said to be concurrent.
• If H is sequential, <H is a total order.
Example

<H = {<[p1: enq(Q, x)/p1: ok(Q)], [p2: deq(Q)/p2: ok(Q)->x]>,

 <[p1: enq(Q, x)/p1: ok(Q)], [p1: deq(Q)/p1: ok(Q)->y]>,
 <[p2: enq(Q, y)/p2: ok(Q)],[p2: deq(Q)/p2: ok(Q)->x]>

 <[p2: enq(Q, y)/p2: ok(Q)], [p1: deq(Q)/p1: ok(Q)->y]>
 <[p2: deq(Q)/p2: ok(Q)->x], [p1:deq(Q)/p1: ok(Q)->y]> }

(a)

p1: enq(Q, x)

p2: enq(Q, y)
p2: deq(Q)

p1: deq(Q) p1: ok()

p2: ok() -> x

p1: ok() ->y

p2: ok()

CS586 - Panagiota Fatourou 24

Linearizability defined in terms
of Histories

• A history H is linearizable if it can be extended (by
appending zero or more response events) to some
history H’ such that:

– L1: complete(H’) is equivalent to some legal sequential
history S, and

– L2: <H <S

• S is called a linearization of H.

• Nondeterminism is inherent in the notion of

linearizability:
1. There may be more than one extension H’ satisfying the

two conditions, L1 and L2.
2. For each extension H’, there may be more than one

linearization S

CS586 - Panagiota Fatourou 25

Properties of Linearizability -
Locality

• A property P of a concurrent system is said to be local if the
system as a whole satisfies P whenever each individual object
satisfies P.

Theorem
H is linearizable if and only if, for each object O, HO is linearizable.

This theorem has two parts:
• If part: If for each object O, H0 is linearizable, then H is

linearizable.
• Only-if part: If H is linearizable, then for each object O, H0 is

linearizable.

• The only-if part is obvious.
• The if part requires a proof (see original paper by Herlihy and

Wing Proof of Theorem 1).

CS586 - Panagiota Fatourou 26

Locality

• Locality is important because it allows
concurrent systems to be designed and
constructed in a modular fashion.

• Linearizable objects can be
implemented, verified and executed
independently.

• Locality should not taken for granted;
alternative correctness properties that
have been proposed in the literature are
not local.

CS586 - Panagiota Fatourou 27

Linearizable implementations

An implementation is linearizable
if all the executions (histories) it
produces are linearizable.

 In this course, an
implementation of a concurrent
object is called correct, if it is
linearizable.

CS586 - Panagiota Fatourou 28

Comparison to other correctness conditions

Sequential Consistency (Intuitively)
• In each execution α, each operation

should have the same response as if it
has executed serially (or atomically).

and slightly more formally:
For each (parallel) execution α produced by the

implementation, there is a serial execution σ
of the operations executed in α, s.t.,

• each operation has the same response in σ as
in a.

• for each process pi, if op by pi precedes op’

by pi then op appears in σ before op’.

CS586 - Panagiota Fatourou 29

Sequential Consistency

even more formally:
We say that an execution a is sequntially consistent if it is possible to do

all of the following:
1. For each completed operation π, to insert a serialization point *π.
2. To select a subset Φ of the incomplete operations, and for each

operation π in Φ:
– to select a response for it, and
– to insert a linearization point *π for it.

3. These operations and responses should be selected and these
linearization points should be inserted, so that, in the sequential
execution constructed by serially executing each operation at the
point that its linearization point has been inserted, the response of
each operation is the same as that in a.

and finally:
• A history H is sequentially consistent if it can be extended

(by appending zero or more response events) to some history
H’ such that complete(H’) is equivalent to some legal sequential
history S.

CS586 - Panagiota Fatourou 30

Comparison to other correctness conditions

• The above history is sequentially consistent!

• However, it is not linearizable (since p2 should return x instead of y).

* *

*

p1: enq(Q, x)

p2: enq(Q, y) p2: deq(Q)

p1: enq(Q, x)

p2: enq(Q, y) p2: deq(Q)

error!
Linearizability is stronger than sequential consistency:

• Any linearizable execution is sequentially
consistent!
• The opposite is not TRUE!

p1: enq(Q, x)

p2: enq(Q, y) p2: deq(Q)

p1: ok()

p2: ok() p2: ok() -> y

p1: ok()

p2: ok() p2: ok() -> y

p1: ok()

p2: ok() p2: ok() -> y

CS586 - Panagiota Fatourou 31

Comparison to other correctness conditions

• Sequential consistency is not a local property!

p1: enq(Q1, x) p1: enq(Q2, x) p1: deq(Q1)

p2: enq(Q2, y) p2: enq(Q1, y) p2: deq(Q2)

p1: ok(Q1) p1: ok(Q1) ->y

p2: ok(Q2)

p1: ok(Q2)

p2: ok(Q1) p2: ok(Q2)-> x

p1: enq(Q1, x) p1: deq(Q1)

p2: enq(Q1, y)

p1: ok(Q1) p1: ok(Q1) ->y

p2: ok(Q1)

p1: enq(Q2, x)

p2: enq(Q2, y) p2: deq(Q2) p2: ok(Q2)

p1: ok(Q2)

p2: ok(Q2)-> x

HQ2

HQ1
*

* *

* *

*

sequentially
consistent!

sequentially
consistent!

H

not sequentially consistent!

CS586 - Panagiota Fatourou 32

The Problem

• Can we implement snapshot objects in
systems that provide only r/w
registers?

CS586 - Panagiota Fatourou 33

The trivial solution does not work!

• Assign a register Ri to each component Αi.

• UPDATE(i,v): write(Ri,v);

• SCAN(): Read all registers and return a vector
consisting of the values you read.

 This algorithm is not linearizable!

CS586 - Panagiota Fatourou 34

The trivial solution does not work!

• Assign a register Ri to each component Αi.

• UPDATE(i,v): write(Ri,v);

• SCAN(): Read all registers and return a vector
consisting of the values you read.

Processes Register Values

P Q R1 R2

read(R1) 0 0

write(R1,1)

1 0

write(R2,2)

1 2

read(R2)

CS586 - Panagiota Fatourou 35

The trivial solution does not work!

Processes Register Values

P Q R1 R2

read(R1) 0 0

write(R1,1)

1 0

write(R2,2)

1 2

read(R2)

SCAN() SCAN() --> <0, 2>> <0, 2>

 timetime

?* ?* ?*

UPDATE(ΑUPDATE(Α11, 1), 1) UPDATE(ΑUPDATE(Α22, 2), 2)

* *

Χ Χ Χ

CS586 - Panagiota Fatourou 36

The trivial solution does not work!

Are there wait-free, linearizable
implementations of atomic snapshot objects?

CS586 - Panagiota Fatourou 37

Snapshot Implementations from
Registers

• Anderson – PODC’90, PODC’93, DISC’91
• Afek, Attiya, Dolev, Gafni, Merritt and Shavit –

PODC’90 + JACM’93
• Attiya, Herlihy & Rachman - DISC’92
• Attiya & Rachman – PODC’93 + SICOMP’98
• Israeli & Shaham – PODC’92
• Israeli, Shaham & Shirazi – DISC’93
• Inoue, Chen, Masuzawa & Tokura – DISC’94
• Afek, Stupp & Touitou – FOCS’99
• Afek, Attiya, Fouren, Stupp & Touitou – PODC’99
• Attiya & Fouren – SICOMP’01
• Jayanti – PODC’02, STOC’05
• Fatourou, Fich & Ruppert - STOC’03
• Fatourou & Kallimanis – PODC’06, PODC’07

CS586 - Panagiota Fatourou 38

A simple implementation using
unbounded-size registers

• Each component, Aj, 1 ≤ j ≤ n, can be updated only by
process pj (single-writer snapshot).

• The implementation uses n registers R1, .., Rn, one for
each component. A register Rj has been assigned to
each component Aj. UPDATE operations on Aj write
only into Rj. Each register Rj is written only by pi but
it can be read by all processes (single-writer
registers).

• Each register Rj is big enough to store the following
information:
– valj: the current value of Aj

– tagj: a timestamp used by pj to differentiate the UPDATE
operations it initiates

– viewj: a vector of n values, one for each component.

• This assumption is not realistic (since the registers
are too big to be provided by the hardware).

• However, for the time being, we are only interested
to design a simple such algorithm.

CS586 - Panagiota Fatourou 39

The UnboundedSnapshot Algorithm

Step Complexity = O(n2) for SCAN and UPDATE.
The implementation uses n SW registers of unbounded
size.

SCAN, code for process pi:

repeatedly read R1, …, Rn until:
1. Two sets of reads return the

same Rj.tag for every j; then,
return the vector of values Rj.val,
1 ≤ j ≤ n, returned by the second
set of reads, or

2. For some j, three distinct values
of Rj.tag have been seen; return
the vector of values in Rj.view
associated with the last of the
three values read in Rj.tag.

UPDATE(v), code for process pi:

view := SCAN();
tag := increment pi’s tag by 1;
write(Ri,<v, tag,view>);

CS586 - Panagiota Fatourou 40

Linearizability

Definition: A SCAN operation S returns a
consistent vector if, for each component Αi, S
returns for Αi the value written by the last
UPDATE on Αi for which the linearization point
precedes the linearization point of S (or the
initial value if such an UPDATE does not exist).

• To prove that the implementation is

linearizable, we have to do the following:
– assign linearization points to the operations of any

execution
– prove that the linearization point of each operation

is within its execution interval, and
– prove that each SCAN returns a consistent vector

CS586 - Panagiota Fatourou 41

The UnboundedSnapshot Algorithm

SCAN S that returns
the view field of some
register Ri.

first read of Ri by p v1 second read of Ri by p v2 v1 third read of Ri by p v3 v2

... ...

All pk1, …, pkn are simultaneously active. Since we have n processes in the system,
the embedded SCAN executed by pkn terminates by evaluating condition (1) of the
SCAN code to TRUE.

pk1
pk2 pk3 pkn

SCANS or embedded
SCANS

UPDATE that writes view in Ri and its embedded SCAN

 If process j, while performing repeated sets of reads on behalf of a
SCAN, ever sees the same register Ri with three different tags, then it
knows that some UPDATEi is completely contained within the execution
interval of the SCAN

CS586 - Panagiota Fatourou 42

The UnboundedSnapshot Algorithm

Assignment of Linearization Points
UPDATE Operations
• We insert the linearization point of an UPDATE at

the point where its write occurs.
SCAN operations
• We assign linearization points not just to SCANs but

also to embedded SCANs.
• We partition SCANs in two categories:

– Direct SCANs: those that terminate by evaluating condition
(1) to TRUE

– Indirect SCAN: those that terminate by evaluating condition
(2) to TRUE

• The linearization point of a direct SCAN can be
placed anywhere within the end of the first of its last
two sets of reads and the beginning of its second.

CS586 - Panagiota Fatourou 43

The UnboundedSnapshot Algorithm

Linearization points of indirect SCANs

By induction on their response events
(i.e., we linearize these SCANs one
by one, in the order of their response
events).

1

2

4

3
5

6

CS586 - Panagiota Fatourou 44

The UnboundedSnapshot Algorithm

Induction Base: Linearization point of indirect SCAN
S which responds first.

• S returns a vector of values written by an UPDATE U
(i.e., this vector has been calculated by the embedded
SCAN S’ of U).

• The execution interval of U and therefore also of S’
(which is executed by U) is included in the execution
interval of S.

• S’ is a direct SCAN (since otherwise, the indirect
SCAN that has the first response event would be S’
and not S).

• Thus, a linearization point for S’ has already been
assigned.

• We linearize S at the same place as S’.
S

S’ U
 *S’ *S

CS586 - Panagiota Fatourou 45

The UnboundedSnapshot Algorithm
Induction Hypothesis
• Let S be the indirect SCAN which has the k-th respond

event. Assume that we have assigned linearization points
to all SCAN operations for which it holds that their
response events precede that of S.

Induction Step: We assign a linearization point to S.
• S returns a vector of values written by an UPDATE U (i.e.,

this vector has been calculated by the embedded SCAN S’
of U).

• The execution interval of U and therefore also of S’
(which is executed by U) is included in the execution
interval of S.

• If S’ is an indirect SCAN, by induction hypothesis, a
linearization point has been assigned to S’. The same is
TRUE for all direct SCANs.

• We linearize S at the same place as S’.

S

S’ U
 *S’ *S

CS586 - Panagiota Fatourou 46

The UnboundedSnapshot Algorithm

• Lemma: The linearization point of each SCAN or
UPDATE is within its execution interval.

• Proof: For UPDATES and direct SCANS this is
obvious.

• We prove the claim for indirect SCANS by induction
on the order of their response events.

• Induction Base
– Recall that the indirect SCAN S with the first response event

is linearized at the same point as the direct SCAN S’ from
which it borrows its vector. Moreover, the execution interval
of S’ is included in the execution interval of S.

– The linearization point of S’ is in its execution interval
Thus, the linearization point of S is in its execution interval.

S

S’ U

*S’ *S

CS586 - Panagiota Fatourou 47

The UnboundedSnapshot Algorithm
• Induction Step: We prove the claim for the indirect

SCAN S with the k-th response event.
• S returns a vector of values written by an UPDATE U

(i.e., this vector has been calculated by the embedded
SCAN S’ of U).

• The execution interval of U and therefore also of S’
(which is executed by U) is included in the execution
interval of S.

• If S’ is a direct SCAN, its linearization point is obviously
within its execution interval. The same is TRUE, if S’ is an
indirect SCAN (by induction hypothesis since the
execution interval of S’ is included in the execution
interval of S, and therefore the response event of S’
precedes that of S).

• The linearization point of S is placed at the same point as
that of S’ thus, the linearization point of S is within its
execution interval.

S

S’ U
 *S’ *S

CS586 - Panagiota Fatourou 48

The UnboundedSnapshot Algorithm
A1 A2 A3 Vals Scans

U(1) [1,0,0]

U(1) [1,1,0]

S1

U(3) [3,1,0]

U(4) [3,4,0]

U(5) [3,4,5]

U(6) [3,4,6]

S2

S3

S4

• Lemma: In every execution of
UnboundedSnapshot, each SCAN operation
returns a consistent vector of values.

• Proof: Obviously true for direct SCANs.
• For indirect SCANs, the claim will be proved

by induction on the order of response events
• Induction Base: The indirect SCAN S which

responds first, is linearized at the same
point as the direct SCAN S’ from which it
borrows its vector. Since S’ returns a
consistent vector, the same holds for S.

• Induction Step: We prove the claim for the
indirect SCAN S that has the kth response
event. S returns the same vector of values
as an embedded SCAN S’ and is linearized at
the same point as S’. Moreover, the
execution interval of S’ is within the
execution interval of S.

• If S’ is direct, it obviously returns a
consistent vector. If S’ is an indirect SCAN,
by the induction hypothesis (since the
response event of S’ precedes that of S), it
follows that it returns a consistent vector.
Thus, S returns a consistent vector.

time
*U(1,1)

[1,0,0] *U(2,1)
[1,1,0] *S1 *U(1,3)

[3,1,0] *U(2,4)
[3,4,0] *U(3,5)

[3,4,5] *U(3,6)
[3,4,6] *S2 *S3 *S4

CS586 - Panagiota Fatourou 49

Bibliography

These slides are based on material that
appears in the following books:

• Herlihy and Wing, “Linearizability: a
correctness condition for concurrent
objects”, ACM Transactions on
Programming Languages and Systems
(TOPLAS), 12(3): 463-492, 1990.

• N. Lynch, Distributed Algorithms,
Morgan Kaufmann, 1996 (Chapter 13,
Section 3).

End of Section

Financing

• The present educational material has been developed as part of
the educational work of the instructor.

• The project “Open Academic Courses of the University of
Crete” has only financed the reform of the educational material.

• The project is implemented under the operational program
“Education and Lifelong Learning” and funded by the European
Union (European Social Fund) and National Resources

Notes

Licensing Note

• The current material is available under the Creative Commons
Attribution-NonCommercial-NoDerivs 4.0[1] International license or
later International Edition. The individual works of third parties are
excluded, e.g. photographs, diagrams etc. They are contained therein and
covered under their conditions of use in the section «Use of Third
Parties Work Note».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

• As Non-Commercial is defined the use that:

 Does not involve direct or indirect financial benefits from the use of the
work for the distributor of the work and the license holder

 Does not include financial transaction as a condition for the use or access to
the work

 Does not confer to the distributor and license holder of the work indirect
financial benefit (e.g. advertisements) from the viewing of the work on
website

• The copyright holder may give to the license holder a separate license to
use the work for commercial use, if requested.

Reference Note

Copyright University of Crete , Panagiota Fatourou 2015. Panagiota
Fatourou. «Distributed Computing. Section 4: Concurrent Objects –
Correctness, Progress and Efficiency». Edition: 1.0. Heraklion 2015.
Available at:
https://opencourses.uoc.gr/courses/course/view.php?id=359.

Preservation Notices

Any reproduction or adaptation of the material should
include:

• the Reference Note

• the Licensing Note

• the declaration of Notices Preservation

• the Use of Third Parties Work Note (if is available)

together with the accompanied URLs.

