
HELLENIC REPUBLIC
UNIVERSITY OF CRETE

Distributed Computing
Graduate Course

Section 6: Fault-Tolerant Consensus

Panagiota Fatourou
Department of Computer Science

CS586 - Panagiota Fatourou 2

Consensus
Description of the Problem

 Each process starts with an individual input from a particular value
set V. Processes may fail by crashing.

All non-faulty processes are required to produce outputs from the
value set V, subject to simple agreement and validity.

Correcteness Conditions
Agreement: No two non-faulty processes decide on different values.
Validity: If all processes start with the same initial value
v V, then v is the only decision value.
Termination: All non-faulty processes eventually decide.

Motivation
 Processes in a database system may need to agree whether a
 transaction should commit or abort.
 Processes in a communication system may need to agree on whether
 or not a message has been received.
 Processes in a control system may need to agree on whether or not
 a particular other process is faulty.

CS586 - Panagiota Fatourou 3

Synchronous Shared Memory System

Is there an algorithm that solves consensus

in a synchronous shared-memory system?

CS586 - Panagiota Fatourou 4

Modeling Message
Passing Systems

• n: number of processes (p0, …, pn-1)
• Each process is modeled as a

(possibly infinite) state machine.
• The state of process pi contains

2r special components, where r is
the number of edges that are incident to pi:
– outbufi[l], 1 ≤ l ≤ r, holds messages that pi has sent to its neighbor

over its lth incident channel but that have not yet been delivered to
the neighbor;

– inbufi[l], 1 ≤ l ≤ r, holds messages that have been delivered to pi on
its lth incident channel but that pi has not yet processed with an
internal computation step.

• The state e.g., of p0 consists of p0’s local variables, and of six
arrays:

• inbuf0[1], …, inbuf0[3]: messages that have been sent to p0, and
p0 has not yet processed.

• outbuf0[1], …, outbuf0[3]: messages that have been sent by p0 to
each of the processes p1, p2, p3, respectively, and which have not
yet been delivered to p1, p2, p3.

Figure 2.1: H. Attiya & J. Welch, Distributed
Computing: Fundamentals, Simulations and
Advanced Topics, Morgan Kaufmann, 2004

CS586 - Panagiota Fatourou 5

Modeling Message Passing
Systems

• The state of a process pi, excluding the
outbufi[l] components, comprises the
accessible state of pi.

• Each process has a state at which all
inbuf arrays are empty.

• In each step executed by p0, p0
processes all messages stored in its
inbuf arrays, the state of p0 changes
and at most one message is sent to each
of its neighboring processes.

CS586 - Panagiota Fatourou 6

Modeling Message Passing Systems

Events in Message-Passing Systems
• Delivery event, del(k,j,m): delivery of message m

from process pk to process pj; just before the event
occurs, m must be an element of outbufk[l], where l is
pk’s label for channel {pk,pj}. The event causes m to be
deleted from outbufk[l] and be inserted to inbufj[l’],
where l’ is pj’s label for channer {pk,pj}:
– A message is delivered only if it is in transit and the only

change is to move he message from the sender’s outgoing
buffer to the recepient’s incoming buffer.

• Computational event by pj, comp(j): computation
step of process pj in which pj’s transition function is
applied to its current accessible state; pj changes
state according to its transition function operating on
pj’s accessible state and the set of messages
specified by pj’s transition function are added to the
outbufj variables.

CS586 - Panagiota Fatourou 7

Modeling Message Passing Systems

Admissible execution

• Each process has an infinite number of
computation events and every message
sent is eventually delivered.

Message complexity

• Maximum number of messages that are
sent in any execution.

CS586 - Panagiota Fatourou 8

A Simple Algorithm for Synchronous
Message-Passing Systems

 Each process maintains a set of the values it knows to exist in the
 system; initially, this set contains only its own input.
 At the first round, each process broadcasts its own input to all
 processes.
 For the subsequent f rounds, each process takes the following actions:

 updates its set by joining it with the sets received from other
 processes, and
 broadcasts any new additions to the set to all processes.

 After f+1 rounds, the process decides on the smallest value in its set.

Algorithm 15: H. Attiya & J. Welch, Distributed Computing: Fundamentals, Simulations and Advanced Topics, Morgan Kaufmann, 2004

CS586 - Panagiota Fatourou 9

A Simple Algorithm for Synchronous
Message-Passing Systems

f = 3, n = 5

CS586 - Panagiota Fatourou 10

A Simple Algorithm for Synchronous
Message-Passing Systems

Termination?

Validity?

Intuition for Agreement:

• Assume that a process pi decides on a value x smaller
than that decided by some other process pj.

• Then, x has remain “hidden” from pj for (f+1) rounds.

• We have at most f faulty processes. A contradiction!!!

Number of processes? n > f

Round complexity? (f+1) rounds

Message Complexity?

• n2 * |V| messages, where V is the set of input values.

CS586 - Panagiota Fatourou 11

Impossibility of Consensus in
Asynchronous Shared-Memory

Systems

Theorem 1: For n ≥ 2, there is no algorithm
in the read/write shared memory model
that solves the agreement problem and
guarantees wait-free termination.

CS586 - Panagiota Fatourou 12

Useful Definitions
• The valence of

a configuration C
is the set of
all values decided
upon in any
configuration
reachable from C.

• C is univalent if this set contains one value; it is 0-
valent if this value is 0 and 1-valent if this value
is 1.

• If the set contains two values then C is bivalent.
• If C is bivalent and the configuration resulting by

letting some process p take a step is univalent, we say
that p is critical in C.

• Recall that: Two configurations C1 and C2 are similar to
a process p, denoted C1 ~p C2, if the values of all shared
variables and the state of p are the same in C1 and C2.

Figure 5.10: H. Attiya & J. Welch, Distributed Computing: Fundamentals, Simulations
and Advanced Topics, Morgan Kaufmann, 1998

CS586 - Panagiota Fatourou 13

Impossibility of Consensus - Proof

Assume, by the way of contradiction, that A
is a wait-free consensus algorithm.

Main Ideas of the Proof

• We construct an infinite execution in which:
– every process takes an infinite number of steps,

– yet every configuration is bivalent,

– and thus no process can decide.

• This contradicts the fact that the
algorithm is wait-free.

CS586 - Panagiota Fatourou 14

Impossibility of Consensus

Lemma 2: Let C1 and C2 be two univalent configurations.
If C1 p C2, for some process p, then C1 is v-valent, if
C2 is also v-valent, where v {0,1}.

Proof: Suppose C1 is v-valent.
• Consider an infinite execution α from C1 in which only

p takes steps.
• Since the algorithm is supposed to be wait-free a

is admissible and eventually p must decide in α.
• Since C1 is v-valent p must decide v in α.
• The schedule of a can be applied from C2
• Since C1 p C2 and only p takes steps, it follows that p

decides v in this execution as well.
• Thus, C2 is v-valent, as needed.

CS586 - Panagiota Fatourou 15

Impossibility of Consensus

Lemma 3: There exists a bivalent initial configuration.

Proof: By contradiction.

• Let Ι0 be the initial configuration in which all processes

start with 0 Ι0 is 0-valent.
• Let Ι1 be initial configuration in which all processes

start with 1 Ι1 is 1-valent.
• Let Ι01 be the initial configuration in which p0 starts

with 0 and the remaining processes start with 1.
• Ι01 p0 Ι0 (by Lemma 2) Ι01 is 0-valent
• Ι01 p1 Ι1 (by Lemma 2) Ι01 cannot be 0-valent.

This is a contradiction!

CS586 - Panagiota Fatourou 16

Impossibility of Consensus

Lemma 4: If C is a bivalent
configuration, then at least
one processor is not critical
in C.

• Proof: By the way of
contradiction. Assume that
all processes are critical in C.

• Since C is bivalent and all processes are
critical in C there exists two process pj and
pk such that:
– if pj takes a step from C, then the resulting

configuration C’ is 0-valent, and
– if pk takes a step from C the resulting

configuration C’’ is 1-valent.

CS586 - Panagiota Fatourou 17

Impossibility of Consensus
Proof of Lemma 4 (continued)

Consider the following cases.

1. The first step of process pj
from C is a read.

The case where the
first step of pk from C
is a read is symmetric.

CS586 - Panagiota Fatourou 18

Impossibility of Consensus
Proof of Lemma 4 (continued)

2. The first steps of pj and pk from C are both writes
and they are to different variables.

CS586 - Panagiota Fatourou 19

Impossibility of Consensus
Proof of Lemma 4 (continued)

2. The first steps of pj and pk
from C are both writes
and they are to the same
variable.

CS586 - Panagiota Fatourou 20

Impossibility of Consensus

Proof of Theorem 1
 We inductively create an admissible execution C0 i1 C1 i2

… in which the configurations remain bivalent forever.
– By Lemma 3, there is an initial bivalent configuration; let it be

C0.
– Suppose the execution has been created up to bivalent

configuration Ck.
– By Lemma 4, some process is not critical in Ck; denote this

process by pik.
– Then, pik can take a step without resulting in a univalent

configuration.
– We apply the event ik to Ck to obtain Ck+1 which is also bivalent.

 If we repeat this procedure forever, we will construct
an execution in which all the configurations are
bivalent. Thus, no process ever decides, contradicting
the termination property of the algorithm and implying
Theorem 1.

CS586 - Panagiota Fatourou 21

Bibliography

These slides are based on material that
appears in the following books:

• H. Attiya & J. Welch, Distributed
Computing: Fundamentals, Simulations
and Advanced Topics, Morgan Kaufmann,
2004 (Chapter 5)

• N. Lynch, Distributed Algorithms,
Morgan Kaufmann, 1996 (Chapters 5,
12).

End of Section

Financing

• The present educational material has been developed as part of
the educational work of the instructor.

• The project “Open Academic Courses of the University of
Crete” has only financed the reform of the educational material.

• The project is implemented under the operational program
“Education and Lifelong Learning” and funded by the European
Union (European Social Fund) and National Resources

Notes

Licensing Note
• The current material is available under the Creative Commons

Attribution-NonCommercial-NoDerivs 4.0[1] International license or
later International Edition. The individual works of third parties are
excluded, e.g. photographs, diagrams etc. They are contained therein and
covered under their conditions of use in the section «Use of Third
Parties Work Note».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

• As Non-Commercial is defined the use that:

 Does not involve direct or indirect financial benefits from the use of the
work for the distributor of the work and the license holder

 Does not include financial transaction as a condition for the use or access to
the work

 Does not confer to the distributor and license holder of the work indirect
financial benefit (e.g. advertisements) from the viewing of the work on
website

• The copyright holder may give to the license holder a separate license to
use the work for commercial use, if requested.

Reference Note

Copyright University of Crete , Panagiota Fatourou 2015. Panagiota
Fatourou. «Distributed Computing. Section 6: Fault-Tolerant
Consensus». Edition: 1.0. Heraklion 2015. Available at:
https://opencourses.uoc.gr/courses/course/view.php?id=359.

Preservation Notices

Any reproduction or adaptation of the material should
include:

• the Reference Note

• the Licensing Note

• the declaration of Notices Preservation

• the Use of Third Parties Work Note (if is available)

together with the accompanied URLs.

