
HY150 Programming, University of Crete

Εισαγωγή στον Προγραμματισμό

Introduction to Programming

Διάλεξη 7: Συναρτήσεις

Γ. Παπαγιαννάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

HY150 Programming, University of Crete

Άδειες Χρήσης

- Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια

χρήσης Creative Commons και ειδικότερα

Αναφορά Δημιουργού 3.0 - Μη εισαγόμενο Ελλάδα

 (Attribution 3.0– Unported GR)

- Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου

τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

HY150 Programming, University of Crete

 Χρηματοδότηση

- Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του

εκπαιδευτικού έργου του διδάσκοντα.

- Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο

Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού

υλικού.

- Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος

«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την

Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς

πόρους.

HY150 Programming, University of Crete

Lecture 7:

Technicalities: Functions etc.

G. Papagiannakis

ΗΥ-150 Προγραμματισμός
CS-150 Programming

Lecture: Functions, Slide 5 HY150 Programming, University of Crete

Abstract

• This lecture and the following present some technical

details of the language to give a slightly broader view of

C++’s basic facilities and to provide a more systematic

view of those facilities. This also acts as a review of many

of the notions presented so far, such as types, functions,

and initialization, and provides an opportunity to explore

our tool without adding new programming techniques or

concepts.

Lecture: Functions, Slide 6 HY150 Programming, University of Crete

Latest standard version: C++11
• …I like the way move semantics will simplify the way we return

large data structures from functions and improve the

performance of standard-library types, such as string and

vector…

• For example, you wouldn't write a JavaScript engine in

JavaScript, and you probably wouldn't write a "first to market"

simple Web app in C++. You would write the foundations of a

Google, an Amazon, a Facebook, or an Amadeus (airline

ticketing) in C++, but maybe not the rapidly changing top layers

of such systems. C++ comes in strong where power consumption

is an issue -- for example, server farms and handheld devices….

[http://www.infoworld.com/d/application-development/stroustrup-reveals-whats-new-in-c-11-

187051?page=0,0]

Lecture: Functions, Slide 7 HY150 Programming, University of Crete

Overview
• Language Technicalities

• Declarations

• Definitions

• Headers and the preprocessor

• Scope

• Functions

• Declarations and definitions

• Arguments

• Call by value, reference, and const reference

• Namespaces

• “Using” statements

• Recursive functions

Lecture: Functions, Slide 8 HY150 Programming, University of Crete

Language technicalities

• Are a necessary evil

• A programming language is a foreign language

• When learning a foreign language, you have to look at the grammar and vocabulary

• We will do this in this chapter and the next

• Because:

• Programs must be precisely and completely specified

• A computer is a very stupid (though very fast) machine

• A computer can’t guess what you “really meant to say” (and shouldn’t try to)

• So we must know the rules

• Some of them (the C++ standard is 782 pages)

• However, never forget that

• What we study is programming

• Our output is programs/systems

• A programming language is only a tool

Lecture: Functions, Slide 9 HY150 Programming, University of Crete

Technicalities

• Don’t spend your time on minor syntax and semantic issues.
There is more than one way to say everything

• Just like in English

• Most design and programming concepts are universal, or at least
very widely supported by popular programming languages

• So what you learn using C++ you can use with many other languages

• Language technicalities are specific to a given language

• But many of the technicalities from C++ presented here have obvious
counterparts in C, Java, C#, etc.

• Too many get the mistaken belief that the way things are done in their first
programming language is "the one true way."

Lecture: Functions, Slide 10 HY150 Programming, University of Crete

Declarations

• A declaration introduces a name into a scope.

• A scope is a region of program text.

• A declaration also specifies a type for the named object.

• Sometimes a declaration includes an initializer.

• A name must be declared before it can be used in a C++ program.

• Examples:

• int a = 7; // an int variable named ‘a’ is declared

• const double cd = 8.7; // a double-precision floating-point constant

• double sqrt(double); // a function taking a double argument and
 // returning a double result

• vector<Token> v; // a vector variable of Tokens (variable)

Lecture: Functions, Slide 11 HY150 Programming, University of Crete

Declarations

• Declarations are frequently introduced into a program through

“headers”

• A header is a file containing declarations providing an interface to other parts

of a program

• This allows for abstraction – you don’t have to know the details

of a function like cout in order to use it. When you add

#include "../../std_lib_facilities.h"

 to your code, the declarations in the file std_lib_facilities.h become

available (including cout etc.).

Lecture: Functions, Slide 12 HY150 Programming, University of Crete

Definitions

 A declaration that (also) fully specifies the entity
declared is called a definition

• Examples

int a = 7;

int b; // an int with the default value (0)

vector<double> v; // an empty vector of doubles

double sqrt(double) { … }; // i.e. a function with a body

struct Point { int x; int y; };

• Examples of declarations that are not definitions

 double sqrt(double); // function body missing

 struct Point; // class members specified elsewhere

 extern int a; // extern means “not definition”

 // “extern” is archaic; we will hardly use it

Lecture: Functions, Slide 13 HY150 Programming, University of Crete

Declarations and definitions

• You can’t define something twice

• A definition says what something is

• Examples

int a; // definition

int a; // error: double definition

double sqrt(double d) { … } // definition

double sqrt(double d) { … } // error: double definition

• You can declare something twice

• A declaration says how something can be used

int a = 7; // definition (also a declaration)

extern int a; // declaration

double sqrt(double); // declaration

double sqrt(double d) { … } // definition (also a declaration)

Lecture: Functions, Slide 14 HY150 Programming, University of Crete

Why both declarations and definitions?

• To refer to something, we need (only) its declaration

• Often we want the definition “elsewhere”

• Later in a file

• In another file

• preferably written by someone else

• Declarations are used to specify interfaces

• To your own code

• To libraries

• Libraries are key: we can’t write all ourselves, and wouldn’t want to

• In larger programs

• Place all declarations in header files to ease sharing

Lecture: Functions, Slide 15 HY150 Programming, University of Crete

Header Files and the Preprocessor

• A header is a file that holds declarations of functions, types,
constants, and other program components.

• The construct

 #include "../../std_lib_facilities.h"

 is a “preprocessor directive” that adds declarations to
your program

• Typically, the header file is simply a text (source code) file

• A header gives you access to functions, types, etc. that you
want to use in your programs.

• Usually, you don’t really care about how they are written.

• The actual functions, types, etc. are defined in other source code files

• Often as part of libraries

Lecture: Functions, Slide 16 HY150 Programming, University of Crete

Source files

• A header file (here, token.h) defines an interface between user code and
implementation code (usually in a library)

• The same #include declarations in both .cpp files (definitions and uses)
ease consistency checking

// declarations:

class Token { … };

class Token_stream {

 Token get();

 …

};
…

#include "token.h"

//definitions:

Token Token_stream::get()

{ /* … */ }

…

#include "token.h"

…

Token t = ts.get();

…

token.h:

token.cpp:

use.cpp:

Lecture: Functions, Slide 17 HY150 Programming, University of Crete

Scope
• A scope is a region of program text

• Examples

• Global scope (outside any language construct)

• Class scope (within a class)

• Local scope (between { … } braces)

• Statement scope (e.g. in a for-statement)

• A name in a scope can be seen from within its scope and
within scopes nested within that scope

• After the declaration of the name (“can't look ahead” rule)

• A scope keeps “things” local

• Prevents my variables, functions, etc., from interfering with yours

• Remember: real programs have many thousands of entities

• Locality is good!

• Keep names as local as possible

Lecture: Functions, Slide 18 HY150 Programming, University of Crete

Scope
#include "std_lib_facilities.h" // get max and abs from here

// no r, i, or v here

class My_vector {

 vector<int> v; // v is in class scope

public:

 int largest() // largest is in class scope

 {

 int r = 0; // r is local

 for (int i = 0; i<v.size(); ++i) // i is in statement scope

 r = max(r,abs(v[i]));

 // no i here

 return r;

 }

 // no r here

};//end of class

// no v here

Lecture: Functions, Slide 19 HY150 Programming, University of Crete

Scopes nest
int x; // global variable – avoid those where you can

int y; // another global variable

int f()

{

 int x; // local variable (Note – now there are two x’s)

 x = 7; // local x, not the global x

 {

 int x = y; // another local x, initialized by the global y

 // (Now there are three x’s)

 ++x; // increment the local x in this scope

 }

}

// avoid such complicated nesting and hiding: keep it simple!

Lecture: Functions, Slide 20 HY150 Programming, University of Crete

Global/local scope

Lecture: Functions, Slide 21 HY150 Programming, University of Crete

Functions

• General form:

• return_type name (formal arguments); // a declaration

• return_type name (formal arguments) body // a definition

• For example

 double f(int a, double d) { return a*d; }

• Formal arguments are often called parameters

• If you don’t want to return a value give void as the return type

 void increase_power(int level);

• Here, void means “don’t return a value”

• A body is a block or a try block

• For example

{ /* code */ } // a block

try { /* code */ } catch(exception& e) { /* code */ } // a try block

• Functions represent/implement computations/calculations

Lecture: Functions, Slide 22 HY150 Programming, University of Crete

Functions: Call by Value

// call-by-value (send the function a copy of the argument’s value)

int f(int a) { a = a+1; return a; }

int main()

{

 int xx = 0;

 cout << f(xx) << endl; // writes 1

 cout << xx << endl; // writes 0; f() doesn’t change xx

 int yy = 7;

 cout << f(yy) << endl; // writes 8; f() doesn’t change yy

 cout << yy << endl; // writes 7

}

0

a:

xx:

copy the value

0

7

a:

yy:

copy the value

7

Lecture: Functions, Slide 23 HY150 Programming, University of Crete

Functions: Call by Reference
// call-by-reference (pass a reference to the argument)

int f(int& a) { a = a+1; return a; }

int main()

{

 int xx = 0;

 cout << f(xx) << endl; // writes 1

 // f() changed the value of xx

 cout << xx << endl; // writes 1

 int yy = 7;

 cout << f(yy) << endl; // writes 8

 // f() changes the value of yy

 cout << yy << endl; // writes 8

}

0

7

xx:

yy:

a:

1st call (refer to xx)

2nd call (refer to yy)

Lecture: Functions, Slide 24 HY150 Programming, University of Crete

Functions
• Avoid (non-const) reference arguments when you can

• They can lead to obscure bugs when you forget which
arguments can be changed

int incr1(int a) { return a+1; }

void incr2(int& a) { ++a; }

int x = 7;

x = incr1(x); // pretty obvious

incr2(x); // pretty obscure

• So why have reference arguments?

• Occasionally, they are essential

• E.g., for changing several values

• For manipulating containers (e.g., vector)

• const reference arguments are very often useful

Lecture: Functions, Slide 25 HY150 Programming, University of Crete

Call by value/by reference/

by const-reference
void f(int a, int& r, const int& cr) { ++a; ++r; ++cr; } // error: cr is const

void g(int a, int& r, const int& cr) { ++a; ++r; int x = cr; ++x; } // ok

int main()

{

 int x = 0;

 int y = 0;

 int z = 0;

 g(x,y,z); // x==0; y==1; z==0

 g(1,2,3); // error: reference argument r needs a variable to refer to

 g(1,y,3); // ok: since cr is const we can pass “a temporary”

}

// const references are very useful for passing large objects

Lecture: Functions, Slide 26 HY150 Programming, University of Crete

References
• “reference” is a general concept

• Not just for call-by-reference

int i = 7;

int& r = i;

r = 9; // i becomes 9

const int& cr = i;

// cr = 7; // error: cr refers to const

i = 8;

cout << cr << endl; // write out the value of i (that’s 8)

• You can

• think of a reference as an alternative name for an object

• You can’t

• modify an object through a const reference

• make a reference refer to another object after initialization

7 i:

r

cr

Lecture: Functions, Slide 27 HY150 Programming, University of Crete

Guidance for Passing Variables

• Use call-by-value for very small objects

• Use call-by-const-reference for large objects

• Return a result rather than modify an object through a reference
argument

• Use call-by-reference only when you have to

• For example

class Image { /* objects are potentially huge */ };

void f(Image i); … f(my_image); // oops: this could be s-l-o-o-o-w

void f(Image& i); … f(my_image); // no copy, but f() can modify my_image

void f(const Image&); … f(my_image); // f() won’t mess with my_image

Lecture: Functions, Slide 28 HY150 Programming, University of Crete

Namespaces

• Consider this code from two programmers Jack and Jill

 class Glob { /*…*/ }; // in Jack’s header file jack.h

 class Widget { /*…*/ }; // also in jack.h

 class Blob { /*…*/ }; // in Jill’s header file jill.h

 class Widget { /*…*/ }; // also in jill.h

 #include "jack.h"; // this is in your code

 #include "jill.h"; // so is this

 void my_func(Widget p) // oops! – error: multiple definitions of Widget

 {

 // …

 }

Lecture: Functions, Slide 29 HY150 Programming, University of Crete

Namespaces
• The compiler will not compile multiple definitions; such clashes can occur

from multiple headers.

• One way to prevent this problem is with namespaces:

 namespace Jack { // in Jack’s header file

 class Glob{ /*…*/ };

 class Widget{ /*…*/ };

 }

 #include "jack.h"; // this is in your code

 #include "jill.h"; // so is this

 void my_func(Jack::Widget p) // OK, Jack’s Widget class will not

 { // clash with a different Widget

 // …

 }

Lecture: Functions, Slide 30 HY150 Programming, University of Crete

Namespaces

• A namespace is a named scope

• The :: syntax is used to specify which namespace you are using

and which (of many possible) objects of the same name you are

referring to

• For example, cout is in namespace std, you could write:

 std::cout << "Please enter stuff… \n";

Lecture: Functions, Slide 31 HY150 Programming, University of Crete

using Declarations and Directives
• To avoid the tedium of

• std::cout << "Please enter stuff… \n";

 you could write a “using declaration”
• using std::cout; // when I say cout, I mean std::cout”

• cout << "Please enter stuff… \n"; // ok: std::cout

• cin >> x; // error: cin not in scope

• or you could write a “using directive”
• using namespace std; // “make all names from namespace std available”

• cout << "Please enter stuff… \n"; // ok: std::cout

• cin >> x; // ok: std::cin

• More about header files in Lecture 11

Lecture: Functions, Slide 32 HY150 Programming, University of Crete

Function call implementation I
• Remember functions from Lectures 5, 6:

Lecture: Functions, Slide 33 HY150 Programming, University of Crete

Function call implementation II
• When a function is called, the

language implementation sets aside a

data structure containing a copy of

all its parameters and local variables.

• For example, when expression() is

first called, the compiler ensures that

a structure like this is created: a

function activation record

• So far, so good, and now

expression() calls term(), so the

compiler ensures that an activation

record for this call of term() is

generated :

Lecture: Functions, Slide 34 HY150 Programming, University of Crete

Function call implementation III
• Now term() calls primary() and we get:

Lecture: Functions, Slide 35 HY150 Programming, University of Crete

Order of evaluation
• The evaluation of a program - also called the execution of a

program - proceeds through the statements according to the

language rules.

• When this "thread of execution" reaches the definition of a

variable,

• the variable is constructed;

• that is, memory is set aside for the object and the object is

initialized.

• when the variable goes out of scope,

• the variable is destroyed;

• that is, the object it refers to is in principle removed and the compiler can

use its memory for something else

Lecture: Functions, Slide 36 HY150 Programming, University of Crete

Order of evaluation II

Lecture: Functions, Slide 37 HY150 Programming, University of Crete

Expression evaluation
• The order of evaluation of sub-expressions is governed by rules

designed to please an optimizer rather than to make life simple

for the programmer.

• That’s unfortunate, but you should avoid complicated

expressions anyway, and there is a simple rule that can keep you

out of trouble:

• if you change the value of a variable in an expression, don't read or write

it twice in that same expression. For example:

Lecture: Functions, Slide 38 HY150 Programming, University of Crete

Global initialization
• Using a global variable in

anything but the most limited

circumstances is usually not a

good idea

• Such code is to be avoided for

several reasons:

• it uses global variables,

• it gives the global variables short

names,

• it uses complicated initialization

of the global variables.

Lecture: Functions, Slide 39 HY150 Programming, University of Crete

Recursively Defined functions

• For some problems, it’s useful to have functions call themselves

• As often it is difficult to express the members of an object or
numerical sequence explicitly.

e.g.: The Fibonacci sequence:

{fn } = 0,1,1,2,3,5,8,13,21,34,55,…

• There may, however, be some “local” connections that can give
rise to a recursive definition –a formula that expresses higher
terms in the sequence, in terms of lower terms.

e.g.: Recursive definition for {fn }:

 INITIALIZATION: f0 = 0, f1 = 1

 RECURSION: fn = fn-1+fn-2 for n > 1.

Lecture: Functions, Slide 40 HY150 Programming, University of Crete

Recursive Definitions and Induction

• Recursive definition and inductive proofs are complement
each other: a recursive definition usually gives rise to natural
proofs involving the recursively defined sequence.

• This is follows from the format of a recursive definition as
consisting of two parts:

• Initialization –analogous to induction base cases

• Recursion –analogous to induction step

• In both induction and recursion, the domino analogy is useful.

Lecture: Functions, Slide 41 HY150 Programming, University of Crete

Recursion
• We must always make sure that the recursion bottoms out:

• A recursive function must contain at least one non-recursive branch.

• The recursive calls must eventually lead to a non-recursive branch.

• Recursion is one way to decompose a task into smaller subtasks. At
least one of the subtasks is a smaller example of the same task.

• The smallest example of the same task has a non-recursive solution.

• Fibonacci numbers:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

 where each number is the sum of the preceding two.

• Recursive definition:

• F(0) = 0;

• F(1) = 1;

• F(number) = F(number-1)+ F(number-2);

http://www.ee.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html

Lecture: Functions, Slide 42 HY150 Programming, University of Crete

Recursive Example: Fibonacci

numbers
//Calculate Fibonacci numbers using recursive function.

//A very inefficient way, but illustrates recursion well

int fib(int number)

{

 if (number == 0) return 0;

 if (number == 1) return 1;

 return (fib(number-1) + fib(number-2));

}

int main(){ // driver function

 int inp_number=0;

 cout << "Please enter an integer: ";

 cin >> inp_number;

 cout << "The Fibonacci number for "<< inp_number

 << " is "<< fib(inp_number)<<endl;

 return 0;

}

f(0) is 0

f(1) is 1

f(2) is 1

f(3) is 2

f(4) is 3

f(5) is 5

f(6) is 8

Lecture: Functions, Slide 43 HY150 Programming, University of Crete

Lecture: Functions, Slide 44 HY150 Programming, University of Crete

Trace a Fibonacci Number

• Assume the input number is 4, that is, num=4:

fib(4):

4 == 0 ? No; 4 == 1? No.

fib(4) = fib(3) + fib(2)

fib(3):

3 == 0 ? No; 3 == 1? No.

fib(3) = fib(2) + fib(1)

fib(2):

2 == 0? No; 2==1? No.

fib(2) = fib(1)+fib(0)

 fib(1):

 1== 0 ? No; 1 == 1? Yes.

 fib(1) = 1;

 return fib(1);

int fib(int num)

{

 if (num == 0) return 0;

 if (num == 1) return 1;

 return

 (fib(num-1)+fib(num-

2));

}

Lecture: Functions, Slide 45 HY150 Programming, University of Crete

Trace a Fibonacci Number

 fib(0):
 0 == 0 ? Yes.

 fib(0) = 0;

 return fib(0);

 fib(2) = 1 + 0 = 1;

 return fib(2);

 fib(3) = 1 + fib(1)

 fib(1):

 1 == 0 ? No; 1 == 1? Yes

 fib(1) = 1;

 return fib(1);

 fib(3) = 1 + 1 = 2;

 return fib(3)

Lecture: Functions, Slide 46 HY150 Programming, University of Crete

Trace a Fibonacci Number

 fib(2):

2 == 0 ? No; 2 == 1? No.

fib(2) = fib(1) + fib(0)

fib(1):

 1== 0 ? No; 1 == 1? Yes.

 fib(1) = 1;

 return fib(1);

 fib(0):

 0 == 0 ? Yes.

 fib(0) = 0;

 return fib(0);

 fib(2) = 1 + 0 = 1;

 return fib(2);

 fib(4) = fib(3) + fib(2)

 = 2 + 1 = 3;

 return fib(4);

Lecture: Functions, Slide 47 HY150 Programming, University of Crete

Fibonacci number w/o recursion
//Calculate Fibonacci numbers iteratively

//much more efficient than recursive solution

int fib(int n)

{

 int f[n+1];

 f[0] = 0; f[1] = 1;

 for (int i=2; i<= n; i++)

 f[i] = f[i-1] + f[i-2];

 return f[n];

}

Lecture: Functions, Slide 48 HY150 Programming, University of Crete

Next talk
• More technicalities, mostly related to classes

Lecture: Introduction to Programming, Slide 49 HY150 Programming, University of Crete

Acknowledgements

Bjarne Stroustrup

Programming -- Principles and Practice Using C++

http://www.stroustrup.com/Programming/

Lecture: Functions, Slide 50 HY150 Programming, University of Crete

Thank you!

