S0 P>
475) 0
D
v

(S

%

HELLENIC REPUBLIC
UNIVERSITY OF CRETE

Distributed Computing

Graduate Course
Section 6: Fault-Tolerant Consensus

Panagiota Fatourou
Department of Computer Science

Description of the Problem

v' Each process starts with an individual input from a particular value
set V. Processes may fail by crashing.

v'All non-faulty processes are required to produce outputs from the
value set V, subject to simple agreement and validity.

Correcteness Conditions
No two non-faulty processes decide on different values.
If all processes start with the same initial value
v € V, then v is the only decision value.
All non-faulty processes eventually decide.

Motivation

[Processes in a database system may need to agree whether a
transaction should commit or abort.

[Processes in a communication system may need to agree on whether
or not a message has been received.

[Processes in a control system may need to agree on whether or not
a particular other process is faulty.

CS586 - Panagiota Fatourou 2

Synchronous Shared Memory System

» |s there an algorithm that solves consensus
In @ synchronous shared-memory system?

CS586 - Panagiota Fatourou 3

Figure 2.1: H. Attiya & J. Welch, Distributed
Computing: Fundamentals, Simulations and
Advanced Topics, Morgan Kaufmann, 2004

2 K\\ % / I
N /
n: number of processes (pg, ..., Pn-1) / N/
Each process is modeled as a 1 N 1/

(possibly infinite) state machine. ps ol

The state of process p; contains

2r special components, where r is

the number of edges that are incident to p;:
- ou’rbufi[ll], 1<1<r, holds messages that p; has sent to its neighbor

over its Ith incident channel but that have not yet been delivered to
the neighbor;

- inbuf[l],1< < r, holds messages that have been delivered to p; on
its Ith incident channel but that p; has not yet processed with an
internal computation step.

The state e.qg., of py consists of py's local variables, and of six
arrays:

inbufy[1], ..., inbufy[3]: messages that have been sent to p,, and
Po has not yet processed.

outbufy[1], ..., outbufy[3]: messages that have been sent by p, to
each of the processes p;, P,, p3, respectively, and which have not
yet been delivered Yo py, p,, ps.

CS586 - Panagiota Fatourou 4

» The state of a process p;, excluding the
outbuf [|] components, comprises the
accessible state of p..

» Each process has a state at which all
inbuf arrays are empty.

* In each step executed by p,, pg
processes all messages stored in its
inbuf arrays, the state of p, changes
and at most one message is sent to each
of its neighboring processes.

CS586 - Panagiota Fatourou

Events in Message-Passing Systems

Delivery event, del(k,j,m): delivery of message m
from process p, to process p;. just before the event
occurs, m mus‘rﬁoe an element of outbuf,[l], where | is
p« S label for channel {F p:}. The event causes m to be
deleted from outbuf,| fcr{d be inserted to inbuf;[I'],
where I' is p/'s label for channer {p,p;}:

- A message is delivered only if it is in transit and the only
change is to move he message from the sender’s outgoing
buffer to the recepient’s incoming buffer.

» Computational event by p;, comp(j): computation
step of process pj in which pj's transition function is
applied to its current accessible state; p; changes

state according to its transition function operating on

pi's accessible state and the set of messages
specified by p.'s transition function are added to the

ou‘rbufj variables.

CS586 - Panagiota Fatourou 6

Admissible execution

» Each process has an infinite number of
computation events and every message
sent is eventually delivered.

Message complexity

* Maximum number of messages that are
sent in any execution.

CS586 - Panagiota Fatourou

code for processor p;, 0 <1 < n = 1.

Initially V = {z} //'V contains p;’s input

round k,1 <k < f+1:
1: send {v € V : p; has not already sent v} to all processors
2: receive S; fromp;, 0 <j<n=1,5#1
-
3 V=VU U?:D Sj '
4: ifk= f+ 1theny:= min(V) // decide
Algorithm 15: H. Attiya & J. Welch, Distributed Computing: Fundamentals, Simulations and Advanced Topics, Morgan Kaufmann, 2004

0 Each process maintains a set of the values it knows to exist in the
system; initially, this set contains only its own input.
O At the first round, each process broadcasts its own input to all
processes.
O For the subsequent f rounds, each process takes the following actions:
= updates its set by joining it with the sets received from other
processes, and
= broadcasts any new additions to the set to all processes.

O After f+1 rounds, the process decides on the smallest value in its set.

CS586 - Panagiota Fatourou 8

A Simple Algorithm for Synchronous
Message-Passing Systems

(JEEC S N B |
var

R \' Y S

O |
%1

|
|}

LN

0\ A
g [y LY

“ U
Y LY
LN

i Y t
&

\

RIS Y
M

% 1 " &
round 1 round 3
round 2 round 4
f=3,n=5

CS586 - Panagiota Fatourou

Termination?
Validity?

Intuition for Agreement:

* Assume that a process p, decides on a value x smaller
than that decided by some other process p;.

* Then, x has remain “hidden” from p; for (f+1) rounds.
 We have at most f faulty processes. A contradiction!!!

Number of processes? n>f
Round complexity? (f+1) rounds

Message Complexity?
* n?*|V| messages, where V is the set of input values.

CS586 - Panagiota Fatourou 10

Impossibility of Consensus in
Asynchronous Shared-Memory
Systems

Theorem 1: For n2 2, there is no algorithm
in the read/write shared memory model
that solves the agreement problem and
guarantees wait-free termination.

CS586 - Panagiota Fatourou 11

The valence of
a configuration C

is”’rheI se‘rc?f o

all values daecide . . .

Up on in Gny decllde decide decide decide decide dE%ldE de%lde
. . 1 0 1 0

Co nf l gur'a-r 10 n Figure 5.10: H. Attiya & J. Welch, Distributed Computing: Fundamentals, Simulations

reac hable fr.om C. and Advanced Topics, Morgan Kaufmann, 1998

C is univalent if this set contains one value; it is O-
yallen‘r if this value is 0 and 1-valent if this value

is 1.

If the set contains two values then C is bivalent.

If Cis bivalent and the configuration resulting by
letting some process p take a step is univalent, we say
that p is critical in C.

Recall that: Two configurations C; and C, are similar to
a process p, denoted C; ~P C,, if the values of all shared
variables and the state of p are the same in C; and C..

CS586 - Panagiota Fatourou 12

Assume, by the way of contradiction, that A
is a wait-free consensus algorithm.

Main Ideas of the Proof

* We construct an infinite execution in which:
- every process takes an infinite number of steps,
- yet every configuration is bivalent,
- and thus no process can decide.

- This contradicts the fact that the
algorithm is wait-free.

CS586 - Panagiota Fatourou 13

Lemma 2: Let C; and C, be two univalent configurations.
If C, ~P C,, for some process p, then C; is v-valent, if
C, is also v-valent, where v e FO,I}.

Proof: Suppose C, is v-valent.

» Consider an infinite execution a from C; in which only
p takes steps.

Since the algorithm is supposed to be wait-free = a
is admissible and eventually p must decide in a.

Since C, is v-valent = p must decide v in a.
* The schedule of a can be applied from C,

Since C; ~? C, and onlyr takes steps, it follows that p
decides v in this execution as well.

Thus, C, is v-valent, as needed.

CS586 - Panagiota Fatourou 14

Lemma 3: There exists a bivalent initial configuration.
Proof: By contradiction.

+ Let I, be the initial configuration in which all processes
start with 0 = I, is O-valent.

Let I, be initial configuration in which all processes
start with 1 = I, is 1-valent.

+ Let I, be the initial configuration in which p, starts
with O and the remaining processes start with 1.

+ Iy ~P I, = (by Lemma 2) I, is O-valent
+ Iy ~P' I; = (by Lemma 2) I, cannot be O-valent.

This is a contradictionl!

CS586 - Panagiota Fatourou 15

C

Lemma g% If Cisa bivalen'l' bivalent %
configuration, then at least
pn% processor is not critical
inC.

* Proof: By the way of C”
contradiction. Assume that O-valent l-valent
all processes are critical in C

+ Since C is bivalent and all processes are
critical in € = there exists two process p; and
Py such that:

- if p; Takes a step from C, then the resulting
configuration C' is O-valent, and

- if p, takes a step from C the resulting
con%igura’rion C" is 1-valent.

CS586 - Panagiota Fatourou 16

Proof of Lemma 4 (con‘rinueud) E

Consider the following cases.
1.

The first step of process p;
from C is a read.

j.read
The case where the D_WIEHF ’
first step of p, from C

IS a read is symmetric. all but j

1

A contradiction!

CS586 - Panagiota Fatourou 17

Impossibility of Consensus

Proof of Lemma 4 (continued)

2. The first steps of p; and p from C are both writes
and thev are to different variables.

O—valent 1-valent

A contradiction!

CS586 - Panagiota Fatourou

18

Impossibility of Consegsus

0

Proof of Lemma 4 (continued)

2. The first steps of p; and p,
from C are both writes
and they are fo the same ; yrite x

variable. C’
O—valent

all but |

1
A contradiction!

CS586 - Panagiota Fatourou 19

Proof of Theorem 1

» We inductively create an admissible execution Cj iy C; i
.. in which the configurations remain bivalent forever.
- By Lemma 3, there is an initial bivalent configuration; let it be
Co.
- Suppose the execution has been created up to bivalent
configuration C,.

- By Lemma 4, some process is not critical in C,; denote this
process by pj..

- Then, p;, can take a step without resulting in a univalent
configuration.

- We apply the event i, to C, to obtain C,,; which is also bivalent.

> If we repeat this procedure forever, we will construct
an execution in which all the configurations are
bivalent. Thus, no process ever decides, contradicting
the termination property of the algorithm and implying

Theorem 1.
CS586 - Panagiota Fatourou 20

These slides are based on material that
appears in the following books:

+ H. Attiya & J. Welch, Distributed
Computing: Fundamentals, Simulations

and Advanced Topics, Morgan Kaufmann,
2004 (Chapter 5)

* N. Lynch, Distributed Algorithms,
Morgan Kaufmann, 1996 (Chapters 5,
12).

CS586 - Panagiota Fatourou 21

End of Section

ENIXEIPHIIAKO NPOTPAMMA
4‘ EKTAIAEYEH KAI AIA BIOY MAGHEH = ELMNA
b sresvdugn geny Wotvwvia Tne JVwan 2007‘20]3
=] Jwomons a o st]
YNIOYPTEIO MAIAEIAZ & BPHIKEYMATON, NOAITIEMOY & ABAHTIEMOY EvPonalio KOINONIKD TAMEID
E {ikn 'E EIAIKH YNHPEIIA AIAXEIPILHL
BY NC ND A Evit)

Metn Gonan tng EAMadag kai Tng E iikr¢ Evwong

The present educational material has been developed as part of
the educational work of the instructor.

The project "Open Academic Courses of the University of
Crete" has only financed the reform of the educational material.

The project is implemented under the operational program
"Education and Lifelong Learning” and funded by the European
Union (European Social Fund) and National Resources

EMIXEIPHLIAKO TPOTPAMMA
F EKMAIAEYZH KAI AlA BIOY MAGHZH , EZ"A

* *
* *
* *

({

enévdyon aTny Uotvwvia Tne yvien

YNOYPFEIO MAIAEIAL KAI BPHIKEYMATON
EvpwnaikiEvwon EI!AIKH YMHPEZIA AIAXEIPIZHE

Evpwnaiko Kowwviké Tapeio

i

* ok

Me t ouyxpnuarodotnon Tng EAAadag kan tn¢ Evpuwmaikng Evwong

Notes

« The current material is available under the Creative Commons
Attribution-NonCommercial-NoDerivs 4.0[1] International license or
later International Edition. The individual works of third parties are
excluded, e.g. photographs, diagrams etc. They are contained therein and
covered under their conditions of use in the section «Use of Third

Parties Work Note».
(©0e)

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

« As Non-Commercial is defined the use that:

= Does not involve direct or indirect financial benefits from the use of the
work for the distributor of the work and the license holder

= Does not include financial transaction as a condition for the use or access to
the work

= Does not confer to the distributor and license holder of the work indirect
financial benefit (e.g. advertisements) from the viewing of the work on
website

« The copyright holder may give to the license holder a separate license to
use the work for commercial use, if requested.

Copyright University of Crete , Panagiota Fatourou 2015. Panagiota
Fatourou. «Distributed Computing. Section 6: Fault-Tolerant
Consensus». Edition: 1.0. Heraklion 2015. Available at:
https://opencourses.uoc.gr/courses/course/view.php?id=359.

Any reproduction or adaptation of the material should
include:

« the Reference Note

« the Licensing Note

« the declaration of Notices Preservation

« the Use of Third Parties Work Note (if is available)
together with the accompanied URLs.

