
HELLENIC REPUBLIC
UNIVERSITY OF CRETE

Distributed Computing
Graduate Course

Section 7: Wait-Free Simulations of
Arbitrary Objects

Panagiota Fatourou
Department of Computer Science

CS586 - Panagiota Fatourou 2

Wait-Free Simulations of Arbitrary
Shared Objects

 The consensus problem cannot be solved using
only read/write registers.

 Most modern multiprocessors provide some set
of ‘’stronger’’ hardware primitive for coordination,
like LL/SC or Compare&Swap.

 We investigate the following question:

“Given two types of (linearizable) shared
objects, X and Y, is there a wait-free
simulation of object type Y using only objects
of type X and read/write registers?”

CS586 - Panagiota Fatourou 3

Wait-Free Simulations of Arbitrary
Shared Objects

• We will first answer this question for the weaker termination
property called non-blocking (or lock-freedom):

– “Lock-freedom states that there is a finite execution fragment

starting at any point of an admissible execution in which some
high-level operations are pending, at which a process completes
one of the pending operations.”

• Lock-freedom is a weaker property than wait-freedom
which states that eventually all processes should complete
their operations.

• Lock-freedom allows starvation to occur!

• The distinction between wait-free and lock-free
algorithms is similar to the distinction between no-lockout
and no-deadlock algorithms for mutual exclusion.

CS586 - Panagiota Fatourou 4

Example: A FIFO Queue

• The operations supported by a FIFO queue are:
– [enq(Q,x), ack(Q)],
– [deq(Q), return(Q,x)],
 where x can be any value that can be stored in the

queue (deq(Q) returns if the queue is empty).

Theorem 1
• Algorithm 1 solves consensus for two processes.

1:

Algorithm 15.1: H. Attiya & J. Welch, Distributed Computing: Fundamentals, Simulations and Advanced Topics, Morgan Kaufmann, 1998

CS586 - Panagiota Fatourou 5

Example: A FIFO Queue

Theorem 2
• There is no wait-free simulation of a FIFO queue with

read/write objects, for any number of processes.
Proof:
• If there was a wait-free simulation of FIFO queues

with read/write objects, then there would be a
wait-free consensus algorithm, for two processes,
using only read/write objects.

• This is a contradiction to the FLP result!!!

Theorem 3
• There is no n-process, wait-free consensus algorithm

using only FIFO queues and read/write objects, if n
3.

Proof: Using valence arguments as in previous section.

Left as an exercise!!!

CS586 - Panagiota Fatourou 6

The strong Compare&Swap Primitive!

Theorem 4
• Algorithm 2 solves consensus for any number of

processes using a single Compare&Swap object.

value Compare&Swap(X: memory address; old, new: value) {
 previous = X;
 if (previous == old) then X = new;
 return previous;
}

2:

Algorithm 15.2: H. Attiya & J. Welch, Distributed Computing: Fundamentals, Simulations and Advanced Topics, Morgan Kaufmann, 1998

CS586 - Panagiota Fatourou 7

The Wait-Free Hierarchy

• Atomic objects can be categorized according to a
criterion which is based on their ability to support a
consensus algorithm for a certain number of
processes.

• Object type X solves wait-free n-processes
consensus if there exists an asynchronous consensus
algorithm for n processes using only shared objects
of type X and read/write objects.

• The consensus number of object type X is n, denoted
CN(X) = n, if n is the largest value for which X solves
wait-free n-processes consensus. The consensus
number is infinity if X solves wait-free n-processes
consenus for every n.

 The consensus number of any object X is at least 1,
because any object trivially solves wait-free one-
process consensus.

CS586 - Panagiota Fatourou 8

The Wait-Free Hierarchy

For each object type Χ which is the smallest
value that CN(X) can have?

 The CN of a read/write register is 1.

 The CN of the following atomic shared
 objects is 2: test&set, swap, fetch&add,
 stacks, queues.

 The CN of a Compare&Swap register is .

 There exists a hierarchy of object types
 based on their CN.

 It has been proved that there are object
 types with CN = m, for each value of m>0.

CS586 - Panagiota Fatourou 9

The Wait-Free Hierarchy
Theorem 5
• If CN(X) = m and CN(Y) = n > m, then there is no wait-free simulation

of Y with X and read/write objects in a system with more than m
processes.

Proof: Assume, by the way of contradiction, that there is a wait-free

implementation of Y from objects of type X and read/write
registers in a system with k > m processes.

• Denote l = min{k,n}. Note that l > m.
• We argue that there exists a wait-free l-processes consensus

algorithm using objects of type X and read/write objects.
• Since l ≤ n, there exists a wait-free l-processes consensus algorithm,

A, using objects of type Y and read/write objects.
• We can obtain another algorithm A’ by replacing each type Y object

with a wait-free simulation of it using objects of type X and
read/write registers.

• A’ is a wait-free l-processes consensus algorithm using objects of
type X and read/write objects CN(X) l > m.
This is a contradiction!

CS586 - Panagiota Fatourou 10

The Wait-Free Hierarchy

Corollary 6

• There is no wait-free simulation of any object
with consensus number greater than 1 using
read/write objects.

Corollary 7

• There is no wait-free simulation of any object
with consensus number greater than 2 using
FIFO queues and read/write objects for an
asynchronous system of more than 2
processes.

CS586 - Panagiota Fatourou 11

Universality

• An object is universal if it, together with read/write objects,
wait-free simulates any other object.

We will prove that:
• Any object X whose consensus number is n is universal in a

system of at most n processes.
Note: This does not imply that X is universal in any system with

m > n processes!

Main Ideas
• We present a universal algorithm for wait-free simulating any

object in a system of n processes using only n-processes
consensus objects and read/write objects.

• An n-processes consensus object Obj is a data structure that
allows n processes to solve consensus. It provides a single
operation [decide(obj,in), return(Obj, out)], where in
and out are taken from some domain of values.
– The set of operation sequences consists of all sequences of

operations in which all out values are equal to some in value.

CS586 - Panagiota Fatourou 12

A Non-Blocking Universal Construction Using
Compare&Swap

Main Ideas
• We represent the object as a shared linked list, which contains

the ordered sequence of operations applied to the object.
• To apply an operation to the object, a process has to thread it

at the head of the linked list.
• A Compare&Swap object, called Head, is used to manage the

head of the list.
• An operation is represented by a shared record of type opr

with the following components:
– inv: the operation invocation including its parameters;
– new-state: the new state of the object, after applying the

operation;
– response: the response of the operation, including its return value;
– before: a pointer to a record of the previous operation on the

object.
• The initial value of the object is represented by a special anchor

record, of type opr, with the new-state field equal to the initial
state of the object.

CS586 - Panagiota Fatourou 13

A Non-Blocking Universal Construction Using
Compare&Swap

Algorithm 3: A non-blocking universal algorithm using Compare&Swap;
code for process pi, 0 ≤ i ≤ n-1.

Initially Head points to the anchor record;

1. when inv occurs:
2. allocate a new opr record pointed to by point with pointinv = inv;
3. repeat
4. h := Head;
5. point new-state, point response := apply(inv, h new-state);
6. point before := h;
7. until Compare&Swap(Head, h, point) = h;
8. enable the output indicated by point response; // operation response

Figure 15.4: H. Attiya & J. Welch, Distributed Computing: Fundamentals, Simulations and Advanced Topics, Morgan Kaufmann, 1998

CS586 - Panagiota Fatourou 14

A Non-Blocking Universal Construction Using
Compare&Swap

Theorem 8
• Algorithm 3 is a non-blocking universal algorithm for n

processes.

Proof
• The desired linearization is derived from the ordering of

operations in the linked list. So, proving linearizability is
straightforward.

• The algorithm is non-blocking.
– If a process does not succeed in threading its operation in the

linked list, it must be that the Compare&Swap operation executed
by some other process has threaded its operation in the list.

• The algorithm is not wait-free since the same process might
repeatedly succeed to thread its operation, locking all other
processes out of access to the shared object.

Disadvantages
• The algorithm uses Compare&Swap instead of consensus objects
• It is not wait-free
• It uses an unbounded amount of space

CS586 - Panagiota Fatourou 15

A Non-Blocking Universal Construction Using
Consensus Objects

1st Effort
• Replace the Compare&Swap object with a consensus object.

Problem 1
• A consensus object an be used only once; after the first process wins the

consensus and threads its operation, the consensus object will always return the
same value.

Solution
• A consensus object is associated with each record of the linked list.
• We replace the before field with a field called after, which is a consensus

object pointing to the next operation applied to the object.

Problem 2
• How can each process locate the record at the head of the list?
Solution
• Have each process maintain a pointer to the last record it has seen at the head

of the list.
• These pointers are kept in a shared array called Head.
• This information might be stale!
• Sequence numbers are also used so that later operations get higher sequence

numbers.

CS586 - Panagiota Fatourou 16

A Non-Blocking Universal Construction Using
Consensus Objects

Algorithm 4: A non-blocking universal algorithm using consensus objects;
code for process pi, 0 ≤ i ≤ n-1.

Initially Head[j] points to the anchor record, for all j, 0 ≤ j ≤ n-1;
1. when inv occurs: // operation invocation, including parameters
2. allocate a new opr record pointed to by point with pointinv = inv;
3. for j := 0 to n-1 do // find record with highest sequence number
4. if (Head[j]seq > Head[i] seq) then Head[i] := Head[j];
5. repeat
6. win := decide(Head[i] after, point); // try to thread your record
7. win seq = Head[i] seq + 1;
8. win new-state, win response := apply(wininv, Head[i]new-state);
9. Head[i] := win; // point to the record at the head of the list
10. until win = point;
11. enable the output indicated by point response; // operation response

Figure 15.5: H. Attiya & J.
Welch, Distributed Computing:
Fundamentals, Simulations and
Advanced Topics, Morgan
Kaufmann, 1998

CS586 - Panagiota Fatourou 17

A Non-Blocking Universal Construction Using
Consensus Objects

• Showing linearizability is straightforward (in a way
similar to the previous algorithm).

• For each configuration C, in an execution a, let:
 max-head(C) = max{Head[i]seq | 0 i n-1}
• For each i, Head[i]seq is monotonically non-

decreasing during a.

Properties of the Algorithm
• The algorithm is non-blocking.

– If a process pi performs an unbounded number of steps, then
max-head is not bounded. So, other processes succeed in
threading their operations to the list.

• The algorithm is not wait-free.

CS586 - Panagiota Fatourou 18

A Wait-Free Universal Construction
Using Consensus Objects

• We use the method of helping, according to which each process helps
other processes to perform their operations and not being locked out
from accessing the data structure.

Problem 1
• How do we know which processes are trying to apply an operation to the

object?
Solution
• Keep an additional shared array Announce[0..n-1], the ith entry,

Announe[i], of which is a pointer to the record that pi is currently
trying to thread in the list.

Problem 2
• How to choose the process to help in a way that guarantees that this

process will succeed in applying its operation?
Solution
• A priority scheme is used, and a priority is given, for each sequence

number, to some process that has a pending operation.
• Priority is given in a round-robin way:

– If pi has a pending operation, then it has priority in applying the kth
operation where k = i mod n.

CS586 - Panagiota Fatourou 19

A Wait-Free Universal Construction Using
Consensus Objects

Theorem 10
• There exists a wait-free simulation of any object for n processes using only

n-processes consensus objects and read/write objects. The step
complexity of the algorithm is O(n).

Algorithm 5: A wait-free universal algorithm using consensus objects;
code for process pi, 0 ≤ i ≤ n-1.

Initially Head[j] and Announce[j] point to the anchor record, for all j, 0 ≤ j ≤ n-1;
1. when inv occurs: // operation invocation, including parameters
2. allocate a new opr record pointed to by Announce[i]

 with Announce[i]inv := inv and Announce[i] seq =0;
3. for j := 0 to n-1 do // find record with highest sequence number
4. if (Head[j]seq > Head[i] seq) then Head[i] := Head[j];
5. while (Announce[i] seq = 0) do
6. priority := (Head[i] seq+1) mod n;
7. if (Announce[priority] seq = 0) then point := Announce[priority];
8. else point := Announce[i];
9. win := decide(Head[i] after, point); // try to thread your record
10. win new-state, win response := apply(wininv, Head[i]new-state);
11. win->seq = Head[i]->seq +1;
12. Head[i] := win; // point to the record at the head of the list

13. enable the output indicated by win response; // operation response

CS586 - Panagiota Fatourou 20

A Wait-Free Universal Construction
Using Consensus Objects

Theorem
• There exists a wait-free implementation of any object for n processes,

using only n-processes consensus objects and read/write objects. Each
process completes any operation within O(n) of its own steps,
regardless of the behavior of other processes.

Proof
• Let C1 be the 1st configuration at which pi has expressed its interest to

execute an operation opi.
• For each configuration C, max-head(C) is the maximum sequence number

of any entry in the Head array. So, max-head(C) continuously increases.
• Let C2 be the first configuration after C1 at which it holds that

max-head(C2) mod n = i-1 and let C3 be the first configuration after C2
at which it holds that max-head(C3) mod n = i+1. The operation of
process pi has been inserted in the linked list by C3.

Theorem
• Any object Χ with CN(X) = n is universal in a system with at most n

processes.

CS586 - Panagiota Fatourou 21

• There are two types of memory unboundedness in the
algorithm:
– the number of records used to represent an object;
– the values of the sequence numbers grow linearly, without

bound, with the number of operations applied to the simulated
object.

• We describe a mechanism to control the first type of
unboundedness.

Basic Idea
• Recycle the records used for the representation of

the object.
– Each process maintains a pool of records belonging to it;
– for each operation, the process takes some free records from

its pool;
– A record can be reclaimed if no process is going to access it.

Difficulty
• Which of the records already threaded on the list will

not be accessed anymore and can be recycled?

Bounding the Memory Requirements

CS586 - Panagiota Fatourou 22

Bounding the Memory Requirements

• Consider some record r threaded on the list, belonging to
process pi, with sequence number k.

• Let pj be a process that may access r.
• Then, pj’s record is threaded with sequence number k+n or

less.
• The processes that may access r are the processes whose

records are threaded as numbers k+1, k+2, …, k+n on the list.
– Note: These records do not necessarily belong to n different

processes but may represent several operations by the same
process.

• We add to opr an array, released[1..n] of binary variables.
• Before a record is used, all entries of released[] are set to

false.
• If a record has been threaded as number k on the list, then

released[r] = true means that the process whose record was
threaded as number k+r on the list has completed its
operation.

• When a process’s record is threaded as number k’, it sets
released[r] = true in record k’-r, for r = 1,…,n.

• When released[r] = true for all r= 1,…,n, then the record can
be recycled.

CS586 - Panagiota Fatourou 23

Bounding the Memory Requirements
Algorithm 5: A bounded-space, wait-free universal algorithm with using consensus

objects; code for process pi, 0 ≤ i ≤ n-1.

Initially Head[j] and Announce[j] point to the anchor record, for all j, 0 ≤ j ≤ n-1;

1. when inv occurs: // operation invocation, including parameters
2. let point point to a record in Pool such that

 pointreleased[1] = … = pointreleased[n] = true
 and set pointinv to inv;

3. for r:=1 to n do pointreleased[r] := false;
4. Announce[i] := point;
5. for j := 0 to n-1 do // find record with highest sequence number
6. if (Head[j]seq > Head[i] seq) then Head[i] := Head[j];
7. while (Announce[i]seq = 0) do
8. priority := (Head[i] seq+1) mod n;
9. if (Announce[priority] seq = 0) then point := Announce[priority];
10. else point := Announce[i];
11. win := decide(Head[i] after, point); // try to thread your record
12. winbefore := Head[i];
13. win new-state, win response := apply(wininv, Head[i]new-state);
14. win seq := Head[i] seq +1; // point to the record at the head of the list
15. Head[i] := win;

16. temp := Announce[i] before;
17. for r := 1 to n do //go to n records before
18. if (temp != anchor) then
19. before-temp := tempbefore;
20. tempreleased[r] := true; // release record
21. temp := before-temp;

22. enable the output indicated by Announce[i]response; // operation response

CS586 - Panagiota Fatourou 24

Handling Non-Determinism
• The universal algorithms described so far assumed that

operations on the simulated object are deterministic.
– Given the current state of the object and the invocation (the

operation to be applied and its parameters), the next state of the
object, as well as the return value of the operation, are unique.

– Example of non-deterministic object: an object representing an
unordered set with a choose operation returning an arbitrary
element of the set.

Main Ideas on How to Handle Non-Determinism
• If we leave the new-state and response fields of the opr record

as read/write objects, it is possible to get inconsistencies as
different processes write new (and possibly different) values
for the new-state of the response fields.

• Solution
– We modify the opr record type so that the new state and response

value are stored jointly in a single consensus object.
• We replace the simple writing of new-state and response fields with a

decide operation of the consensus object, using as input the local
computation of a new state and response (using apply).

CS586 - Panagiota Fatourou 25

Employing Randomized Consensus

Relaxation of Liveness Condition
• The new condition is probabilistic, i.e., it

requires operations to terminate only with
high probability.

• In this way, randomized wait-free simulations
of shared objects are defined.

• Randomized consensus objects can be
implemented from read/write registers.

• Thus:
– there are randomized wait-free simulations of any

object from read/write objects, and
– there is no hierarchy of objects if termination has

to be guaranteed only with high probability.

CS586 - Panagiota Fatourou 26

Bibliography

These slides are based on material that
appears in the following books:

• H. Attiya & J. Welch, Distributed
Computing: Fundamentals, Simulations
and Advanced Topics, Morgan Kaufmann,
2004 (Chapter 15)

• M. Herlihy, Wait-Free Synchronization,
ACM Transactions on Programming
Languages and Systems, 13(1): 124-149,
1991

End of Section

Financing
• The present educational material has been developed as part of

the educational work of the instructor.

• The project “Open Academic Courses of the University of
Crete” has only financed the reform of the educational material.

• The project is implemented under the operational program
“Education and Lifelong Learning” and funded by the European
Union (European Social Fund) and National Resources

Notes

Licensing Note
• The current material is available under the Creative Commons

Attribution-NonCommercial-NoDerivs 4.0[1] International license or
later International Edition. The individual works of third parties are
excluded, e.g. photographs, diagrams etc. They are contained therein and
covered under their conditions of use in the section «Use of Third
Parties Work Note».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

• As Non-Commercial is defined the use that:

 Does not involve direct or indirect financial benefits from the use of the
work for the distributor of the work and the license holder

 Does not include financial transaction as a condition for the use or access to
the work

 Does not confer to the distributor and license holder of the work indirect
financial benefit (e.g. advertisements) from the viewing of the work on
website

• The copyright holder may give to the license holder a separate license to
use the work for commercial use, if requested.

Reference Note

Copyright University of Crete , Panagiota Fatourou 2015. Panagiota
Fatourou. «Distributed Computing. Section 7: Wait-Free
Simulations of Arbitrary Objects». Edition: 1.0. Heraklion 2015.
Available at:
https://opencourses.uoc.gr/courses/course/view.php?id=359.

Preservation Notices

Any reproduction or adaptation of the material should
include:

• the Reference Note

• the Licensing Note

• the declaration of Notices Preservation

• the Use of Third Parties Work Note (if is available)

together with the accompanied URLs.

