
Chapter 10Eulerian and Hamiltonian PathsCircuitsThis chapter presents two well-known problems. Each of them asks for a special kindof path in a graph. If there exists such a path we would also like an algorithm to �nd it.Both of the types of paths (Eulerian and Hamiltonian) have many applications in a numberof di�erent �elds. The chapter examines these two problems. After this, the TravellingSalesman Problem (TSP), another problem with great practical importance which has todo with circuits will be examined.10.1 Euler paths and circuits10.1.1 The Konisberg Bridge ProblemKonisberg was a town in Prussia, divided in four land regions by the river Pregel. Theregions were connected with seven bridges as shown in �gure 10.1. The problem is to �nda tour through the town that crosses each bridge exactly once. Leonhard Euler gave aformal solution for the problem and -as it is believed- established the graph theory �eld inmathematics.

(a) Konisberg bridge (b) respective graphFigure 10.1: Konisberg bridge and the graph induced1

10.1.2 De�ning Euler PathsObviously, the problem is equivalent with that of �nding a path in the graph of �gure10.1(b) such that it crosses each edge exactly once. Instead of an exhaustive search of everypath, Euler found out a very simple criterion for checking the existence of such paths in agraph. As a result, paths with this property have his name.De�nition 10.1 An Euler path is a path that crosses each edge of the graph exactly once.If the path is closed, we have an Euler circuit.In order to proceed to Euler's theorem for checking the existence of Euler paths, we de�nethe notion of a vertex's degree.De�nition 10.2 The degree of a vertex u in a graph equals to the number of edges attachedto vertex u.10.1.3 Checking the existence of an Euler pathThe existence of an Euler path in a graph is directly related to the degrees of the graph'svertices. Euler formulated the following theorem which sets a su�cient and necessarycondition for the existence of an Euler circuit or path in a graph.Theorem 10.1 (Euler's theorem)An undirected graph has at least one Euler circle i� it is connected and has no vertices ofodd degree. An Euler path exists exist i� there are no or zero vertices of odd degree.Proof.): An Euler circuit exists. As the respective path is traversed, each time we visit a vertexthere is a vertex through an edge we can leave through another edge. For the starting-�nishing vertex, this also holds, since there is one edge we initially leave from and anotheredge, through which we form the circle. Thus, whenever we visit a node we use two edges,which means that all vertices have even degrees.(: By induction on the number of vertices.Induction beginning: jV j = 2, trivial.Induction basis: Suppose for jV j = n the theorem holds.Induction step: Show that the theorem holds for jV j = n+ 1.Select an arbitrary vertex u and build a graph of size with n vertices by removing this ver-tex and all the edges adjacent to it. Vertex u had even degree so it has an even number ofneighbors. Now all the neighbors of v have odd degree since one adjacent edge is removed.By grouping the neighbors in couples and adding one edge between each couple, we obtaina graph with n vertices, where every vertex has even degree. Thus, there exists an eulercircuit (induction basis). When an edge (u,w) added between neighbors of v is met whiletraversing the circuit, we can replace it by the path (u; v)� (v; w). This way every edge inthe graph initial is traversed exactly once, so there exists an eulerian circuit.In case we have two vertices with odd degree, we can add an edge between them, ob-taining a graph with no odd-degree vertices. This graph has an euler circuit. By removingthe added edge from the circuit, we have a path that goes through every edge in the graph,since the circuit was eulerian. Thus the graph has an euler path and the theorem is proved.2

Example: Figure 10.2 shows some graphs indicating the distinct cases examined by thepreceding theorem. The graph in �g 10.2(a) has an euler circuit, in �g 10.2(b) the graphhas an euler path but not an euler circuit and in the graph of �g 10.2(c) there is neither acircuit nor a path.
(a) Graph witheuler circuit (b) Graph witheuler path (c) Graph withneither euler cir-cuit nor pathFigure 10.2: Examples of graphs10.1.4 Finding an Euler PathThere are several ways to �nd an Euler path in a given graph. Since it is a relativelysimple problem it can be solved intuitively respecting a few guidelines:1. Always leave one edge available to get back to the starting vertex (for circuits) or tothe other odd vertex (for paths) as the last step.2. Don't use an edge to go to a vertex unless there is another edge available to leave thatvertex (except for the last step).Two constructive algorithms for obtaining an euler circuit/path are presented here:Fleury's algorithm(G(V,E))1 choose some vertex u0 of G2 P = u03 consider P = u0e1u1e2:::eiui and choose an edge ei+1 with the following properties4 (1) ei+1 joins ui with some vertex ui+1 and5 (2) the removal of ei+1 does not disconnect the graph if possible6 add ei+1 and ui+1 in the path7 remove ei+18 if P =W9 then return P10 else11 goto 3The algorithm for �nding an Euler path instead of a circuit is almost identical to theone just described. Their only di�erence lies in step 1 where we must choose one of thetwo vertices of odd degree as the beginning vertex. The �nal vertex of the path will be theother odd-degree vertex. 3

Example: Figure 10.3 demonstrates some important steps in the process described bythe algorithm. Since all vertices have odd degree we arbitrarily start from the upper leftvertex. The number next to each edge indicates its order in the Euler circuit.

(a) The graph (b) Can not avoid cross-ing a bridge (c) Full pathFigure 10.3: Example of
eury's algorithm executionEulerian graphs, have a very important property: They consist of smaller rings. Ringsare cycles with the additional restriction that during the traversal of the cycle no vertex isvisited twice. Let us consider an eulerian graph, we know that every vertex has an evendegree. Any ring passes through exactly two edges adjacent to any of its nodes. This meansthat if we remove the ring, the remaining of the graph has still an even degree for all ofits nodes, thus remains eulerian. By repeating this procedure until no edges are left wecan obtain a decomposition of an eulerian graph into rings. Of course, we can decomposean eulerian cycle to smaller cycles, not necessarily rings, but rings have a higher practicalvalue, in terms of networks. This is of high importance in network design, where we wantto keep a network alive even when a number of links are down.This property can also help as build the eulerian circle with the aid of the small rings,or cycles a graph can be decomposed to. The procedure we follow is described hereA constructive algorithm for building eulerian circuits(G(V,E))1 choose some vertex u0 of G2 start travelling through edges not visited yet until a cycle is formed.3 record the cycle and remove the edges it consists of4 if there are unvisited edges5 then6 goto 17 else8 merge the recorded cycles9 returnTwo cycles C0 = u0 u1 ... ui u0 and C1 = v0 v1 ... vj v0 are merged by traversing oneof them and insert the other when a common vertex is found. The result is a new cycle.The computational complexity of this algorithm is O(E), since we only traverse edgesuntil we form a cycle. For the merging procedure O(E) time su�ces since once again we4

a

h

gf

de

cb

(a) The graph
a

h

gf

de

cb

1

5
4

3

2

(b) First cycle
a

h

gf

de

cb

1

4

2

3

(c) Second cycle
a

h

gf

de

cb

1

4

2

3(d) Third cycle
a

h

gf

de

cb

1

6
4

32

5

8

7(e) Amalgamating sec-ond and third cycle
a

h

gf

de

cb

1
4

32

5

87

6

11

10

9

13

12(f) Amalgamating withthe �rst cycle: euler cy-cleFigure 10.4: Example of the constructive algorithmtraverse the set of edges.We can easily make this algorithm �nd euler paths, using the same trick as in Euler'stheorem's proof. There must exist exactly two vertices with odd degree, otherwise no Eulerpath can be found. We add an edge between these two vertices, compute an euler circuit,add obtain the path by removing the added edge.Example: Figure 10.4 demonstrates the process described by the algorithm. Thereare 3 di�erent edge-disjoint cycles identi�ed: a ! b ! c ! d ! e ! a (in �g. 10.4(b)),e ! b ! d ! g ! e (in �g 10.4(c))and f ! e ! h ! g ! f (in �g 10.4(d)). Wecan amalgamate the two later cycles to obtain a bigger circle: f ! e ! b ! d ! g !e ! h ! g ! f (in �g 10.4(e)). Then this cycle is combined with the �rst one givingf ! e! b! d! g ! e! a! b! c! d! e! h! g ! f , which is an Euler cycle (�g10.4(f)).10.1.5 Expansion to directed graphsExpanding to directed graphs is quite straightforward. As before, it is obvious that if aneuler circuit exists, during its traversal, one must always visit and leave every vertex. Thismeans that the number of edges leading to a vertex (in-degree) must be equal to the numberof the edges that leave the vertex (out-degree). This time, the condition for the existence ofa path is slightly di�erent, since for the �rst vertex of our path v we have in� degree(v) =out� degree(v)� 1 and for the last vertex u in� degree(u) = out� degree(u) + 1. That is5

because we start from the �rst vertex using an out-going edge and �nish at the �nal vertexthrough an in-coming edge. So for directed graphs the following theorem stands.Theorem 10.2 A directed graph has at least one Euler circle i� it is connected and forevery vertex u in-degree(u)= out-degree(u). An Euler path exists exist i� there are exactlytwo vertices s,f for which the previous criterion does not hold and for which in-degree(s)=out-degree(s) -1 (starting vertex of the path) and in-degree(f)= out-degree(f)+1 (�nal vertexof the path).The euler circuits and paths can be obtained using the same algorithms as before, onlythis time the direction of an edge during its traversal must be taken into consideration.10.1.6 ApplicationsEulerian graphs are used rather extensively, as they're necessary to solve importantproblems in telecommunication, parallel programming development and coding. Moreover,the corresponding theory underlies in many classic mathematical problems. In the nextsections, we examine some interesting examplesLine DrawingsThis is a mathematical game, where given a shape (line drawing) one is asked to re-produce it without lifting the pencil or retracing a line. You can consider a line drawingas a graph whose vertices are not shown and are placed in the intersection of each pair ofadjacent edges.De�nition 10.3 A graph has a unicursal tracing if it can be traced without lifting thepencil or retracing any line.Obviously, a closed unicursal tracing of a line drawing is equivalent to an Euler circuitin the corresponding graph. Similarly, an open unicursal tracing equals to an Euler path.Thus, we end up with the following conditions: " A line drawing has a closed unicursaltracing i� it has no points of intersection of odd degree. A line drawing has an openunicursal tracing i� it has exactly two points of intersection of odd degree". In �gure 10.5such drawings appear.
(a) open (b) open (c) closedFigure 10.5: Unicursal tracing6

10.1.7 Eulerization and semi-EulerizationIn cases where an Eulerian circuit or path does not exist, we may be still interestedin �nding a circuit or path that crosses all edges with as few retraced edges as possible.Eulerization is a simple process providing a solution for this problem. Eulerization is theprocess of adding duplicate edges to the graph so that the resulting graph has not anyvertex of odd degree (and thus contains an Euler circuit). We can do this by selecting pairsof vertices with odd degree and duplicating the edges that form a path between them. Forany intermediate vertex we add(duplicate) two edges keeping its degree even if it was evenand odd if it was odd. At this point we must recall the property of any graph that thenumber of vertices with odd degree is even. This means that no odd-degree vertex remainsuncoupled. An example of a non-eulerian graph and its eulerization appears in �gure 10.6A similar problem rises for obtaining a graph that has an Euler path. The process inthis case is called Semi-Eulerization and is the same as before with the only addition thatwe add edges in such a way that the initial and �nal vertices of the path have odd degree.This means that if the vertex we want the path to start from (or end to) has even degreewe have to duplicate some edges so the degree becomes odd.

(a) a non- eulerian graph (b) Eulerization of the graphFigure 10.6: Eulerization processSome worth mentioned points are:1. We cannot add truly new edges during the process of Eulerizing a graph. All addededges must be a duplicate of existing edges (that is, directly connecting two alreadyadjacent vertices).2. Duplicate edges (often called "deadhead edges") can be considered as new edges oras multiple tracings of the same edge, depending on the problem semantics.3. Eulerization can be achieved in many ways by selecting a di�erent set of edges toduplicate. We can demand that the selected set ful�lls some properties, giving birthto many interesting problems, such as asking for the minimum number of edges to beduplicated 7

10.2 Hamilton paths and circuitsAnother important problem having to do with circuits and paths is the search for acycle that passes through every vertex exactly once. This means that not all edges need tobe traversed. Such cycles, and the respective paths (that go through every vertex exactlyonce) are called Hamilton circuits/path and graphs that contain hamilton circuits, arecharacterized as hamiltonian.De�nition 10.4 A hamiltonian circuit is a circuit that starting from a vertex u0 passesthrough all other vertices ui exactly once and returns to the starting vertex. A hamiltonianpath similarly is a path that starting from a vertex u0 passes through all other vertices uiexactly once and stops at a �nal vertex.The problem of �nding a hamilton circuit or path, is an NP-complete problem, thusit is highly unexpected to �nd a polynomial algorithm for solving it. There exist howeverseveral criteria that determine whether a graph is hamiltonian or not for some families ofgraphs.Unfortunately, global assumption such as high density, or a guaranteed minimum degreeare not enough. We can easily construct a non- Hamiltonian graph whose nodes' minimumdegree exceeds any given constant. What if we use a variable instead of a constant? Diracstated and proved the following theorem:Theorem 10.3 (Dirac 1952)Every graph with n = 3 vertices and minimum degree at least n=2 has a Hamilton cycle.Proof.Let G(V,E) be a graph with jN j = 3 and �(G) = n=2. First of all, the graph is connected,otherwise the degree of every vertex in the smaller component C would be less than jCj =n=2Let P = x0:::xk be a longest path in G. This means that all neighbors of x0 and xk lieon P . Otherwise, the path could be increased by adding a not already included neighbor,which contradicts the maximality of P . Hence, at least n=2 of the vertices x0x1:::xk�1 areadjacent to xk and at least n=2 of the same vertices xi for which xi+1 are neighbors of x0.Since the two sets have at least n=2 + n=2 = n vertices and the longest path can not havemore than n vertices there is a vertex xi that is adjacent to xk and for which xi+1 is a neigh-bor of x0 (�gure 10.7). Then the cycle C = x0 ! xi+1 ! P (xi+1 : xk) ! xi ! P (xi : x0)forms a hamilton cycle. That is because no vertices exist that are not included in C. Ifthere was one such vertex, it would have to be connected to a vertex in C since the graphis connected. This would lead in a larger path than P, which is a contradiction to ourhypothesis that P is a longest path.Another theorem is based on the independence number a(G) of a graph G.De�nition 10.5 An independence set V 0 of a graph G(V;E) is subset V 0 j V for whichholds: For any two vertices u; v of V 0 (u; v) is not an edge in GDe�nition 10.6 The independece number a(G) of a graph G(V;E) is the cardinality ofthe largest independence set of G 8

Xo Xi

Xi+1

XkP

P

1

2

3

4 Figure 10.7: Hamilton cycleFor this theorem we also need the de�nition of k(G). k(G) is the largest integer k forwhich G is k-connected.Now, with the de�nition of independence number given, we can proceed and introducethe theorem.Theorem 10.4 Every graph with n = 3 vertices and k(G) = a(g) has a Hamilton cycle.Proof.Let k(G)=k and C be a longest cycle in G. We will show by contradiction that C has to be ahamilton cycle, so let C not be Hamilton. First, we enumerate the vertices in C cyclically e.g.u1u2:::ulast and 1; 2; :::last = Zn The enumeration is cyclical which means that (ui; ui+1)is an edge of C. Now since C is not Hamiltonian, we can select a vertex u from G � C,and create a fan u � C named F = Pi : i 2 I where I j Zn and Piisanedgefromutoui. Ifwe select F to be of maximum cardinality this would mean that for any j not in I (u; uj)is not an edge. Then jF j >= min(k; jCj). For every i in I we know that i + 1 is not inI, otherwise CSPiSPi+1 � uiui+1 would be a cycle larger than C, which contradicts ourhypothesis (�g 10.8(a)). This means that at least one vertex of the cycle doesn't belongin the fan so jF j 5 jCj thus jF j = kFurthermore, for all i, j in I ui+1uj+1 is not an edge,otherwise we would have CSPiSPi+1 + ui+1uj+1 � uiui+1 � ujuj+1 to be a cycle largerthan C (�g 10.8(b)), which is against our hypothesis. So the set fui+1 : i 2 IgSfug is a setof at least k+1 independent vertices in G. This contradicts the fact that the independencenumber is k. Hence, C is a Hamilton cycle.It was a great surprise when in 1956 Tutte proved the following theorem, which is thebest possible weakening.Theorem 10.5 (Tutte 1956)Every 4-connected planar graph has a Hamilton cycle.Later, in 1972, Chvatal took into consideration the degrees of all nodes, and provedanother powerful theorem. In order to continue with this theorem a few more de�nitionsare required.De�nition 10.7 If G(V;E) is a graph with n vertices and degrees d1 5 d2 5 d3 5 ::: 5 dnthen the n- tuple d1d2d3:::dn is called the degree sequence of the graphDe�nition 10.8 An arbitrary integer sequence a = (a1a2:::an) is called hamiltonian ifevery graph with n vertices and a degree sequence pointwise greater than a is hamiltonian.De�nition 10.9 An integer sequence d = (d1d2:::dn) is pointwise greater than an integersequence a = (a1a2:::an) if di = ai for every i.9

(a) case 1 (b) case 2Figure 10.8: Images for the proof of theorem 10.4With these de�nitions in mind we can proceed to the following theorem.Theorem 10.6 (Chvatal 1972)An integer sequence a = (a1a2:::an) such that 0 5 a1 5 a2 5 ::: 5 an < n and n = 3 ishamiltonian if and only if the following holds for every i < n=2ai =_ an�i = n� i (10.1)which is equivalent to ai 5 i) an�i = n� i (10.2)Proof.Let a = (a1a2:::an) be an arbitrary integer sequence such that 0 5 a1 5 a2 5 ::: 5 an < nand n = 3) We assume that this sequence satis�es the conditions of the theorem. We will show thatit is hamiltonian using contradiction. So there must exist at least one graph G(V;E) withjV j = n and degree sequence d pointwise greater than a:di = ai8i (10.3)and G is not Hamiltonian. Among these graphs we select one with maximum numberof edges and enumerate its vertices (u1u2:::un) so that d(ui) = di Then equation 10.1 istransformed as follows di = i_ dn�i = n� i8i < n=2 (10.4)Next we select two distinct vertices x,y that are not adjacent and such that d(x) 5 d(y)and d(x) + d(y) is as large as possible. If we add the edge (x; y) forming a new graphGnew it is obvious that this graph has more edges than the initial and is pointwise greaterthan a. Since G was selected to be the graph with maximum number of edges which is10

not hamiltonian and pointwise greater than a, Gnew has a hamilton cycle. But this meansthat G has a hamilton path x1x2:::xn and let x = x1 and y = xn. Like we did for Dirac'stheorem, we now consider the indices of vertices adjacent to x and y:I = fi : xxi+1 2 Eg and J = fj : xjy 2 EgWe have ISJ � f1; 2; ::::; n�1g and ITJ = �since G does not have a hamilton circuit. This means thatd(x) + d(y) = jIj+ jJ j < n (10.5)so we have that h = d(x) < n=2 since d(y) > d(x) by our choice. For all vertices adjacentto x, we know that they are not adjacent to y. Their population is h. The fact that theywere not chosen instead of x means that they all have degree lower than dh. So there areat least h vertices with degree lower than h and consequently dh 5 h. Then, equation 10.4means that dn�h > n � h, since h < n=2. Since the degrees are non-decreasingly orderedall vertices enumerated with numbers greater than n � h have degree greater than n � h.Their population is h+1 which means that at least one of them, call it u is not adjacent tox. But then d(u) + d(x) >= n� h + h = n and u,x are not neighbors. This is against ourchoice of x and y. Thus the graph must be hamiltonian.(Now we will show that for every ordered integer sequence a = (a1a2:::an) with ah 5 hand an�h 5 n� h� 1 for some h there exist a graph whose degree sequence is greater butit is not hamilton. Given h, it su�ces to show that this holds for the pointwise greatestsequence. According to the limitation this ish; h; :::; h| {z }h ; n� h� 1; n� h� 1; :::; n � h� 1| {z }n�2h ; n� 1; n� 1; :::; n � 1| {z }h (10.6)Let us test the graph which is a union of a Kh;h with a Kn�h, where kn�h consistsof the vertices labelled uh+1:::un and the two partitions of Kh;h are vertices (u1u2:::uh)and (un�h+1:::un). There are h vertices, namely u1 to uh which have exactly h neighbors,vertices un�h+1:::uh. There are n� 2h vertices uh+1 to un�h+1 that are adjacent to n-h-1vertices: uh+1:::un. Finally there are h vertices un�h+1:::un each of which is adjacent to alln-1 vertices. Figure 10.9 shows this graph. Now the proof of the theorem is completed.

Figure 10.9: A graph that satis�es the limitations and is not Hamiltonian11

Up to this point, we have seen a number of criteria that allow one to determine whethera graph is hamiltonian or not for some types of graphs. But even if we do know that agraph has a hamilton path or circuit we do not yet know how to obtain it. Once again,there are some types of graphs for which a hamiltonian path/ circuit can be obtained inpolynomial time (4-connected planar graphs are such a type of graphs). But in the generalcase of a graph whose structure is unknown the only way to determine the existence of ahamilton path/circuit is to exhaustively search all di�erent paths. Since it is also wanted topresent a hamilton path - if one exists most algorithms try to build such a path by selectinga node and increasing a path until it becomes hamiltonian or we reach a dead-lock. Sincethe computational cost is extremely high during this procedure we would like to save asmuch time as possible by detecting paths that can not grow up to hamiltonian as early aspossible. For this purpose there are several criteria set. The straightforward algorithm thatsearches exhaustively for hamilton circuits appears here and is followed by a set of simplecriteria provided by Hakimi in 1966 and enriched by Rubin in 1974.findHamiltonCircuit(G(V,E))1 Select any single node as the initial path2 if the path is admissible AND there are unvisited nodes3 then4 list the successors of the last node chosen5 extend the path to the �rst unvisited successor6 goto step 278 else9 delete the last node chosen from the path10 choose the next listed unvisited successor of the preceding node11 goto step 212 if all extensions from a given node have been shown inadmissible13 then14 goto step 91516 if all extensions from the initial node have been shown inadmissible17 then18 no circuit exists19 if all nodes are included in the path and the last node is adjacent to the initial node20 then21 a hamilton circuit existsFor the test for admissibility in step 2 we need to consider the following: During con-structing the path we can �nd three types of edges.1. Required: If a graph has exactly two edges incident to it both of the edges arerequired in order to visit and leave during traversing a hamilton circuit.2. Deleted: If a node is already in the path then no other edges incident to it can beused during traversing a hamilton circuit. Furthermore, any edge that closes a circuitother than hamiltonian can not be used. These edges can be deleted.12

3. Undecided: All edges that are not in any of the two previous categories can poten-tially be used some time later in order to increase the path.Whenever adding a vertex in the path we need to update all these categories. With thisclassi�cation we can detect paths that can not increase to hamiltonian following using thefollowing set of rules.1. Fail if any vertex becomes isolated. Since it is isolated it cannot be reached thus ahamilton circuit can not be constructed2. Fail if any vertex has only one incident arc. This vertex can be reached but then wecan not leave following a di�erent edge3. Fail if any vertex has three required arcs incident. In any circuit every vertex isincident to exactly two edges4. Fail if any set of required arcs forms a closed circuit, other than a Hamilton. AHamilton circuit can not contain any smaller circuitsFurthermore we can take into consideration that connectivity alters while edges areremoved. This means that two more rules for failure can be added1. Fail if for any vertex not already included in the path there is no path to the initialvertex2. Fail if there exists a vertex not already included in the path which is unreachable fromthe last vertex added in the path.Of course the list of rules is not complete. Many more criteria exist, others simple, likethose mentioned here and others more sophisticated. In any case one must keep in mindthat the set of rules used has to be fast to apply, otherwise the time gained by not searchingdoomed to fail paths will be lost during checking.10.2.1 Hamilton paths and circuits in directed graphsIn undirected graphs, it is obvious that a complete graph (a clique), where all possibleedges exist is hamiltonian. What is important is that we can direct the edges of a completegraph in any way we want and the obtained directed graph will always contain a hamiltonpath. Such graphs are called tournaments.De�nition 10.10 A directed graph G(V;E) such that for every pair of vertices u; v either���!(u; v) 2 E or ���!(v; u) 2 E is called tournament.As already mentioned a tournament graph always contains a hamilton path.Theorem 10.7 Any tournament graph contains a hamilton pathProof.The proof is by induction on the number of vertices. For a directed graph with threevertices one of the two cases shown in �gure 10.10 can appear. Both of these have a hamil-ton path. All other directed graphs with three vertices are isomorphic to one of the two13

cases. The hypothesis is that any tournament graph with k vertices has a hamilton path.We want to show that a tournament with k + 1 vertices has a hamilton path. So we con-sider a k + 1 tournament graph g(V;E) and select randomly a vertex y. The remainingof the graph G � y has k vertices and is tournament so it is has a hamilton path, callit P = �����!x1x2:::xk. For every xi either ��!xi; y or ��!y; xi exists. If ��!y; x1 exists then G has ahamilton path y ! x1 ! x2::: ! xk Otherwise ��!x1; y exists. In this case we traverse thepath x1 !! ::: ! xk until an edge ��!y; xj rather than ��!xj; y is found for the �rst time. Thex1 ! x2 ! :::! xj�1 ! y ! xj ! :::! xk is a hamilton path for the graph G If no suchvertex xj exists, then all edges involving y are directed towards it. This means edge ��!xk; yexists. Then x1 ! ::: ! xk ! y is a hamilton path for G. So in any case G contains ahamilton path, thus theorem is proved.

(a) case 1 (b) case 2Figure 10.10: Directed graphs with 3 verticesOnce again the problem is not to simply determine whether a graph is Hamiltonianor not. We would also like to detect a hamilton circuit if one exists. Unfortunately likein the case of undirected graphs, even if the problem is solvable in polynomial time forsome types of graphs, in the general case only exhaustive search can guarantee correctness.The exhaustive algorithm described earlier can be used for detecting hamilton circuits indirected graphs with slight modi�cations and additions.10.2.2 Comparison to the Euler circuit problemWe have examined two di�erent problems with a common subject. In both cases we areinterested in �nding a circuit. When asking for an Euler circuit we want to �nd a circuitthat contains every edge of a graph exactly once. This is of importance when we wantto take advantage of all the edges, e.g if we want to have a network that can survive if anumber of links is down. On the other hand when asking for a Hamilton circuit we want totravel through all the vertices of a graph, without being interested in the edges we use. Weare interested in such graphs when we want to travel over all vertices quickly, without usingan edge two or more times. These two problems are very di�erent. An Euler circuit can beobtained in O(E), proportional to the number of edges time. On the contrary, we can not�nd a Hamilton circuit, or even determine its existence without exhaustively searching thegraph. There are some categories of graphs for which we have polynomial algorithms, butin general this is an NP-complete problem. Furthermore, assigning weights on the edges ofthe graph plays no role when searching for an Euler circuit: All edges have to be visited, so14

the total cost will always be the same, namely the sum of the weights of all edges. But inthe case of Hamilton circuits, having a weighted graph is a much more challenging problem:Not only we are looking for a Hamilton circuit, but we want the circuit to be of minimumtotal weight as well. This problem is known under the name "Travelling Salesman Problem"and is examined in the following section.10.3 Travelling salesman problemIn this chapter we have seen two di�erent circuits with great practical importance inmany �elds; Euler and Hamilton circuits. In none of these were we interested in weightedgraphs G(V;E;w) where w is a function that assigns an arithmetic value on every edge. Inweighted graphs, a new problem concerning circuits, with also great practical value arises.We would like to �nd the hamilton circuit with the minimum total weight. This problemis widely known under the name "Travelling salesman problem " (TSP) and is stated asfollows:A salesman wants to visit a number of cities which are connected. The distance betweenany two cities is known. Which is the order in which the salesman should visit the cities sothat he minimizes the total distance we walks.The problem is obviously to �nd the hamilton circuit with the minimum weight. Since�nding a hamilton circuit is by itself NP-complete, it is obvious that the travelling salesmanproblem is NP-complete as well. If TSP was an easier to solve problem, we could solve thiswhen asked for a Hamilton circuit!!! From this point, we will only consider complete graphs.This assumption makes the hamilton problem trivial but the TSP remains NP-complete.10.3.1 Approximation algorithmIn many applications graphs represent points on the plane. Assigning the real distancebetween the two points as the weight of the respective edge is a common action. For thesegraphs the triangle inequality holds. This means that for any three vertices u; v; z 2 V wehave thatw(u; v) < w(u; z) + w(z; v)The problem remains NP-complete under this assumption, but at least there exist anapproximation algorithm for this. An approximation algorithm sets a worst-case bound forthe solution it gives. In this case we will prove that the algorithm we will discuss providesa solution with at most twice the cost of the optimal solution. The algorithm is based ona spanning tree of the graph.2-approximationTSP(G(V,E,w))1 Select a vertex r 2 V as the root vertex2 grow a minimum spanning tree from r using Prim's algorithm3 let L be the list of vertices in a pre-order walk of T4 return the hamilton circuit that visit the vertices in the order of LAt this point it is important to remember that the pre-order tree walk ordering isobtained by recording every vertex once, when it is �rst visited. This algorithm alwaysreturns a circuit and runs in O(E) = O(V 2) time, which is needed by Prim's algorithm.15

What is left, is to prove that the returned circuit has at most twice the cost of the optimalcircuit.Proof.Let H� be the optimal circuit with cost c(H�). We want to show that the cost c(H)of the returned circuit H is c(H) 5 2 � c(H�). Since the tree T computed is a minimumspanning tree we have that c(T) 5 c(H�) (10.7)The full walk W of the tree from its root to all vertices and back to the root means thatwe traverse every edge exactly twice. This means thatc(W) = 2 � c(T) (10.8)If we combine this with equation 10.7 we getc(W) < 2 � c(H�) (10.9)If W was a circuit this would be enough. Unfortunately, W visits some vertices morethan once. But due to the triangle inequality we can avoid visiting a vertex u for the secondtime in the following way: Let v be the vertex we were before visiting u for the second timeand w be the vertex we leave u for. We want to avoid the path v ! u ! w. We can dothis by going directly from v to w. The triangle inequality guarantees that the cost of thenew tour is lower since:w(v; w) < w(v; u) + w(u;w)Furthermore by avoiding traversing a vertex for the second time, we result with thepre-order sequence of the vertices which is described by the algorithm.So the tour we obtain has total cost lower than c(W). If we extend this with equation10.9 we complete the proof.For graphs with this property, the TS problem is known as Euclidean-TSP to remindthe ancient mathematician who established the �rst rules for geometry. While we have anapproximation algorithm for the Euclidean-TSP it has been proved that no c-approximationalgorithm exists unless P=NP. This is the reason we have to turn our interest to heuristicalgorithm. Algorithms that do not guarantee anything, but they appear to perform well inpractise.10.3.2 Heuristic algorithmsEven if the previous algorithm provides a solution for many interesting applications itis still not enough in the general case. It has been proved that in the general case thereis no approximation algorithm for the travelling salesman problem, unless P=NP, which ishighly unlikely. Here we will present some heuristic algorithms that can guarantee nothingbut work satisfactory in practise. 16

Cheapest link algorithmThis is a greedy algorithm which works in a a way similar to Kruskal's algorithm for�nding minimum spanning trees.Cheapest Link Algorithm CLA(G(V,E,w))1 while a hamilton circuit is not formed2 do Choose an edge with minimum weight randomly breaking ties3 if chosen edges do not form a smaller circuit and no vertex is incident to more than two edges4 then5 add chosen edge to the path6 goto 1Figure 10.11 shows the execution of "cheapest link" algorithm. 10.11(a) shows a graph(K5) on which we apply this algorithm: We choose AC as an edge of minimum weight.Then, since no restriction stops us we add AD. Now if we try to add DC we get a cycleACDA (10.11(b)) so we do not add it. Instead we take the next lower weighted edge DBand add it. If we add ED node D will have degree 3(10.11(c)), so we do not use it. Insteadwe add EC and EB successively so we get a Hamiltonian cycle ADBECA (10.11(d)) withtotal cost 20

(a) a (b) b

(c) c (d) dFigure 10.11: Various steps of the CL Algorithm17

Nearest Neighbor AlgorithmThis is a greedy algorithm which works in a a way similar to Prim's algorithm for �ndingminimum spanning trees. But since we want to grow a path and not a tree, the edge weselect must be incident to the last visited vertex.Nearest Neighbor Algorithm NNA(G(V,E,w))1 Choose a vertex to start from2 while not all vertices are visited3 do Among the edge incident to the last visited vertex and any not yet visited vertex4 chose the one with the minimum weight5 visit the other endpoint of the edge67 Travel back to the initial vertexFigure 10.12 shows the execution of "cheapest link" algorithm. shows a graph (K5) onwhich we apply this algorithm: We choose E as the initial vertex. We choose the edgewith the lower cost starting from E, ED10.12(a) . Similarly we traverse edges DA andAC (10.12(b)). Now we can not traverse the edge with the minimum cost CD since Dhas already been visited. Instead we we travel to B through CB(10.12(c)).Now all verticesare visited so we go back to the initial vertex through BE and obtain a Hamilton circuitEDACBE (10.12(d)) with total cost 25.

(a) a (b) b
(c) c (d) dFigure 10.12: Various steps of the CL AlgorithmWe observe that this algorithm depends on the choice of the �rst vertex. We canrun thisalgorithm jV j times using a di�erent initial vertex every time and keep the best solution.18

This approach is called Repeated Nearest Neighbor Algorithm (RNNA) and is summarizedas follows.Repeated Nearest Neighbor Algorithm RNNA(G(V,E,w))1 while there are unmarked vertices2 do Apply NNA selecting as initial an unmarked vertex v3 Store the result and mark v4 Among all circuits stored select the one with the minimum costThe travelling salesman problem has great practical value. Designing the route in orderto visit a number of places as quickly (economically, safely or anything that can be assignedas a weight for an edge) as possible is of great interest in many cases. From travelling torouting packets in a computer networks there are many �elds where we would like to visitcertain targets as e�ciently as possible.

19

