st-Orientations

September 29, 2005

1 Introduction

Let G = (V, E) be an undirected biconnected graph of n nodes and m edges. The main
problem this chapter deals with is different algorithms for orienting the edges of G. In
fact, there are 2™ ways to achieve this. However, it is very useful in many applications to
be able to produce st-oriented directed graphs which satisfy two distinct properties:

e They have one single source s and one single sink ¢

e They contain no cycles

Such an orientation of G’s edges is called an st-orientation or a bipolar orientation (see
figure 1). St-oriented graphs have many interesting properties. First of all, we can run

Figure 1: st-Orientation of a graph G.

several polynomial time algorithms on them (for example longest path and topological
sorting) that we cannot run on undirected graphs and draw some useful conclusions. But
how can we compute an st-orientation?Do all undirected graphs admit such an orientation?

2 St-Orienting the Edges

In 1967, Lempel, Even and Cederbaum [1] made a first approach to this problem, by
presenting an algorithm for the computation of a numbering of the vertices of an undirected
graph in order to check whether a graph is planar or not. They proved that, given any edge
(s,t) of a biconnected graph G, the vertices of G can be numbered from 1 to n, so that
vertex s receives number 1, vertex t receives number n and all other vertices are adjacent
both to a lower-numbered and to a higher-numbered vertex. Actually, an undirected graph
G = (V, E) can be st-numbered if and only if the graph G’ = (V, EU(s,t)) is biconnected.
This numbering is called an st-numbering of G g. A formal definition of the st-numbering
follows.

Let G = (V, E) be an undirected biconnected graph. Let {s,¢} be one of each edges.
An st-numbering is a function g : V. — {1,...,n} such that g(s) = 1, g(t) = n and
Vv € V — {s,t} there are two edges (z,v) and (v,y) such that

g(r) < g(v) < g(y) (2.1)

It is easy to prove that G has an st-orientation if and only if it has an st-numbering and we
can compute either from the other in O(m+n) time, as follows. Given an st-orientation, we
number the vertices of G in topological order using Knuth’s algorithm [2]. This produces
an st-numbering. Given an st-numbering, we orient each edge from its lower-numbered to
its higher-numbered endpoint. This produces an st-orientation.

2.1 The Tarzan-Even Algorithm
2.1.1 Preliminaries

In 1974, Even and Tarzan [3] developed an O(m + n) algorithm for the computation of an
st-numbering. The algorithm is based on depth first traversal and uses the circles formed
during the execution of a DFS. As it is already known, given an undirected connected
graph G = (V, E) we can execute a DFS and get a DFS tree. All nodes v of the initial
graph are contained in the tree and get a number f(v) which actually denotes the rank of
their visit.

A Depth First Search traversal separates the edges of our initial graph into two sets,
the tree edges set Uy, with |Uy| = n — 1 and the cycle edges set U, with |U.|] =m —n+ 1.
U, contains the edges that belong to the tree and U, contains the remaining edges of the
graph. Each edge e € U, forms a circle. This edge always returns form a node x to a
node y previously visited and forms a basic cycle. The collection C of all basic cycles is
called a basis for the desired set of cycles (a basis set for a vector space is an appropriate
analogy). A cycle edge (u,v) will be denoted with u — ... — v, whereas a tree edge (u,v),
with f(u) > f(v), (i.e. uis a child of v) will be denoted with v — u. If a node v can be
reached by u by following the tree path from node u to the root of the tree, we say that
v is an ancestor of u and is denoted with v < u. Note that for every cycle edge (u,v) of
the DFS tree the following equivalence holds:

U— . —VEUDV |V (2.2)

As we said before, DFS forms a spanning tree, assigning a unique number f(v) to every
node v of the initial graph. These numbers are very crucial to the computation of an
st-numbering as they define another function £ : V — 1,...,n. This function is called the
lowpoint function and Vz € V is defined as follows:

l(z) =min({f()} U{f(y): FTw: e —>wAw—..—y}) (2.3)

Note that the lowpoint function is not an 1-1 function, i.e. there can be two nodes getting
the same lowpoint. It is easy to see from 2.3 that a node x either gets its DFS number as
a lowpoint or the DFS number of a node y, previously visited by DFS, reachable from =
by following a downward tree path to a node w, which ends with a cycle edge from w to
y. This path may contain no tree edges. Next, we will present a lemma that comes out of
the definition of the lowpoint function.

Lemma 2.1. If G is biconnected and v — w, then f(v) # 1 implies {(w) < f(v) and
f(w) =1 implies L(w) = f(v) =1 [4].

Proof. For the first case, when f(v) # 1, let ¢ be a node above v in the DFS tree, i.e.
f(e) < f(v). As the graph is biconnected there must be a path from w to ¢ not containing
v. This path will certainly end with a back edge to c¢. Thus, ¢ can be reached by w with
a back edge and therefore it is £(w) = f(c) and as f(c) < f(v) it is £(w) < f(v). For the
second case, there is no other node with DFS number less than 1. Thus if f(v) = 1 and
v — w then it must be £(w) = f(v) = 1. O

The values £(v) can easily be computed in time O(m+n) during the execution of DFS.
We will now describe the algorithm for the computation of an st-numbering. We are given
an undirected biconnected graph G = (V, E) and we want to assign numbers to its vertices
which satisfy the definition of st-numbering. Let (s,t) be one edge of G. In the beginning,

Algorithm 1 Pathfinder(v)

1: if Jv — ... —w € U, new with w — v then

2: mark (v, w) as old,;

3 p={v,w};

4: else if Jv — w € U; new then

5. mark (v,w) as old;

6: p={v,wk

7. while w new do

8: find new (w,x) with (f(z) = £(w) | ({(z) = (w) ANw — x));
9: mark w and (w,x) as old;
10: p=pU(w,z);
11: w=x;

12: end while

13: else if Jv — ... — w € U, new with v — w then

14: mark (v, w) as old;
15 p={v,w};
16: while w new do

17: find new (w,z) with — w;
18: mark w and (w,z) as old;
19: p=pU(w,z);

20: w = x;

21: end while

22: else

% p={0}

24: end if

25: return p;

we execute a DFS, such that the root of the DFS tree is node t and the first edge of the
tree is t — s. During DFS, we also compute the lowpoint numbers ¢(v) for every node wv.
The information generated by DFS is valuable for the remaining part of the algorithm.

The most important part of the algorithm is a procedure that, given a node v, returns
a simple path from node v to a distinct node w. Initially, all nodes and edges of the graph
are marked new, except nodes s, ¢ and edge (s,t) that are marked old. Each successive
call of the procedure path(v) returns a simple path of new edges and marks all vertices
and edges contained in the path as old. Above we present the pseudocode of the algorithm
(Algorithm1).

The procedure path(v) either produces a simple path of edges, which originates from
node v to another node w, or returns the null path. When path(v) is called and the null
path is returned, there are no other new edges emanating from node v, and thus the last
part of the if statement is executed.

As referred above, path(v) is a procedure that is called by the main body of the
algorithm. The main algorithm uses a stack, where the old vertices are stored. Initially
the stack contains s on top of ¢. The top vertex on the stack, say v, is deleted and then
path(v) is called. If path(v) returns a path p = {{v1,va}, {va,v3},...,{vk—1,vr}}, then
Vg_1,Vg_2,...,U2,v1 are added to the top of the stack, where v; = v. Note that the
last vertex of the path vy is not added to the stack. If the null path is returned, then
v is assigned the next available number and not put back on the stack. The pathfinder

procedure is a simpler version of the one presented in [5].

Lemma 2.2. Supppose vertices s, t and edge (s,t) are initially marked old. An initial call
Pathfinder(s) will return a simple path from s to t not containing (s,t). A successive call
Pathfinder(v) with v old will return a simple path (of edges new before the call) from v to
some vertex w old before the call, if there are any edges (v,w) new before the call(Otherwise
Pathfinder(v) returns the null path,).

Proof. [3] O

2.1.2 The Algorithm

The main algorithm for the computation of an st-numbering uses the pathfinder procedure
to compute an st-numbering. The pseudocode of the algorithm can be seen below: In the

Algorithm 2 Stnumber(G, s, t)
compute the lowpoints £(v) for all nodes v;
mark s, t and (s,t) as old and all other vertices and edges as new;

initialize a stack R;
R =push(t);
R =push(s);
1 =0
while R # @ do
v=pop(R)
p = {{v1,v2},{va,v3},...,{vk—1,vr}} = Pathfinder(v);
if p # O then
for j =k —1 downto 1 do
R =push(v;)
end for
else
1 =141
g(v) =i
17: end if
18: end while

e e e e e e

following, we will prove the correctness of our algorithm. The importance and efficiency
of the algorithm depends on the clever use of the stack.

Theorem 2.3. Algorithm Stnumber correctly computes an st-numbering of an undirected
biconnected graph G = (V, E).

Proof. Tt is evident that no vertex v appears in two or more places on stack at the same
time. Once a vertex v is placed on stack, nothing under v receives a number until v does.
Additionally, a vertex z finally receives a number when path(z) returns the null path, i.e.
all edges (x,w) for some w have been marked old.

Firstly, it is evident that vertex s receives number 1. This happens because s will
always be on top of the stack until no new edges of type (s,w) exists. This time, path(s)
will return the null path and s will be the first vertex to permanently disappear from stack,
thus receiving number one. The power of the stack lies in the fact that adjacent vertices in

stack are adjacent vertices in the graph as well. Thus, an adjacent vertex of s, say r, will
remain on top of stack until all edges emanating from r become old. No vertex will receive
a number until » does. Thus r receives the next number. Vertex ¢ finally receives number
n. The procedure goes on and guarantees that every vertex y # s,t will have at least one
lower numbered adjacent vertex and at least one higher numbered adjacent vertex. O

The running time of the st - numbering algorithm is O(m+n) for the depth first search
traversal plus the time required for the main body of the algorithm. The time required by
the main body of the algorithm is dominated by the time spent in Path finder() calls. The
algorithm Path finder() can be implemented so that a call requires time proportional to
the number of edges found in the path. This requires that for each vertex v the following
items are kept: a list of cycle edges v — ... — w such that v — w; a list of cycle edges
v — ... — w such that w < v; a list of v’s children; v’s father; and finally an edge {v,w}
such that f(w) = ¢(v) | £(w) = £(v). All these structures can be constructed during DFS
and their storage requires linear space. Thus path() requires time O(m + n), as each edge
occurs in exactly one path, and therefore st - numbering takes time O(m + n).

Let as now regard an undirected graph G of 10 vertices with adjacency matrix A:

01 01011001

100 1 1 11001

0001 01 0O0T10

1110000100

e 01 00001O0T10

1110 0 0 01 10

11001 00110

0001011010

001 0111101

|1 10000001 0|
Table 1: The algorithm execution

iteration # | stack status path operation
1 {8,6} 6—51—-2—-4—-3-9—-5—-7—-8
2 {8,7,5,9,3,4,2,1,6} | 6 — 2
3 {8,7,5,9,3.4,2,1,6} | 6—3
4 {8,7,5,9,3,4,2,1,6} | 6—9
5 {8,7,5,9,3,4,2,1,6} | null g(6) =1
6 {8,7,5,9,3,4,2,1} 1—4
7 {8,7,5,9,3,4,2,1} 17
8 {8,7,5,9,3,4,2,1} 1-510—9
9 {8,7,5,9,3,4,2,10,1} | null g(1) =2
10 {8,7,5,9,3,4,2,10} 10 — 2
21 {8,7,5} null g(5) =38
22 {8,7} null g() =9
23 {8} null g(8) =10

Graph G is biconnected and thus we can apply our algorithm to find an st - numbering.
We will find a 6—8 - numbering. The reader can verify that during the algorithm execution
the variables of table 1 will be computed. The final vector produced by the algorithm is

ges=[2 4 6 5 8 1 9 10 7 3]

Note that g(6) = 1 and g(8) = 10. Additionally, vector g satisfies the st-numbering
definition.

2.2 A Streamlined Depth-First Search Algorithm
2.2.1 The Algorithm

Another simpler algorithm for the computation of an st-numbering was proposed by Tarzan
in 1986 [6]. The algorithm is also based on a depth-first search traversal of the initial
biconnected graph. In the depth first tree, we denote with p(v) the father of node v. The
algorithm works as follows.

It consists of two passes. The first pass is a depth first search during which for each
vertex v € V, f(v),£(v) and p(v) are computed. The second pass constructs a list L of the
vertices, such that if vertices are numbered in the order they occur in L, an st-numbering
results. Actually, the second pass is a preorder traversal of the spanning tree. During
the traversal, each vertex u that is a proper ancestor of the current vertex v has mimus
sign (i.e., s(u) = x—), if u precedes v in L. Respectively, each vertex u that is a proper
ancestor of the current vertex v has plus sign (i.e., s(u) = *+), if u follows v in L.

Initially L = [s,t] and s(s) = *x—. The second pass of the algorithm consists of repeating
the following step for each vertex v # s,t in preorder:

1: if s(¢(v)) == *+ then

2: Insert v after p(v) in L;
3 s(p(v)) = %=

4: end if

5: if s(¢(v)) == x— then

6: Insert v before p(v) in L;
o s(p(v) = w4

8: end if

Theorem 2.4. The st-numbering is correct.
Proof. Consider the second pass of the algorithm. We must show that
e the signs assigned to the vertices have the claimed meaning
e if vertices are numbered in the order they occur in L, an st-numbering results.

For the first case, suppose s = xg, t = x1,22,...,x; be the tree path from s to the
vertex x; most recently added to L and let v with parent x; be the next vertex to be
added to L. Assume as an induction hypothesis that for all 0 <1i < j <, s(z;) = *+ if
and only if z; follows x; in L, i.e., ; = p(x;). Since s(x}) is set to minus if v is inserted
after z; in L and to plus if v is inserted before z; in L, the induction hypothesis holds
after v is added. Hence the induction holds.

For the second case, let v # s,t. If (v, £(v)) is a back edge, the insertion of v between
p(v) and £(v) in L guarantees that in the numbering corresponding to L, v is adjacent to

both a lower-numbered and a higher-numbered vertex. Otherwise, there must be a vertex
w such that p(w) = v and ¢(w) = ¢(v). By lemma 2.1 we have that ¢(v) is a proper
ancestor of v, which means that s(¢(v)) remains constant during the time v and w are
added to L. It follows that v appears between p(v) and w in the completed list L, which
implied that in the numbering corresponding to L, v is adjacent to both a lower-numbered
and higher-numbered vertex. Thus, the second case holds. O

It is obvious that the algorithm runs in linear time O(m + n).

2.2.2 An Example

Following, we give an execution example of the algorithm. Suppose we want to compute

Figure 2: A biconnected graph G and its depth first search tree.

a 2-1 numbering of the biconnected graph of figure 1. First we execute a DFS, and we
compute the DFS tree and the lowpoint values. The lowpoint values of each vertex in
Figure 2 are depicted with bold numbers.

Table 2: The algorithm execution. Irrelevant signs are omitted

iteration # | vertex added v | List L

1 - {17,2}

2 3 {17,3,2%}

3 4 {17,37,4,2%}

4 5 {17,5,3%,4,2%}

) 6 {17,6,5%,3", 4,27}

6 7 {17,7,6%,57,3% 4,27}

7 8 {17,77,8,67,5%, 3%, 4,27}

8 9 {17,7,8,6,9,57,3%,4,2%}

9 10 {17,7,8,10,6%,9% 5T 3T 4,27}

2.3 An Algorithm for Direct st-Orientation Computation
2.3.1 Preliminaries

In the previous sections, two algorithms were presented which compute an st-oriented
directed graph by using an st-numbering. In this section, we present an algorithm that
directly computes an st-orientation. Additionally, the algorithm simultaneously computes
an st-numbering and orienting the edges from lower-numbered vertices to higher numbered
vertices. Hence, no topological sorting to the computed st-oriented directed graph should
be executed in order to extract an st-numbering. In order to describe the algorithm we
give some necessary definitions.

Let G = (V, E) be a one-connected graph. Suppose now that G consists of a set of
blocks B and a set of cutpoints C. Set B contains blocks whereas set C' contains nodes of
the original graph. The respective block-cutpoint tree T'= (BUC,U) has |B|+ |C| nodes
and |B| 4+ |C| — 1 edges. Additionally, its structure is defined as follows

(i,)) eUSieBAFjeCAjeV(HEH)VijEBAIieCANieV()) (2.4)

where V (k) denotes the vertex set of a block k. The above relation shows that the edges
of the block-cutpoint tree always connect pairs of blocks and cutpoints in a way that in
every edge the participating cutpoint exists in the vertex set of the participating block.

The above definition implies that the block-cutpoint tree is a free tree, i.e., it has no
distinct root. In order to define the rooted block-cutpoint tree we must define a vertex ¢
to be the root. In that case if ¢ is a cutpoint, the block-cutpoint tree is rooted on t else if ¢
is not a cutpoint the block-cutpoint tree is rooted on the block that contains ¢ (see figure
3).

Figure 3: A one-connected graph and its block-cutpoint tree rooted on By.

Finally, we define the leaf-blocks of the block-cutpoint tree to be the blocks except for
the root of the block-cutpoint tree that are defined by a sole cutpoint, i.e., they contain a
sole cutpoint. The block-cutpoint tree can be computed in time O(m+n) with a recursive
algorithm similar to DFS [5].

Lemma 2.5. Let G = (V, E) be an n-node undirected biconnected graph and s, t be two
of its modes. Suppose we remove s and all its incident edges. Then there is at least one

neighbor of s lying in each leaf-block the block-cutpoint tree. Moreover, this neighbor is not
a cutpoint.

Proof. If the graph G — {s} is still biconnencted, the proof is trivial, as the block-cutpoint
tree is made up from one sole node (the biconnected component G — {s}), which is both
the root and the leaf-block of the tree.

If the graph G — {s} is one-connected, suppose that there is a leaf-block £ of the block-
cutpoint tree defined by the cutpoint ¢ such that N(s) N ¢ = . Then ¢, if removed, still
disconnects G and thus G is not biconnected, which does not hold. The same occurs if
N(s) N ¢ = {c}. Hence there is always at least one neighbor of s lying in each leaf-block
of the block-cutpoint tree, which is not a cutpoint. O

Corollary 2.6. Let G = (V, E) be an n-node undirected biconnected graph and s, t be two
of its nodes. Suppose we remove s and all its incident edges. Then there are at least two
neighbors of s lying at leaf-blocks of the block-cutpoint tree. Moreover, these neighbors are
not cutpoints.

Proof. As it happens with every free tree, the block-cutpoint tree has at least two leaf-
blocks. By lemma 2.5, each leaf will contain at least one neighbor of s that is not a
cutpoint. Hence, in total, there will always be at least two neighbors of s lying in some
leaf-blocks of the block-cutpoint tree. O

2.3.2 The Algorithm

Lemma 2.5 is the basis for the development of the algorithm. Suppose we are given a
biconnected graph G = (V, E) and we want to compute an st-orientation of it. The idea
here is to root the block-cutpoint tree either on ¢ or on the biconnected component that
contains ¢ and to repeatedly deal with the leaf-blocks (biconnected components) of the
tree until we reach sink ¢. In this way we give a certain direction to the edges of the graph.

Suppose we repeatedly produce the graphs G;y; = G; — {v;} for all i = 1,...,n and
G1 = G. Initially, v; = s. During the procedure we always maintain a block-cutpoint
tree rooted on node t. Additionally, we maintain a structure @ that plays a major role
in the choice of the current source. (@ initially contains the desired source for the final
orientation, s. Finally we maintain the leaf-blocks for the block-cutpoint tree rooted on .
Node v; is chosen such that

v, €BENQ~AL i=1,...,n—1 (2.5)

where BY is the ¢-st leaf-block of the rooted block-cutpoint tree at iteration i and h? is
the cutpoint that defines Bf. Note that in the case that ¢ = 1 the biconnected component
is the initial biconnected graph and the cutpoint that defines it is the desired sink of the
orientation, t. When a source v; is removed from the graph, we have to update @ in order
to be able to choose our next source. @) is then updated as follows

Q=QUI{Ng,(v;)~t}—{vi}, i=1,....,n—1 (2.6)

where N¢(x) denotes the neighborhood of node z at graph G. This procedure is continued
until @ gets empty. Suppose now F = (V, E’) is a directed graph derived by the described
procedure, which we call STN, by setting

n—1

E = U ((vi, Ng, (v)) (2.7)

i=1

We claim that F' is an st-oriented directed graph.

Lemma 2.7. During STN, every node becomes a source exactly once. Additionally, after
exactly n — 1 iterations (i.e. after all nodes but t have been processed), it is Q = @ (i.e.

Q gets empty).

Proof. Let v # t be a node that never becomes a source. This means that all incident
edges (u,v) have direction © — v. As the algorithm gradually removes sources, by simulta-
neously assigning direction, one u must be a cutpoint (as v # t will become a biconnected
component of a sole node). But all nodes u are chosen to be neighbors of prior sources.
By corollary 2.6, u can never be a cutpoint, which does not hold. Hence node v # t
will certainly become a source exactly once, as it immediately removed after becoming a
source. In the beginning of iteration n — 1, the remaining graph will be consisted of only
two nodes, namely v,_; and ¢, as at each step of STN a node is removed from the original
graph, which is simultaneously removed from @). Hence, in the beginning of iteration n —1
it will be @ = {v,—1}. @ is then updated as follows

Q=QU {Nanl (Vn—1) ~ t} - {Un—l}

and as Ng, _, (vp—1) ~ t = O the result follows. To complete the proof we must show that
during all iterations i = 1,...,n — 2 it is @ # . This is so because neighbors of a node
that belongs to a biconnected component, which are least two, are inserted into @) and
hence) will always contain at least one element, as ¢ is never inserted into Q). O

Corollary 2.8. Let BY,BY ... BF be the leaf-blocks of the block-cutpoint tree that is
produced after the removal of vertex vi_y. If the leaf-blocks are defined by the cutpoints
RY RS, ... hE thenVi=1,...r itis |[BENQ ~ h¥| > 1.

Proof. This corollary ensures that there will always exist a choice to continue the execution
of STN. The proof follows immediately from Lemma 2.5, Corollary 2.6 and Lemma 2.7. [

Lemma 2.9. The directed graph F = (V,E') has exactly one source s and exactly one
sink t.

Proof. Node vy = s is indeed a source, as all edges (vi, N(v1)) are assigned the same
direction (from vy to its neighbors) at the first step. Note ¢ is indeed a sink as it is never
being chosen to become a current source and all its incident edges are assigned a direction
from its neighbors to it during prior iterations of STN. We have to prove that all other
nodes have at least one incoming and one outcoming edge. As all nodes v # t become
sources exactly once, there will be at least one u such that (v,u) € E’. Sources v # t are
actually nodes that have been inserted into) during a prior iteration of the algorithm.
Before being chosen to become sources, all nodes v # s # t are put into) as neighbors of
prior sources and thus there is at least one u such that (u,v) € E’. Hence F has exactly
one source and exactly one sink. O

Lemma 2.10. The directed graph F = (V, E') has no cycles.

Proof. Suppose after STN has ended and F has been derived, there is a directed cycle
consisted by the nodes vy, v, ..., vk, v1. This means that (vy,vs), (v, v3),..., (vg,v1) €
E’. During STN, after an edge (v;,v;4+1) is inserted into E’, v; is deleted from the graph
and never processed again (Lemma 2.7) and v;4; is inserted into @ so that it becomes a
future source. In our case after edges (v, v2), (v2,v3), ..., (vg—1,vx) will have been given

10

direction, nodes vy, va,...,vr—1 will have been deleted from the graph. To create a cycle,
v1 should be inserted into @ as a neighbor of v, which does not hold as vy ¢ Ng, (vi) (v1
has already been deleted from the graph). Thus F' has no cycles. O

Theorem 2.11. The directed graph F = (V, E') is st-oriented.
Proof. Immediate from the the two previous lemmas. O

Following, we give the algorithm pseudocode. Note that the algorithm returns both
the st-oriented graph F' and the st-numbering vector g.

Algorithm 3 STN(G, s,t)

L Q={sh

2: 1 =0;

3: Initialize F' = (V' E’) to be the final directed graph;

4: Initialize the block-cutpoint tree T to be graph G; Its cutpoint is sink ¢;
5. while @ # @ do

6: for all leaf-blocks B}* do

7: 1 =14 1;

8: find vy € ByNQ ~ {he} {next source}

9: g(ve) =15 {g is the st-numbering vector}

10: V =V —{vi} {a source is removed from G}

11: V' =V'U{ve} {and is added to F}

12: for all edges (v¢,4) € E do

13: E E {(ve, 1)}

11 O {(we)}

15: end for

16: Q =QU{N(vg) ~t} — {ve} {the set of possible sources}

17: end for

18 T(t,BM" B2 ... Bl»)=UpdateBlocks(G);
19: end while

20: return I, g;

Theorem 2.12. Algorithm STN runs in O(mn) time.

Proof. During the algorithm execution there are n — 1 node removals. Additionally, the
time of each iteration is wholly consumed by the procedure that updates the block-cutpoint
tree, which is O(m+n). Hence the algorithm runs in (n —1)O(m+n) = O(mn) time. O

However, there are cheaper methods to update the block-cutpoint tree. If we use
techniques proposed in [7], we can drop this bound to O(m log® n) time:

Theorem 2.13. By using the algorithm for the biconnectivity maintenance proposed in
[7], algorithm STN can be implemented to run in O(mlog®n) time.

Proof. During the algorithm execution there all m edges of the graph are removed. Ad-
ditionally, the time of each iteration is wholly consumed by the procedure that updates
the block-cutpoint tree, which in [7] is O(log” n) (per edge deletion). Hence the algorithm
runs in mO(log® n) = O(mlog® n) time. O

11

2.3.3 An Example

Following we present an example of the algorithm execution:

(O] 0} (m)

Figure 4: The execution of the algorithm.
The algorithm presented allows us to influence the value of some parameters that

characterize the final st-oriented graph. For example the choice we make every time on @
is very crucial for the longest path value of the final st-oriented graph.

12

References

1]

A. Lempel, S. Even, 1. Cederbaum, An Algorithm for Planarity Testing of Graphs in
P. Rosenstiehl (ed.), Theory of Graphs: International Symposium, July 1966 (Gordon
and Breach, New York, 1967) 215-232

D. E. Knuth, The Art of Computer Programming, Volume 1: Fundamental Algo-
rithms, Third Edition, Addison-Wesley, Reading, MA 1997

S. Even, R. Tarzan, Computing an st-numbering Theoretical Computer Science 2
(1976) 339-344

R. Tarzan, Depth-first search and linear graph algorithms, STAM J. Comput. 1 (1972),
146-160

J. Hopcroft, R. Tarzan, Efficient algorithms for Graph Manipulation, Comm. ACM
16(1973) 372-378

R. Tarzan, Two Streamlined Depth-First Search Algorithms, Fundamenta Informatica
IX (1986) 85-94 North-Holland

J. Holm, K. De Lichtenberg, M. Thorup, Poly-Logarithmic Deterministic Fully-
Dynamic Algorithms for Connectivity, Minimum Spanning Tree, 2-Fdge, and Bicon-
nectivity

13

