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                  Χρηματοδότηση 

 

- Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του 

εκπαιδευτικού έργου του διδάσκοντα. 

-   Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο 

Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού 

υλικού.  

-   Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος 

«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την 

Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς 

πόρους. 
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Abstract 

• This lecture and the following present some technical 

details of the language to give a slightly broader view of 

C++’s basic facilities and to provide a more systematic 

view of those facilities. This also acts as a review of many 

of the notions presented so far, such as types, functions, 

and initialization, and provides an opportunity to explore 

our tool without adding new programming techniques or 

concepts. 
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Latest standard version: C++11 
• …I like the way move semantics will simplify the way we return 

large data structures from functions and improve the 

performance of standard-library types, such as string and 

vector… 

• For example, you wouldn't write a JavaScript engine in 

JavaScript, and you probably wouldn't write a "first to market" 

simple Web app in C++. You would write the foundations of a 

Google, an Amazon, a Facebook, or an Amadeus (airline 

ticketing) in C++, but maybe not the rapidly changing top layers 

of such systems. C++ comes in strong where power consumption 

is an issue -- for example, server farms and handheld devices…. 

[http://www.infoworld.com/d/application-development/stroustrup-reveals-whats-new-in-c-11-

187051?page=0,0] 
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Overview 
• Language Technicalities 

• Declarations 

• Definitions 

• Headers and the preprocessor 

• Scope 

• Functions 

• Declarations and definitions 

• Arguments 

• Call by value, reference, and const reference 

• Namespaces 

• “Using” statements 

• Recursive functions 
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Language technicalities 

• Are a necessary evil 

• A programming language is a foreign language 

• When learning a foreign language, you have to look at the grammar and vocabulary 

• We will do this in this chapter and the next   

• Because: 

• Programs must be precisely and completely specified 

• A computer is a very stupid (though very fast) machine 

• A computer can’t guess what you “really meant to say” (and shouldn’t try to) 

• So we must know the rules 

• Some of them (the C++ standard is 782 pages) 

• However, never forget that 

• What we study is programming 

• Our output is programs/systems 

• A programming language is only a tool 
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Technicalities 

• Don’t spend your time on minor syntax and semantic issues. 
There is more than one way to say everything 

• Just like in English 

• Most design and programming concepts are universal, or at least 
very widely supported by popular programming languages 

• So what you learn using C++ you can use with many other languages 

• Language technicalities are specific to a given language 

• But many of the technicalities from C++ presented here have obvious 
counterparts in C, Java, C#, etc. 

• Too many get the mistaken belief that the way things are done in their first 
programming language is "the one true way."  
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Declarations 

• A declaration introduces a name into a scope. 

• A scope is a region of program text.  

• A declaration also specifies a type for the named object. 

• Sometimes a declaration includes an initializer. 

• A name must be declared before it can be used in a C++  program. 

• Examples: 

• int a = 7;   // an int variable named ‘a’ is declared 

• const double cd = 8.7; // a double-precision floating-point constant 

• double sqrt(double);  // a function taking a double argument and   
    //  returning a double result 

• vector<Token> v;  // a vector variable of Tokens (variable) 
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Declarations 

• Declarations are frequently introduced into a program through 

“headers” 

• A header is a file containing declarations providing an interface to other parts 

of a program 

• This allows for abstraction – you don’t have to know the details 

of a function like cout in order to use it. When you add 

#include "../../std_lib_facilities.h" 

    to your code, the declarations in the file std_lib_facilities.h become 

available (including cout etc.). 
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Definitions 

   A declaration that (also) fully specifies the entity 
declared is called a definition 

• Examples 

int a = 7; 

int b;   // an int with the default value (0) 

vector<double> v;  // an empty vector of doubles 

double sqrt(double) { … };  // i.e. a function with a body 

struct Point { int x; int y; }; 

• Examples of declarations that are not definitions 

 double sqrt(double);  // function body missing 

 struct Point;   // class members specified elsewhere 

 extern int a;  // extern means “not definition” 

     // “extern” is archaic; we will hardly use it 
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Declarations and definitions 

• You can’t define something twice 

• A definition says what something is 

• Examples 

int a; // definition 

int a; // error: double definition 

double sqrt(double d) { … } // definition 

double sqrt(double d) { … } // error: double definition 

• You can declare something twice 

• A declaration says how something can be used 

int a = 7;  // definition (also a declaration) 

extern int a;  // declaration 

double sqrt(double);  // declaration 

double sqrt(double d) { … } // definition (also a declaration) 

 



Lecture:  Functions, Slide 14 HY150 Programming, University of Crete 

Why both declarations and definitions?  

• To refer to something, we need (only) its declaration 

• Often we want the definition “elsewhere” 

• Later in a file 

• In another file 

• preferably written by someone else 

• Declarations are used to specify interfaces 

• To your own code 

• To libraries 

• Libraries are key: we can’t write all ourselves, and wouldn’t want to 

• In larger programs 

• Place all declarations in header files to ease sharing 
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Header Files and the Preprocessor 

• A header is a file that holds declarations of functions, types, 
constants, and other program components.  

• The construct  

  #include "../../std_lib_facilities.h" 

    is a “preprocessor directive” that adds  declarations to 
your program 

• Typically, the header file is simply a text (source code) file 

• A header gives you access to functions, types, etc. that you 
want to use in your programs. 

• Usually, you don’t really care about how they are written. 

• The actual functions, types, etc. are defined in other source code files 

• Often as part of libraries 
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Source files 

• A header file (here, token.h) defines an interface between user code and 
implementation code (usually in a library) 

•  The same #include declarations in both .cpp files (definitions and uses) 
ease consistency checking 

// declarations:        

class Token { … }; 

class Token_stream { 

    Token get(); 

    … 

}; 
… 

#include "token.h"     

//definitions:               

Token Token_stream::get() 

{ /* … */ } 

…  

#include "token.h" 

… 

Token t = ts.get(); 

… 

token.h: 

token.cpp: 

use.cpp: 
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Scope 
• A scope is a region of program text 

• Examples 

• Global scope (outside any language construct) 

• Class scope (within a class) 

• Local scope (between { … } braces) 

• Statement scope (e.g. in a for-statement) 

• A name in a scope can be seen from within its scope and 
within scopes nested within that scope 

• After the declaration of the name (“can't look ahead” rule) 

• A scope keeps “things” local 

• Prevents my variables, functions, etc., from interfering with yours 

• Remember: real programs have many thousands of entities 

• Locality is good! 

• Keep names as local as possible 
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Scope 
#include "std_lib_facilities.h"  // get max and abs from here 

// no r, i, or v here 

class My_vector { 

 vector<int> v;    // v is in class scope 

public: 

 int largest()    // largest is in class scope 

 { 

  int r = 0;        // r is local 

  for (int i = 0; i<v.size(); ++i)   // i is in statement scope 

   r = max(r,abs(v[i]));  

  // no i here 

  return r; 

 } 

 // no r here 

};//end of class 

// no v here 
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Scopes nest 
int x; // global variable – avoid those where you can 

int y; // another global variable 

 

int f() 

{ 

 int x;   // local variable (Note – now there are two x’s) 

 x = 7;   // local x, not the global x 

 { 

  int x = y; // another local x, initialized by the global y 

    // (Now there are three x’s) 

  ++x;  // increment the local x in this scope 

 } 

} 

 

// avoid such complicated nesting and hiding: keep it simple! 
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Global/local scope 
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Functions 

• General form: 

• return_type name (formal arguments);    // a declaration 

• return_type name (formal arguments) body  // a definition    

• For example 

  double f(int a, double d) { return a*d; } 

• Formal arguments are often called parameters 

• If you don’t want to return a value give void as the return type 

               void increase_power(int level); 

• Here, void means “don’t return a value” 

• A body is a block or a try block 

• For example 

{ /* code */ } // a block 

try { /* code */ } catch(exception& e) { /* code */ } // a try block 

• Functions represent/implement computations/calculations 
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Functions: Call by Value 

// call-by-value (send the function a copy of the argument’s value) 

int f(int a) { a = a+1; return a; } 

 

 

int main() 

{ 

 int xx = 0; 

 cout << f(xx) << endl; // writes 1 

 cout << xx << endl;  // writes 0; f() doesn’t change xx 

 int yy = 7; 

 cout << f(yy) << endl; // writes 8;  f() doesn’t change yy 

 cout << yy << endl;  // writes 7 

} 

0 

a: 

xx: 

copy the value 

0 

7 

a: 

yy: 

copy the value 

7 
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Functions: Call by Reference 
// call-by-reference (pass a reference to the argument) 

int f(int& a) { a = a+1; return a; } 

 

 

int main() 

{ 

 int xx = 0; 

 cout << f(xx) << endl; // writes 1  

    // f() changed the value of xx 

 cout << xx << endl;  // writes 1 

 int yy = 7; 

 cout << f(yy) << endl; // writes 8 

    // f() changes the value of yy 

 cout << yy << endl;  // writes 8 

     

} 

0 

7 

xx: 

yy: 

a: 

1st call (refer to xx) 

2nd call (refer to yy) 
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Functions 
• Avoid (non-const) reference arguments when you can 

• They can lead to obscure bugs when you forget which 
arguments can be changed 

int incr1(int a) { return a+1; } 

void incr2(int& a) { ++a; } 

int x = 7; 

x = incr1(x); // pretty obvious 

incr2(x); // pretty obscure 

• So why have reference arguments? 

• Occasionally, they are essential 

• E.g., for changing several values 

• For manipulating containers (e.g., vector) 

• const reference arguments are very often useful 
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Call by value/by reference/ 

by const-reference 
void f(int a, int& r, const int& cr) { ++a; ++r; ++cr; } // error: cr is const 

void g(int a, int& r, const int& cr) { ++a; ++r; int x = cr; ++x; } // ok 

 

int main() 

{ 

 int x = 0; 

 int y = 0; 

 int z = 0; 

 g(x,y,z); // x==0; y==1; z==0 

 g(1,2,3); // error: reference argument r needs a variable to refer to 

 g(1,y,3); // ok: since cr is const we can pass “a temporary” 

} 

// const references are very useful for passing large objects 
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References 
• “reference” is a general concept 

• Not just for call-by-reference 
 

int i = 7; 

int& r = i; 

r = 9;  // i becomes 9 

const int& cr = i; 

// cr = 7; // error: cr refers to const 

i = 8; 

cout << cr << endl; // write out the value of i (that’s 8) 
 

• You can 

• think of a reference as an alternative name for an object 

• You can’t 

• modify an object through a const reference 

• make a reference refer to another object after initialization 

7 i: 

r 

cr 
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Guidance for Passing Variables 

• Use call-by-value for very small objects 

• Use call-by-const-reference for large objects 

• Return a result rather than modify an object through a reference 
argument 

• Use call-by-reference only when you have to 

 

• For example 

class Image { /* objects are potentially huge */ }; 

void f(Image i);  … f(my_image);   // oops: this could be s-l-o-o-o-w 

void f(Image& i); … f(my_image); // no copy, but f() can modify my_image 

void f(const Image&); … f(my_image);  // f() won’t mess with my_image 
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Namespaces 

• Consider this code from two programmers Jack and Jill 
 

 class Glob { /*…*/ };    // in Jack’s header file jack.h 

 class Widget { /*…*/ };    // also in jack.h 

 

 class Blob { /*…*/ };    // in Jill’s header file  jill.h 

 class Widget { /*…*/ };    // also in jill.h 

 

 

 #include "jack.h"; // this is in your code 

 #include "jill.h";  // so is this 

 

 void my_func(Widget p) // oops! – error: multiple definitions of Widget 

 { 

  // … 

 } 
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Namespaces 
• The compiler will not compile multiple definitions; such clashes can occur 

from multiple headers. 

• One way to prevent this problem is with namespaces: 

 namespace Jack {  //  in Jack’s header file 

      class Glob{ /*…*/ };            

          class Widget{ /*…*/ };         

     } 

   

     #include "jack.h";  // this is in your code 

 #include "jill.h";  // so is this 

  

 void my_func(Jack::Widget p) // OK, Jack’s Widget class will not 

 {    // clash with a different Widget 

  // … 

 } 
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Namespaces 

• A namespace is a named scope 

• The :: syntax is used to specify which namespace you are using 

and which (of many possible) objects of the same name you are 

referring to 

• For example, cout is in namespace std, you could write: 

   std::cout << "Please enter stuff… \n"; 
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using Declarations and Directives 
• To avoid the tedium of 

• std::cout << "Please enter stuff… \n";  

 you could write a “using declaration” 
• using std::cout;    // when I say cout, I mean std::cout” 

• cout << "Please enter stuff… \n";   // ok: std::cout 

• cin >> x;     // error: cin not in scope 

 

• or you could write a “using directive” 
• using namespace std;  // “make all names from namespace std available” 

• cout << "Please enter stuff… \n";   // ok: std::cout 

• cin >> x;     // ok: std::cin 

 

• More about header files in Lecture 11 



Lecture:  Functions, Slide 32 HY150 Programming, University of Crete 

Function call implementation I 
• Remember functions from Lectures 5, 6: 
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Function call implementation II 
• When a function is called, the 

language implementation sets aside a 

data structure containing a copy of 

all its parameters and local variables.  

• For example, when expression() is 

first called, the compiler ensures that 

a structure like this is created: a 

function activation record 

 

• So far, so good, and now 

expression() calls term(), so the 

compiler ensures that an activation 

record for this call of term()  is 

generated :  
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Function call implementation III 
• Now term() calls primary() and we get:  
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Order of evaluation 
• The evaluation of a program - also called the execution of a 

program - proceeds through the statements according to the 

language rules.  

• When this "thread of execution" reaches the definition of a 

variable, 

• the variable is constructed;  

• that is, memory is set aside for the object and the object is 

initialized.  

• when the variable goes out of scope,  

• the variable is destroyed;  

• that is, the object it refers to is in principle removed and the compiler can 

use its memory for something else 
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Order of evaluation II 
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Expression evaluation 
• The order of evaluation of sub-expressions is governed by rules 

designed to please an optimizer rather than to make life simple 

for the programmer.  

• That’s unfortunate, but you should avoid complicated 

expressions anyway, and there is a simple rule that can keep you 

out of trouble: 

•  if you change the value of a variable in an expression, don't read or write 

it twice in that same expression. For example:  
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Global initialization 
• Using a global variable in 

anything but the most limited 

circumstances is usually not a 

good idea 

• Such code is to be avoided for 

several reasons:  

• it uses global variables,  

• it gives the global variables short 

names, 

• it uses complicated initialization 

of the global variables.  
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Recursively Defined functions 

• For some problems, it’s useful to have functions call themselves 

• As often it is difficult to express the members of an object or 
numerical sequence explicitly.   

e.g.:  The Fibonacci sequence: 

{fn } = 0,1,1,2,3,5,8,13,21,34,55,… 

• There may, however, be some “local” connections that can give 
rise to a recursive definition –a formula that expresses higher 
terms in the sequence, in terms of lower terms. 

e.g.:  Recursive definition for {fn }: 

 INITIALIZATION: f0 = 0, f1 = 1 

 RECURSION:   fn = fn-1+fn-2  for n > 1. 
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Recursive Definitions and Induction 

• Recursive definition and inductive proofs are complement 
each other:  a recursive definition usually gives rise to natural 
proofs involving the recursively defined sequence.  

• This is follows from the format of a recursive definition as 
consisting of two parts: 

•  Initialization –analogous to induction base cases 

•  Recursion –analogous to induction step 

• In both induction and recursion, the domino analogy is useful.  
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Recursion 
• We must always make sure that the recursion bottoms out: 

• A recursive function must contain at least one non-recursive branch. 

• The recursive calls must eventually lead to a non-recursive branch. 

• Recursion is one way to decompose a task into smaller subtasks. At 
least one of the subtasks is a smaller example of the same task. 

• The smallest example of the same task has a non-recursive solution. 

• Fibonacci numbers:  
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...  

 where each number is the sum of the preceding two. 

• Recursive definition: 

• F(0) = 0; 

• F(1) = 1; 

• F(number) = F(number-1)+ F(number-2); 

 

 

http://www.ee.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html
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Recursive Example: Fibonacci 

numbers 
//Calculate Fibonacci numbers using recursive function. 

//A very inefficient way, but illustrates recursion well 

int fib(int number) 

{ 

 if (number == 0) return 0; 

 if (number == 1) return 1; 

 return (fib(number-1) + fib(number-2)); 

} 

 

int main(){ // driver function 

 int inp_number=0; 

 cout << "Please enter an integer: "; 

 cin >> inp_number; 

 cout << "The Fibonacci number for "<< inp_number  

   << " is "<< fib(inp_number)<<endl; 

  return 0; 

} 

f(0) is 0  

f(1) is 1 

f(2) is 1 

f(3) is 2 

f(4) is 3 

f(5) is 5 

f(6) is 8 
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Trace a Fibonacci Number  

• Assume the input number is 4, that is, num=4: 

fib(4): 

4 == 0 ? No;   4 == 1? No. 

fib(4) = fib(3) + fib(2) 

fib(3): 

3 == 0 ? No; 3 == 1? No. 

fib(3) = fib(2) + fib(1)   

fib(2): 

2 == 0? No; 2==1? No. 

fib(2) = fib(1)+fib(0)  

   fib(1): 

      1== 0 ? No; 1 == 1? Yes. 

    fib(1) = 1; 

  return fib(1); 

      

  

int fib(int num) 

{ 

 if (num == 0) return 0; 

 if (num == 1) return 1; 

 return  

     (fib(num-1)+fib(num-

2)); 

} 
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Trace a Fibonacci Number  

         fib(0): 
          0 == 0 ?  Yes. 

        fib(0) = 0;  

        return fib(0); 

     fib(2) = 1 + 0 = 1; 

    return fib(2);    

    fib(3) = 1 + fib(1) 

       fib(1): 

     1 == 0 ? No; 1 == 1? Yes 

     fib(1) = 1; 

     return fib(1); 

   fib(3) = 1 + 1 = 2; 

    return fib(3) 
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Trace a Fibonacci Number 

  fib(2): 

2 == 0 ? No; 2 == 1? No. 

fib(2) = fib(1) + fib(0) 

fib(1): 

      1== 0 ? No; 1 == 1?  Yes. 

    fib(1) = 1; 

  return fib(1); 

    fib(0): 

       0 == 0 ?   Yes. 

    fib(0) = 0;  

    return fib(0); 

    fib(2) = 1 + 0 = 1; 

    return fib(2);    

    fib(4) = fib(3) + fib(2)  

           = 2 + 1 = 3; 

    return fib(4); 
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Fibonacci number w/o recursion 
//Calculate Fibonacci numbers iteratively 

//much more efficient than recursive solution 

 

int fib(int n) 

{ 

 int f[n+1];  

 f[0] = 0; f[1] = 1; 

  for (int i=2; i<= n; i++) 

      f[i] = f[i-1] + f[i-2]; 

 return f[n]; 

} 
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Next talk 
• More technicalities, mostly related to classes 
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Thank you! 


