AANHNIKH AHMOKPATIA
ANEMNIZTHMIO KPHTHZ

Ewcaymyn octov Ipoypoppnoticno
Introduction to Programming

AIGAEEN 7. 2uvapTNoEIC

I". MNaTtrayiavvakng

exnaeveH K an Bov et = EZTTA

@0

i LANS Lt . ATIEMEOY & AAAHTIE "
Eupnmaik Evwan EIAIKH YNMHPEEIA AIAXEIPIEHE
BTt Ko T ¢ 1 euygenEaToSaTn o Ty EAkdbas kot Euposmdis s Evons

HY150 Programming, University of Crete



Adeiec Xpnong

- To TTapoOVv eKTTAIOEUTIKO UAIKO UTTOKEITOI OTNV AdEIA
xpnong Creative Commons Kal €I0IKOTEPA

Avagopa Anuioupyou 3.0 - Mn siocayousvo EAAada
(Attribution 3.0—- Unported GR)

@0

- T'lo eKTodeVTIKO VAIKO, OTTMC EIKOVEC, TOV VTOKEITO GE GAAOV
TUTTOL AOELNC YPNOTNG, N AOELD YPNONC OVOPEPETOL PNTOC.

HY150 Programming, University of Crete



XpNnuotoootTnon

- To mapov eKTodeLTIKO VAIKO £xel avamtuyDel ota mAaicto Tov

EKTTOLOEVTIKOV £PYOL TOL OLOACKOVTA.

- To ¢pyo «Avoikta Akaonuaikd Madqpoata oto Iovemotiuo
Kpntmmo» £xel ypnUaTod0TNGEL LOVO T OVOOIOUOPPMGT] TOV EKTOOEVLTIKOV
VAIKOV.

- To épyo viomotgital 6To mAaicto Tov Emtyeipnoiokod [poypdupotog
«Exmaiocvon kot At Biov MaOnon» kot cuyypnuatodoteital and tnv
Evponaikn ' Evoon (Evporaiko Kowvoviko Taueio) kot amd 0vikong
TOPOLC.

EMIXEIPHZIAKO TPOTPAMMA |

AEYZH KAl AlA BIOY MABHZH ﬂ Ez I-IA
& o : 2007-2013
N [ oo v winas
YTIOYPTEIO MAIAEIAT & BPHIKEYMATON, TIOAITIEMOY & ABAHTIIMOY  EvPONAIKO KOINGNIKO TAMEID
EvpwmaikiEvwony EIAIKH YMHPEZIA AIAXEIPIZHE

Evpwmaiid Komnvunwid Tapeio
= Me ™n ouyypnpatodornon tng EAAadag kar tng Evpwnaikng Evwong

HY150 Programming, University of Crete



HY-150 Ilpoypoppaticuog
CS-150 Programming

Lecture 7:
Technicalities: Functions etc.

G. Papagiannakis

HY150 Programming, University of Crete



ADbstract

- This lecture and the following present some technical
details of the language to give a slightly broader view of
C++’s basic facilities and to provide a more systematic
view of those facilities. This also acts as a review of many
of the notions presented so far, such as types, functions,
and Initialization, and provides an opportunity to explore
our tool without adding new programming techniques or
concepts.

HY150 Programming, University of Crete Lecture: Functions, Slide 5



[ atest standard version: C++11

. ...1 like the way move semantics will simplify the way we return
large data structures from functions and improve the

performance of standard-library types, such as string and
vector...

« For example, you wouldn't write a JavaScript engine in
JavaScript, and you probably wouldn't write a "first to market"
simple Web app in C++. You would write the foundations of a
Google, an Amazon, a Facebook, or an Amadeus (airline
ticketing) in C++, but maybe not the rapidly changing top layers
of such systems. C++ comes in strong where power consumption
is an issue -- for example, server farms and handheld devices....

[http://www.infoworld.com/d/application-development/stroustrup-reveals-whats-new-in-c-1 1 -
1870517?page=0,0]

HY150 Programming, University of Crete Lecture: Functions, Slide 6



Overview

- Language Technicalities

_ Call of expression(): |ts
- Declarations left
- Definitions t
- Headers and the preprocessor Implementation
stuff
- Scope
- Functions

- Declarations and definitions

- Arguments
- Call by value, reference, and const reference
- Namespaces

- “Using” statements

« Recursive functions

HY150 Programming, University of Crete Lecture: Functions, Slide 7



Language technicalities

- Are a necessary evil
- A programming language is a foreign language
- When learning a foreign language, you have to look at the grammar and vocabulary
- We will do this in this chapter and the next

- Because:
- Programs must be precisely and completely specified
- A computer is a very stupid (though very fast) machine
- A computer can’t guess what you “really meant to say” (and shouldn’t try to)
- S0 we must know the rules
- Some of them (the C++ standard is 782 pages)

- However, never forget that
- What we study is programming
- Our output is programs/systems
- A programming language is only a tool

HY150 Programming, University of Crete Lecture: Functions, Slide 8



Technicalities

- Don't spend your time on minor syntax and semantic Issues.
There Is more than one way to say everything
- Just like in English

- Most design and programming concepts are universal, or at least
very widely supported by popular programming languages

- S0 what you learn using C++ you can use with many other languages

- Language technicalities are specific to a given language

- But many of the technicalities from C++ presented here have obvious
counterparts in C, Java, C#, etc.

- Too many get the mlstaken belief that the way things are done In their first
programming language is "the one true way.'

Lecture: Functions, Slide 9

HY150 Programming, University of Crete



Declarations

- A declaration introduces a hame into a scope.

« A scope is a region of program text.

- A declaration also specifies a type for the named object.
- Sometimes a declaration includes an initializer.
- A name must be declared before it can be used in a C++ program.

- Examples:
- Inta=17,; /[ an int variable named ‘a’ is declared
- const double cd =8.7; // a double-precision floating-point constant
- double sqrt(double); /[ a function taking a double argument and
/[ returning a double result
. vector<Token> v; /[ a vector variable of Tokens (variable)

HY150 Programming, University of Crete Lecture: Functions, Slide 10



Declarations

- Declarations are frequently introduced into a program through
“headers”

- A header is a file containing declarations providing an interface to other parts
of a program

This allows for abstraction — you don’t have to know the details
of a function like cout In order to use it. When you add

#include "'../../std_lib_facilities.h"

to your code, the declarations in the file std_lib_facilities.n become
available (including cout etc.).

HY150 Programming, University of Crete Lecture: Functions, Slide 11



Definitions

A declaration that (also) fully specifies the entity
declared is called a definition

- Examples
Inta=7,
Int b; /[ an int with the default value (0)
vector<double> v; /[ an empty vector of doubles

double sgrt(double) { ... }; //i.e. a function with a body
struct Point { Iint x; Inty; };
- Examples of declarations that are not definitions

double sgrt(double); // function body missing
struct Point; // class members specified elsewhere
extern int a; /[ extern means “not definition”

Il “extern”is archaic; we will hardly use it

HY150 Programming, University of Crete Lecture: Functions, Slide 12



Declarations and definitions

- You can’t define something twice
- A definition says what something is

- Examples
Int a; /I definition
int a; /] error: double definition

double sqrt(double d) { ...} // definition
double sqrt(double d) { ... } // error: double definition

- You can declare something twice
- A declaration says how something can be used

inta=7,; I/ definition (also a declaration)
extern int a; I/ declaration
double sgrt(double); /[ declaration

double sqrt(double d) { ... } // definition (also a declaration)

HY150 Programming, University of Crete Lecture: Functions, Slide 13



Why both declarations and definitions?

- To refer to something, we need (only) its declaration
- Often we want the definition “elsewhere”

« Later In a file
« In another file

- preferably written by someone else
- Declarations are used to specify interfaces
- To your own code
- To libraries
- Libraries are key: we can’t write all ourselves, and wouldn’t want to
- In larger programs

- Place all declarations in header files to ease sharing

HY150 Programming, University of Crete Lecture: Functions, Slide 14



Header Files and the Preprocessor

- A header is a file that holds declarations of functions, types,
constants, and other program components.

« The construct
#include "../../std_lib_facilities.h"

IS a “preprocessor directive” that adds declarations to
your program

- Typically, the header file is simply a text (source code) file

- A header gives you access to functions, types, etc. that you
want to use in your programs.

- Usually, you don’t really care about how they are written.

- The actual functions, types, etc. are defined in other source code files
- Often as part of libraries

HY150 Programming, University of Crete Lecture: Functions, Slide 15



Source files

token.h:

token.cpp:

use.cpp:

- A header file (here, token.h) defines an interface between user code and
Implementation code (usually in a library)

- The same #include declarations in both .cpp files (definitions and uses)
ease consistency checking

HY150 Programming, University of Crete Lecture: Functions, Slide 16



Scope

- A scope Is a region of program text

- Examples
- Global scope (outside any language construct)
- Class scope (within a class)
- Local scope (between { ... } braces)
- Statement scope (e.g. in a for-statement)

- A name In a scope can be seen from within Its scope and
within scopes nested within that scope

- After the declaration of the name (“can't look ahead” rule)
- A scope keeps “things” local

- Prevents my variables, functions, etc., from interfering with yours
- Remember: real programs have many thousands of entities
- Locality is good!

- Keep names as local as possible

HY150 Programming, University of Crete Lecture: Functions, Slide 17



Scope

#include "'std_lib_facilities.h" Il get max and abs from here
//nor,i,orvhere
class My _vector {

vector<int> v; /[ v is in class scope
public:
int largest() /[ largest is in class scope
{
intr =0; I/ ris local
for (int1=0; i<v.size(); ++i) //'11s in statement scope
r = max(r,abs(v[i]));
// no i here
returnr;
}
// no r here

};//lend of class
// no v here

HY150 Programming, University of Crete Lecture: Functions, Slide 18



Scopes nest

Int X; // global variable — avoid those where you can
inty; // another global variable

int f()
{
INt X; // local variable (Note — now there are two Xs)
X=1,; // local x, not the global x
{
INtx =y, /[ another local x, initialized by the global y
// (Now there are three x5)
++X; // increment the local x in this scope
}
}

// avoid such complicated nesting and hiding: keep it simple!

HY150 Programming, University of Crete Lecture: Functions, Slide 19



Global/local scope

void f(int x) // 1is global; x is local to f
{

intz=x+7; //zis local
}
int g(int x) // g is global; x is local to g
{

intf=x+2; //1is local

return 2*f;
}

Or graphically:

Global scope:

-
z
g BE
f

HY150 Programming, University of Crete Lecture: Functions, Slide 20



Functions

- General form:
- return_type name (formal arguments); /[ a declaration
- return_type name (formal arguments) body /[ a definition
- For example
double f(int a, double d) { return a*d; }
Formal arguments are often called parameters

If you don’t want to return a value give void as the return type
volid increase_power(int level);

- Here, void means “don’t return a value”

A body Is a block or a try block

- For example
{/* code */ } /[ a block
try { /* code */ } catch(exception& e) { /* code */ } // a try block

Functions represent/implement computations/calculations

HY150 Programming, University of Crete Lecture: Functions, Slide 21



Functions: Call by Value

/[ call-by-value (send the function a copy of the argument’s value)
Int f(inta) { a=a+1; returna; }

copy the value

Int main()

{
Int xx = 0; XX.
cout << f(xx) << endl; //writes1
cout << xx <<endl; //writes 0; f() doesn’t change xx
Intyy =7;
cout << f(yy) << endl; // writes 8; f() doesn't change yy
cout<<yy<<endl; //writes7

}

Yy-

HY150 Programming, University of Crete Lecture: Functions, Slide 22



Functions: Call by Reference

/I call-by-reference (pass a reference to the argument)
Int f(int& a) {a =a+1; return a; }

int main() st call (refer to xx)

{

int xx = 0: XX.
cout << f(xx) << endl; // writes1
I/ () changed the value of xx

cout << xx<<endl; //writes1

Intyy =7,

cout << f(yy) << endl; // writes 8 2™ call (refer to yy)
// () changes the value of yy

cout<<yy<<endl; //writes8

HY150 Programming, University of Crete Lecture: Functions, Slide 23



Functions

- Avold (non-const) reference arguments when you can

- They can lead to obscure bugs when you forget which
arguments can be changed
intincrl(inta) { return a+1; }
void incr2(int& a) { ++a; }
intx =7;
X = incrl(x); /[ pretty obvious
incr2(x); // pretty obscure

- S0 why have reference arguments?

- Occasionally, they are essential
- E.g., for changing several values
- For manipulating containers (e.g., vector)

- const reference arguments are very often useful

HY150 Programming, University of Crete Lecture: Functions, Slide 24



Call by value/by reference/
by const-reference

void f(int a, int& r, const int& cr) { ++a; ++r; ++cr; } // error: cr is const
void g(int a, Int& r, const int& cr) { ++a; ++r; Int X = cr; ++x; } // ok

Int main()
{
Int x =0;
Inty =0;
Intz =0;
ag(x,y,2); Il x==0; y==1; z==0
9(1,2,3); // error: reference argument r needs a variable to refer to
g9(1,y,3); // ok: since cr is const we can pass ‘a temporary”

}

I/ const references are very useful for passing large objects

HY150 Programming, University of Crete Lecture: Functions, Slide 25



References

- “reference” is a general concept
- Not just for call-by-reference

r
Inti1=7; _
int& r =i: l.
r=29; /[ 1 becomes 9

const int& cr = i; Cr

llcr=17; /[ error: cr refers to const

| =8;

cout << cr <<endl; // write out the value of i (that’s 8)

- YOu can
- think of a reference as an alternative name for an object

- You can't
- modify an object through a const reference
- make a reference refer to another object after initialization

HY150 Programming, University of Crete Lecture: Functions, Slide 26



Guidance for Passing Variables

- Use call-by-value for very small objects
- Use call-by-const-reference for large objects

- Return a result rather than modify an object through a reference
argument

- Use call-by-reference only when you have to

- For example
class Image { /* objects are potentially huge */ };
void f(Image i); ... f(my_image); // oops: this could be s-1-0-0-0-w
void f(Image& i); ... f(my_image); // no copy, but f() can modify my_image
void f(const Image&); ... f(my_image); // f() wont mess with my_image

HY150 Programming, University of Crete Lecture: Functions, Slide 27



Namespaces

- Consider this code from two programmers Jack and Jill

class Glob { /*...*/ }; /[ In Jack’s header file jack.h
class Widget { /*...*/ }; /[ also in jack.h

class Blob { /*...*/ }; /[ 'in Jill’s header file jill.h
class Widget { /*...*/ }; /[ also in jill.h

#include "'jack.h™; // this is in your code
#include "jill.h""; I/ so is this

void my_func(Widget p) // oops! — error: multiple definitions of Widget

1
...

HY150 Programming, University of Crete Lecture: Functions, Slide 28



Namespaces

- The compiler will not compile multiple definitions; such clashes can occur
from multiple headers.

- One way to prevent this problem is with namespaces:
namespace Jack { I/l in Jack’s header file
class Glob{ /*...*/ };
class Widget{ /*...*/ };

¥
#include "jack.h"; /[ this is in your code
#include "jill.n"; I/ so is this

void my_ func(Jack::Widgetp) // OK, Jack’s Widget class will not
{ / clash with a different Widget
/...

HY150 Programming, University of Crete Lecture: Functions, Slide 29



Namespaces

- A namespace Is a named scope

- The :: syntax Is used to specify which namespace you are using

and which (of many possible) objects of the same name you are
referring to

- For example, cout is In namespace std, you could write:

std::cout << "Please enter stuff... \n"";

HY150 Programming, University of Crete

Lecture: Functions, Slide 30



using Declarations and Directives

- To avold the tedium of

« std::cout << "Please enter stuff... \n"";

you could write a “using declaration”

- using std::cout; /[ when | say cout, | mean std::cout”
« cout << "Please enter stuff... \n""; /] ok: std::cout
.« CIn >>X; /[ error: cin not In scope

- Or you could write a “using directive”

- using namespace std; // “make all names from namespace std available”
« cout << "Please enter stuff... \n""; /] ok: std::cout
.« CIn >>X; // ok: std::cin

« More about header files in Lecture 11

HY150 Programming, University of Crete Lecture: Functions, Slide 31



Function call implementation I

- Remember functions from Lectures 3, 6:

double term(Token_stream& ts) double primary(Token_stream& ts)

{ {
double left = primary(ts);

Token t =ts.get ();
Token t = ts.get();

switch (t.kind) {

| (e 3
case '/': case '(":
{ . { double d = expression(ts);
double d = primary(ts); , AT
/...

double expression(Token_stream& ts)
{

double left = term(ts);

Token t = ts.gel();

' AT

HY150 Programming, University of Crete Lecture: Functions, Slide 32




Function call implementation II

- When a function is called, the
language implementation sets aside a
data structure containing a copy of
all its parameters and local variables.

- For example, when expression() is
first called, the compiler ensures that
a structure like this is created: a
function activation record

- So far, so good, and now
expression() calls term(), so the
compiler ensures that an activation
record for this call of term() 1s
generated :

HY150 Programming, University of Crete

Call of expression():

Call of expression():

Call of term():

Implementation
stuff

ts

left

t

d

Implementation
stuff

Direction of
stack growth

Lecture: Functions, Slide 33



Function call implementation III

- Now term() calls primary() and we get:

Call of expression(): |ts
left
t
Implementation
stuff
Call of term(): |ts

left

‘ l)llutu m uf
d stack growth

Implementation
stu

Call of primary(): |ts
t
d

Implementation
stuff

HY150 Programming, University of Crete Lecture: Functions, Slide 34



Order of evaluation

- The evaluation of a program - also called the execution of a
program - proceeds through the statements according to the
language rules.

« When this "thread of execution" reaches the definition of a
variable,

- the variable 1s constructed;

- that is, memory 1s set aside for the object and the object 1s
initialized.

- when the variable goes out of scope,

- the variable 1s destroyed;

- that 1s, the object it refers to 1s in principle removed and the compiler can
use 1ts memory for something else

HY150 Programming, University of Crete Lecture: Functions, Slide 35



Order of evaluation 11

string program_name = "silly";

vector<string> v; // v is global
void f()
{
string s; //sislocaltot
while (cin>>s && s!="quit") {
string stripped; // stripped is local to the loop

string not_letters;
for (int i=0; i<s.size(); ++i) // i has statement scope
if (isalpha(s[i]))
stripped += s[i];
else
not_letters += s[i];
v.push_back(stripped);
'/

HY150 Programming, University of Crete Lecture: Functions, Slide 36



Expression evaluation

- The order of evaluation of sub-expressions 1s governed by rules
designed to please an optimizer rather than to make life simple
for the programmer.

- That’s unfortunate, but you should avoid complicated
expressions anyway, and there 1s a simple rule that can keep you
out of trouble:

- 1f you change the value of a variable in an expression, don't read or write
it twice 1n that same expression. For example:

vii] = ++1i; // don’t: undefined order of evaluation
vi++i]l =1; // don’t: undefined order of evaluation
INt X = +41 + ++i; // don't: undefined order of evaluation
cout << ++i<< ' '<<i<<"\n'; // don’t: undefined order of evaluation
f(+4+1,4++1); // don’t: undefined order of evaluation

HY150 Programming, University of Crete Lecture: Functions, Slide 37



Global 1ini1tialization

- Using a global variable 1n
anything but the most limited

circumstances 1s usually nota  /iile f2.cpp
good idea extern int }"1;
int y2 = y1+2; /l v2 becomes 2 or 5

« Such code 1s to be avoided for
several reasons:

- 1t uses global variables,

- 1t gives the global variables short
names,

- 1t uses complicated initialization
of the global variables.

HY150 Programming, University of Crete Lecture: Functions, Slide 38



Recursively Defined functions

- For some problems, 1t’s useful to have functions call themselves

- As often 1t 1s difficult to express the members of an object or
numerical sequence explicitly.

¢.g.:. The Fibonacci sequence:
i/, =0,1,1,2,3,5,8,13,21,34,55,...

- There may, however, be some “local” connections that can give
rise to a recursive definition —a formula that expresses higher
terms 1n the sequence, 1n terms of lower terms.

e.g.: Recursive definition for {f, }:
INITIALIZATION:  f,=0,f,=1
RECURSION: 1, =111, forn>1.

HY150 Programming, University of Crete Lecture: Functions, Slide 39



Recursive Definitions and Induction

- Recursive definition and inductive proofs are complement
each other: a recursive definition usually gives rise to natural
proofs involving the recursively defined sequence.

« This 1s follows from the format of a recursive definition as
consisting of two parts:

- Initialization —analogous to induction base cases
- Recursion —analogous to induction step

- In both induction and recursion, the domino analogy 1s useful.

HY150 Programming, University of Crete Lecture: Functions, Slide 40



Recursion

- We must always make sure that the recursion bottoms out:
A recursive function must contain

« The recursive calls must eventually lead to a non-recursive branch.

- Recursion 1s one way to decompose a task into smaller subtasks. At
least one of the subtasks 1s a smaller example of the same task.

- The smallest example of the same task has a non-recursive solution.
- Fibonacci numbers:

o, 1, 1, 2, 3, 5, 8, 13, 21, 34,

where each number 1s the sum of the preceding two.

- Recursive definition:
« F(0) = O0;
- F(1) = 1;
« F(number) = F(number-1)+ F (number-2);

HY150 Programming, University of Crete Lecture: Functions, Slide 41


http://www.ee.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html

Recursive Example: Fibonacci
numbers

f(0)is O

£ib ( number) f(1)is 1

{ f(2)is 1
(number == 0) 0:; f(3) S 2
(number == 1) 1; f(4) !S 3
(£ib (number-1) + £ib(number-2)); f(5)1s 5

S n er i nu er ’ f(6) iS 8

main () {
inp number=0;
cout << "Please enter an integer: ";
cin >> inp number;
cout << "The Fibonacci number for "<< inp number
<< " is "<< fib(inp number)<<endl;
0;

HY150 Programming, University of Crete Lecture: Functions, Slide 42



Fib,, Fib(4)
Fiby_| + Fiby_> Fib(3) N Fib(2)
Fiby | + |Fiby.3 Fibl;l_3 + Fibr.1 4 Fib(2) | 4 Fibl(l) Fibl(l) + Fil:()_)(O)
Fibr.l_3 + Fiblj_4 . . Fib](l) 4 Fil?)(O)
= . .(a)Fib(n) (b) Fib(4)

HY150 Programming, University of Crete

Lecture: Functions, Slide 43



Trace a Fibonacci Number

£fib( num)

« Assume the input number is 4, that is, num=4: {
(num == 0) 0;
Zib(4) : (num == 1) 1;
SRR ic s 4 = 17 No. (£ib (num-1) +£ib (num-
fib(4) = £fib(3) + £ib (2) 2));
J . 1
£1b(3): Fib(4)
3 =0 ? No; 3 == 1? No.
fib(3) = £fib(2) + £ib (1)
£fib (2) : »
2 == 0? No; 2==1? No. Fib(3) +|  Fib2)
fib(2) = £fib(1l)+£fib (0)
fib(1) :
l== 0 ? No; == \L? Yes. »
£ib(1) = 1; Fib(2) [ 4+ |Fib(l)  Fib(1) | + | Fib(0)
’ 1 1 0
fib (1)

Fib(1) | + |Fib(0)

HY150 Programming, University of Crete



Trace a Fibonacci Number

Fib(4)

£fib(0) :
O =0 ? Yes.
£fib(0) = 0;
£fib (0) ;
fi{2y—=—31+4+-0-=-1-
fib(2) ;
fib(3) =1 + £fib (1)
fib (1) :

1 == 0 7 NO, 1 ==17 Yes
Fib(2) |+ |Fib(1)  Fib(1) |+ | Fib(0)

fib(1) = 1;
1 1 0

£ib (1) ;
£ib(3) = 1 + 1 = 2; ,,
£ib (3) /
y

Fib(2)

Lecture: Functions, Slide 45

HY150 Programming, University of Crete



Trace a Fibonacci Number

#ib(2) :

£ == 0 ? No; 2 == 1? No.
#ib(2) = fib(1) + £ib(0)
#ib(1):

l==0 ? No; 1 == 1? Yes.
fib(1l) = 1;
fib (1) ;
£ibje3—
) == 0 °? Yes.
fib(0) = 0;
£fib(0) ;
fib(2) =1 4+ 0 = 1:
fib (2) ;
fib(4) = fib(3) + fib(2)
=2+ 1= 3;
fib (4) ;

HY150 Programming, University of Crete

Fib(4)

Fib(3) + Fib(2)

4

Fib(2) | + |Fib(1)  Fib(l) | + | Fib(0)

Fib(1)

l 1 0

Fib(0)
0

Lecture: Functions, Slide 46



Fibonacci number w/o recursion

fib ( n)

f[n+l];
f£[0] = 0; £[1] = 1;
for (int i=2; i<= n; i++)
f[i] = £[i-1] + £[i-2];
f[n];

HY150 Programming, University of Crete Lecture: Functions, Slide 47



Next talk

- More technicalities, mostly related to classes

HY150 Programming, University of Crete Lecture: Functions, Slide 48



Acknowledgements

Bjarne Stroustrup

Programming -- Principles and Practice Using C++

http://www.stroustrup.com/Programming/

HY150 Programming, University of Crete Lecture: Introduction to Programming, Slide 49



Thank you!

s *
* * dyen gzny wowvwvia zne yviwsrnc I
EE=] " Jnpéypoppa yo v avimuén

YNOYPTEIO MAIAEIAE & BPHIZKEYMATAN. MOAITIZMOY & ABAHTIZMOY
EIAIKH YNMHPEZIA AIAXEIPIZHE

ENIXEIPHEIAKO MPOTPAMMA
@ Pl EKMAIAEYZH KAI AIA BIOY MAGHEH 5= EXTNA
]

Evpwmaikn ‘Evwon
Evpwmndiké Kowwviké Tapeio . . e
Me tn ouyxpnparodoétnon tng EAAGSag kal tneg Evpwnaikng Evwong

HY150 Programming, University of Crete Lecture: Functions, Slide 50



