
HELLENIC REPUBLIC
UNIVERSITY OF CRETE

Distributed Computing
Graduate Course

Section 5: Foundations of Shared Memory:
Fault-Tolerant Simulations of Read/Write

Objects

Panagiota Fatourou
Department of Computer Science

CS586 - Panagiota Fatourou 2

Simple Read/Write Register Simulations

 We show that registers that may seen more
 complicated, i.e., multi-writer (MW) multi-reader (MR)
 multi-valued registers have a wait-free implementation
 using simpler registers, i.e., single-writer (SW) single-
 reader (SR) binary registers.

Figure 10.1: H. Attiya & J. Welch, Distributed Computing:
Fundamentals, Simulations and Advanced Topics, Morgan
Kaufmann, 2004

CS586 - Panagiota Fatourou 3

Multi-valued SW SR Registers
from Binary SW SR Registers

Basic Objects
• Binary registers, each of which can be read

by just one process and written by just one
process.

Implemented (or high-level) object
• A k-valued register which can be read by just

one process and written by just one process.
• We represent values in unary.
• We use an array of k binary SW SR registers

Β[0..k-1].
• The value j is represented by a 1 in the jth

entry and 0 in all other entries.

CS586 - Panagiota Fatourou 4

A Simple Algorithm

read() {

 for j = 0 to k-1

 if (B[j] == 1) return j;
}

write(v) {
 B[v] = 1;
 for j =0 to k-1, j ≠ v,
 B[j] = 0;
 return <ack>;
}

 This algorithm is not linearizable

read B[0] -> 0

 B[1] = 1

read B[2] -> 1 read B[0] -> 0 read B[1] -> 1

Read() -> 2 Read() -> 1

Write(1) Write(2)

read B[1] -> 0

 B[2] = 1 B[1] = 0

CS586 - Panagiota Fatourou 5

A Correct Algorithm
Main Ideas
• A write operation clears only the entries whose

indices are smaller than the value it is writing.
• A read operation does not stop when it finds the first

1, but makes sure there are still zeroes in all lower
indices.

read(R) {
 i = 0;
 while B[i] == 0 do i = i+1;
 up = i;
 v = i;
 for i = up -1 down to 0 do
 if B[i] == 1 then v = i;
 return v;

}

write(R,v) {
 B[v] = 1;
 for i = v-1 down to 0 do B[i] = 0;
 return <ack>;
}

CS586 - Panagiota Fatourou 6

Multi-Valued from Binary Registers

Linearizability
 Let a be any admissible execution of the algorithm.
 We say that a (low-level) read r of any B[v] in a reads from a

(low-level) write w to B[v], if w is the latest write to B[v] that
precedes r in a.

 We say that a (high-level) Read R in a reads from a (high-level)
Write W, if R returns v and W contains the write to B[v] that
R’s last read of B[v] reads from.

• We construct a sequential execution σ containing all
the high-level operations in a, such that
(1) σ respects the order of non-overlapping operations in a, and
(2) every Read operation in σ returns the value of the latest

preceding Write.

CS586 - Panagiota Fatourou 7

Construction of the sequential execution σ
• In two steps:

(1) We put in σ all the Write operations according to the order
in which they occur in a;
 Since we have a unique writer, this order is well-defined.

(2) Consider the Reads in the order they occur in a; since we
have a unique reader, this order is well-defined.
 For each Read R, let W be the Write that R reads from.
 Place R immediately before the Write in σ just following W

(i.e., place R after W and after all previous Reads that also
read from W)

 By the defined placement of each Read, every Read
returns the value of the latest preceding Write and
therefore σ is legal.

 We have to prove that σ preserves the real-time
ordering of non-overlapping operations.

Multi-Valued from Binary Registers

CS586 - Panagiota Fatourou 8

Multi-Valued from Binary Registers

Lemma 1
Let op1 and op2 be two high-level operations in a such

that op1 ends before op2 begins. Then, op1 precedes
op2 in σ.

Proof
 By construction, the real-time ordering of Write

operations is preserved.
 Consider some Read operation, R, by pi.
 If R finishes in a before a Write W begins, then R

precedes W in σ, because R cannot read from a Write
that starts after R.

We proceed by case analysis.
 Case 1: Write before Read.

 Case 2: Read before Read.

Read R

Write W

Read R2 Read R1

CS586 - Panagiota Fatourou 9

Multi-Valued from Binary Registers
Lemma 2: Consider two values u and v with u < v. If Read R returns v and R’s

read of B[u] during its upward scan reads from a write contained in Write
W1, then R does not read from any Write that precedes W1.

Proof: Suppose in contradiction that R reads for a Write W(v) that precedes
W1(v1) (see figure).

 It should hold that (1) v1 > u (since W1 writes 1 in B[v1] and then does a
downward scan), and (2) v1 < v (since otherwise W1 would overwrite W’s
value to v so R would not read from W).

 R’s upward SCAN reads B[u], then B[v1], then B[v].
 This SCAN should read 0 in B[v1] (otherwise R would return v1 and not v).
 Thus, there must be another Write W2(v2) after W1 that writes 0 in B[v1]

before R reads B[v1].
 It should be that v2 > v1 and v2 < v (for similar reasons as above).
 We apply this argument repeatedly to get an infinite increasing sequence

of integers v1, v2, …, all of which are less than v. A contradiction!

Figure 10.3: H. Attiya & J.
Welch, Distributed Computing:
Fundamentals, Simulations and
Advanced Topics, Morgan
Kaufmann, 2004

CS586 - Panagiota Fatourou 10

Multi-Valued from Binary Registers

Proof of Lemma 1 (case analysis continued)

Case 1: Write W before Read R

 Suppose in contradiction R is placed
before W in σ R reads from some Write W’(v’) that precedes W.

 v’ ≤ v: Then W overwrites the write to B[v’] by W’ before R begins.
A contradiction (since then R does not read from W’, as assumed).

 v’ > v: By Lemma 2, R cannot read from W’.

Read R -> v’

Write W(v)
σ: ... *R ... *W ...

‘ W1(v1), v < v1 < v’

R
Figure 10.4: H. Attiya & J.
Welch, Distributed Computing:
Fundamentals, Simulations and
Advanced Topics, Morgan
Kaufmann, 2004

CS586 - Panagiota Fatourou 11

Multi-Valued from Binary Registers

Read R2 Read R1

Case 2: Read before Read

Suppose in contradiction that R1 follows R2
in σ R1 reads from a Write W1(v1) that
follows the Write W2(v2) from where R2 reads.

 v1 = v2: When W1 writes 1 to B[v1] it overwrites the 1 that W2 wrote
to B[v2] earlier. Thus, R2 cannot read from W2. A contradiction!

 v1 > v2: Since R1 reads 1 from B[v1], the write of W1 to B[v1]
precedes the read of R1 from B[v1]. The write of 1 to B[v2] by W2
precedes the write of W1 to B[v1]. Thus, from the write of W2 to B[v2]
until the read of this
value from R2, no write
to B[v2] occurs.

Thus, during the downward
scan, R1 must read 1 in B[v2],
and therefore, R1 does not
return v1. A contradiction!

σ: ... *R2 ... *R1 ...

Figure 10.5: H. Attiya & J. Welch, Distributed Computing: Fundamentals,
Simulations and Advanced Topics, Morgan Kaufmann, 2004

CS586 - Panagiota Fatourou 12

Multi-Valued from Binary Registers

Read R2 Read R1 Case 2: Read before Read (continued)

v1 < v2:

 Since R1 reads from W1, W1’s write
 of 1 to B[v1] precedes R1’s last read of B[v1].

 Since R2 returns v2 > v1, R2’s first read of B[v1] must return 0.

 So, there must be another Write after W1 containing a write of 0 to B[v1]
 that R2’s read of B[v1] reads from.

 Lemma 2 implies that R2 cannot read from W2. A contradiction!

σ: ... *R2 ... *R1 ...

W3

Figure 10.6: H. Attiya & J.
Welch, Distributed Computing:
Fundamentals, Simulations and
Advanced Topics, Morgan
Kaufmann, 2004

CS586 - Panagiota Fatourou 13

Multi-Valued from Binary Registers

Theorem

• There exists a wait-free simulation of a
K-valued register using K binary
registers in which each hig-level
operation performs O(K) low-level
operations.

CS586 - Panagiota Fatourou 14

Multi-Reader from Single-Reader Registers

write(v) {

 for (j=1; j n; j++) Val[j] = v;

}

read { // code for pi, 1 i n

 return(Val[i]);
}

A Simple Algorithm

Shared Variables: value Val[n]; // an array of n elements, one for each
 // reader

 This algorithm is not linearizable

Figure 10.7: H. Attiya & J. Welch, Distributed Computing: Fundamentals,
Simulations and Advanced Topics, Morgan Kaufmann, 1998

CS586 - Panagiota Fatourou 15

Multi-Reader from Single-Reader Registers

Theorem 3
• In any wait-free implementation of a single-writer multi-reader

register from any number of single-writer single-reader
registers, at least one reader must write.

Proof: By the way of contradiction!

S2 S1

registers

read by

reader p1

registers

read by

reader p2

Wk Wj2 W1

C0
Rj1

ivj1
i Rj2

ivj2
i Rk

ivk
i

Wj1 … …

Since the implementation is linearizable,
 i {1,2}: ji, 1 ji k, such that, vi

j = 0 for
all j < ji and vi

j = 1, for all j ji.

Why is this TRUE?

• It holds that j1 j2. Wlog, assume that j1 < j2.
• Rj1

1 returns 1, whereas Rj1
2 returns 0.

• This contradicts linearizability!!

… …

Wk-1

Rk-1
ivk-1

i

…

1 1 1 1

R0
iv0

i
R1

iv1
i …

0 0

CS586 - Panagiota Fatourou 16

Report Val r

A Correct Algorithm

// code for each reader pr, 1 r n
read() {
 <v[0],s[0]> = Val[r];
 for i=1 to n do
 <v[i],s[i]> = Report[i,r];
 let j be s.t. s[j] = max{s[0], s[1], …, s[n] };
 for i=1 to n do Report[r,i] = <v[j],s[j]>;
 return v[j];
}

 // code for the single writer pw

write(v) {
 seq = seq +1;
 for i=1 to n do Val[i] = <v,seq>;
 return <ack>;
}

Shared Variables:
<value,seq> Val[i]; // 1 i n, value writen by pw for each of reader pi
 // initially < v0,0>
<value,seq> Report[i,j]; // 1 i, j n, value returned by the most recent Read
 // operation performed by pi;
 // written by pi and read by pj, initially, <v0,0>

r r

execution of
read() by pr

CS586 - Panagiota Fatourou 17

Construction of σ
• In two steps:

(1) We put in σ all the Write operations according to
 the order in which they occur in a;
 Since we have a unique writer, this sequence is well-

defined.
 This order is consistent with timestamps associated with

the values written.
(2) Reads are considered, one by one, in the order of their

responses in a
(3) A Read operation that returns a value with

 timestamp T is placed immediately before the
 Write that follows the Write operation that
 generated timestamp T.

 By the defined placement of each Read, every Read
returns the value of the latest preceding Write and
therefore σ is legal.

 We have to prove that σ preserves the real-time
ordering of non-overlapping operations.

A Correct Algorithm

CS586 - Panagiota Fatourou 18

Lemma 4: Let op1 and op2 be two high-level operations in a such that op1
ends before op2 begins. Then, op1 precedes op2 in σ.

Proof: By construction, the real-time order of Write operations is
preserved.

• Consider some Read operation, R, by pi that returns a value associated
with timestamp T.

A Correct Algorithm

Read R by pi

Write W

Read R

Write W

Read R’ by pj Read R

If R follows W in σ, then the write W’ that
generates timestamp T is either W or a
later Write, implying that W’ occurs after
R in a. A contradiction!!!

Since R occurs after W, R reads from Val[i]
the value written by W or a later Write
R returns a value whose associated
timestamp is generated by W or a later
Write. Thus R is not placed before W in σ.

Process pj obtain a timestamp from
Report[i] during R’ that is written during R
or later. No timestamp written to Report[i]
after R was generated before T was
generated max of R’ returns a value Τ
 R’ will not be placed before R in σ.

Theorem 5: There exists a wait-
free implementation of an n-
reader register using O(n2) single-
reader registers in which each
high-level operation performs
O(n) low-level operations.

σ: ... *R’ ... *R ...

σ: ... *R ... *W ...

σ: ... *W ... *R ...

CS586 - Panagiota Fatourou 19

Multi-Writer from Single-Writer Registers
Main Ideas

 Have each writer announce each value it wants to write to all the
readers by writing it in its own SW MR register; each reader reads all
the values written by the writers and picks the most recent one among
them.

 p1, …, pm: writers, p1, …, pn: readers

 Each timestamp is now a vector of m components, one for each writer.

 The new timestamp of a processor is the vector consisting of the local
timestamps read from all other processors, and its local timestamp
increased by one.

 We order timestamps according to the lexicographic order on the
timestamps (i.e., according to the relative order of the values in the
first coordinate in which the vector differs).

 The algorithm uses the following shared arrays of SW MR r/w
registers:

 vector TS[i]: 1 i m, the vector timestamp of writer pi

 <vector, value> Val[i]: 1 i m, the latest value written by writer pi,
1 i m, together with the vector timestamp associated with that
value. It is written by writer pi and read by all readers.

CS586 - Panagiota Fatourou 20

Multi-Writer from Single-Writer Registers

read() { // code for reader pr 1 r n
 for i=1 to m do
 <v[i],t[i]> = Val[i];
 let j be s.t. t[j] = max{t[1], t[2], …, t[m]};
 return v[j];
}

write(v) { // writer pw writes v in R
 ts = NewTS(w);
 val[w] = <v,ts>;
 return <ack>;
}

procedure NewTS(int w) {
 for i = 1 to m do
 lts[i] = TS[i].[i];
 lts[w] = lts[w] + 1;
 TS[w] = lts;
 return lts;
}

Shared Variables:
<value,vector> Val[i]; // 1 i m, initially <v0,(0,...,0)>
vector TS[i]; // 1 i m, initially (0,..,0)

CS586 - Panagiota Fatourou 21

Multi-Writer from Single-Writer Registers

Linearizability
• In a way similar to that we proved linearizability in the previous

algorithm.

Construction of σ
• In two steps:

– We put into σ all the Write operations according to the lexicographic
ordering on the timestamps associated with the values they write.

– A Read operation that returns a value with timestamp VT is placed
immediately before the Write operation that follows (in σ) the Write
operation that generated timestamp VT.

• Lemma 6: The lexicographic order of the timestamps is a total
order consistent with the partial order in which they are
generated.

• Lemma 7: For each i, if VT1 is written to Val[i] and later VT2 is

written to Val[i], then VT1 < VT2.

• By the defined placement of each Read, every Read returns the
value of the latest preceding Write and therefore σ is legal.

CS586 - Panagiota Fatourou 22

Multi-Writer from Single-Writer Registers
Lemma 8: Let op1 and op2 be two high-level operations in a such that op1
ends before op2 begins. Then, op1 precedes op2 in σ.
Proof: By Lemma 6, the real time order of Write operations is preserved.
Consider a Read operation, R, by pi that returns a value associated with
timestamp VT.
Case 1: Arguments similar to corresponding
case of Lemma 4.
Case 2: R reads from Val[j] the value
written by W or some later Write.
By semantics of max and Lemma 6,
R returns a value whose associated
timestamp is generated by W or a later
write. Thus, R is not placed before W in σ.
Case 3: During R, pi reads all Val
variables and returns the lexicographic
maximum. During R’, pj does the same thing.
By Lemma 7, the timestamps appearing in each Val variable are in non-
decreasing order. By Lemma 6, they are in non-decreasing order of when
they were generated. Thus, R’ obtains timestamps from Val that are at least
as large as those obtained by R. Thus, the timestamp associated with the
value returned by R’ is at least as large as that associated with the value
returned by R.

Read R by pi

Write W

Read R

Write W by pj

Read R’ by pj Read R

σ: ... *R ... *W ...

σ: ... *W ... *R ...

σ: ... *R’ ... *R ...

CS586 - Panagiota Fatourou 23

Multi-Writer from Single-Writer
Registers

Theorem 9: There exists a wait-free
implementation of an m-writer register
using O(m) single-writer registers in
which each high-level operation
performs O(m) low-level operations.

CS586 - Panagiota Fatourou 24

Bibliography

These slides are based on material that
appears in the following books:

• H. Attiya & J. Welch, Distributed
Computing: Fundamentals, Simulations
and Advanced Topics, Morgan Kaufmann,
2004 (Chapter 10)

• N. Lynch, Distributed Algorithms,
Morgan Kaufmann, 1996 (Chapter 13,
Section 4).

End of Section

Financing

• The present educational material has been developed as part of
the educational work of the instructor.

• The project “Open Academic Courses of the University of
Crete” has only financed the reform of the educational material.

• The project is implemented under the operational program
“Education and Lifelong Learning” and funded by the European
Union (European Social Fund) and National Resources

Notes

Licensing Note
• The current material is available under the Creative Commons

Attribution-NonCommercial-NoDerivs 4.0[1] International license or
later International Edition. The individual works of third parties are
excluded, e.g. photographs, diagrams etc. They are contained therein and
covered under their conditions of use in the section «Use of Third
Parties Work Note».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

• As Non-Commercial is defined the use that:

 Does not involve direct or indirect financial benefits from the use of the
work for the distributor of the work and the license holder

 Does not include financial transaction as a condition for the use or access to
the work

 Does not confer to the distributor and license holder of the work indirect
financial benefit (e.g. advertisements) from the viewing of the work on
website

• The copyright holder may give to the license holder a separate license to
use the work for commercial use, if requested.

Reference Note

Copyright University of Crete , Panagiota Fatourou 2015. Panagiota
Fatourou. «Distributed Computing. Section 5: Foundations of
Shared Memory: Fault-Tolerant Simulations of Read/Write
Objects ». Edition: 1.0. Heraklion 2015. Available at:
https://opencourses.uoc.gr/courses/course/view.php?id=359.

Preservation Notices

Any reproduction or adaptation of the material should
include:

• the Reference Note

• the Licensing Note

• the declaration of Notices Preservation

• the Use of Third Parties Work Note (if is available)

together with the accompanied URLs.

