
HY150 Programming, University of Crete

Εισαγωγή στον Προγραμματισμό

Introduction to Programming

Διάλεξη 9: Ροή Εισόδου/Εξόδου

Γ. Παπαγιαννάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

HY150 Programming, University of Crete

Άδειες Χρήσης

- Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια

χρήσης Creative Commons και ειδικότερα

Αναφορά Δημιουργού 3.0 - Μη εισαγόμενο Ελλάδα

 (Attribution 3.0– Unported GR)

- Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου

τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

HY150 Programming, University of Crete

 Χρηματοδότηση

- Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του

εκπαιδευτικού έργου του διδάσκοντα.

- Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο

Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού

υλικού.

- Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος

«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την

Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς

πόρους.

HY150 Programming, University of Crete

Lecture 9:

Input/Output streams

G. Papagiannakis

ΗΥ-150 Προγραμματισμός
CS-150 Programming

Lecture: I/O Streams, Slide 5 HY150 Programming, University of Crete

Abstract

• We get data from files, sensors, web connections, etc.,

which we want to analyze, print, graph, etc. Sometimes,

we want to produce such data.

• In this lecture, we look at C++’s basic mechanisms for

reading and writing streams of data.

• We also discuss an interesting – apparently trivial –

problem: how to read an integer.

Lecture: I/O Streams, Slide 6 HY150 Programming, University of Crete

Overview

Fundamental I/O concepts

Files

Opening

Reading and writing streams

I/O errors

Reading a single integer

disk
I/O system Main memory

Lecture: I/O Streams, Slide 7 HY150 Programming, University of Crete

Input and Output

input device device driver input library

our program

output library device driver output device

data source:

data destination:

Lecture: I/O Streams, Slide 8 HY150 Programming, University of Crete

The stream model

• An ostream

• turns values of various types into character sequences

• sends those characters somewhere

• E.g., console, file, main memory, another computer

c

(1,234)

123

ostream

buffer

“somewhere”

Lecture: I/O Streams, Slide 9 HY150 Programming, University of Crete

The stream model

• An istream

• turns character sequences into values of various types

• gets those characters from somewhere

• E.g., console, file, main memory, another computer

c

(1,234)

123

istream

buffer

“somewhere”

Lecture: I/O Streams, Slide 10 HY150 Programming, University of Crete

The stream model

• Reading and writing

• Of typed entities

• << (output) and >> (input) plus other operations

• Type safe

• Formatted

• Typically stored (entered, printed, etc.) as text

• But not necessarily (see binary streams in chapter 11)

• Extensible

• You can define your own I/O operations for your own types

• A stream can be attached to any I/O or storage device

Lecture: I/O Streams, Slide 11 HY150 Programming, University of Crete

Files

• We turn our computers on and off

• The contents of our main memory is transient

• We like to keep our data

• So we keep what we want to preserve on disks and similar permanent
storage

• A file is a sequence of bytes stored in permanent storage

• A file has a name

• The data on a file has a format

• We can read/write a file if we know its name and format

Lecture: I/O Streams, Slide 12 HY150 Programming, University of Crete

A file

• At the fundamental level, a file is a sequence of bytes
numbered from 0 upwards

• Other notions can be supplied by programs that interpret a
“file format”

• For example, the 6 bytes "123.45" might be interpreted as the floating-
point number 123.45

0: 1: 2:

Lecture: I/O Streams, Slide 13 HY150 Programming, University of Crete

Files

• General model

disk
I/O system Main memory

Files

(sequences of bytes)

iostreams
Objects

(of various types)

Lecture: I/O Streams, Slide 14 HY150 Programming, University of Crete

Files
• To read a file

• We must know its name

• We must open it (for reading)

• Then we can read

• Then we must close it

• That is typically done implicitly

• To write a file

• We must name it

• We must open it (for writing)

• Or create a new file of that name

• Then we can write it

• We must close it

• That is typically done implicitly

Lecture: I/O Streams, Slide 15 HY150 Programming, University of Crete

Opening a file for reading
// …

int main()

{

 cout << "Please enter input file name: ";

 string name;

 cin >> name;

 ifstream ist(name.c_str()); // ifstream is an“input stream from a file”

 // c_str() gives a low-level (“system”

 // or C-style) string from a C++ string

 // defining an ifstream with a name string

 // opens the file of that name for reading

 if (!ist) error("can’t open input file ", name);

 // …

Lecture: I/O Streams, Slide 16 HY150 Programming, University of Crete

Opening a file for writing

// …

cout << "Please enter name of output file: ";

cin >> name;

ofstream ofs(name.c_str()); // ofstream is an “output stream from a file”

 // defining an ofstream with a name string

 // opens the file with that name for writing

if (!ofs) error("can’t open output file ", name);

// …

}

Lecture: I/O Streams, Slide 17 HY150 Programming, University of Crete

Remember
• Sometimes students want to read to a file or write from a file –

this causes errors

• We read in from an input stream (ist >>)

• We write out to an output stream (ost <<)

• It’s like a piece of paper:

• Reading is getting information from the paper

• Writing is putting information on the paper

Lecture: I/O Streams, Slide 18 HY150 Programming, University of Crete

Reading from a file
• Suppose a file contains a sequence of pairs representing

hours and temperature readings
0 60.7

1 60.6

2 60.3

3 59.22

• The hours are numbered 0..23

• No further format is assumed

• Maybe we can do better than that (but not just now)

• Termination

• Reaching the end of file terminates the read

• Anything unexpected in the file terminates the read

• E.g., q

Lecture: I/O Streams, Slide 19 HY150 Programming, University of Crete

Reading a file

 struct Reading { // a temperature reading

 int hour; // hour after midnight [0:23]

 double temperature;

 Reading(int h, double t) :hour(h), temperature(t) { }

 };

 vector<Reading> temps; // create a vector to store the readings

 int hour;

 double temperature;

 while (ist >> hour >> temperature) { // read

 if (hour < 0 || 23 <hour) error("hour out of range"); // check

 temps.push_back(Reading(hour,temperature)); // store

 }

Lecture: I/O Streams, Slide 20 HY150 Programming, University of Crete

I/O error handling

• Sources of errors

• Human mistakes

• Files that fail to meet specifications

• Specifications that fail to match reality

• Programmer errors

• Etc.

• iostream reduces all errors to one of four states

• good() // the operation succeeded

• eof() // we hit the end of input (“end of file”)

• fail() // something unexpected happened

• bad() // something unexpected and serious happened

Lecture: I/O Streams, Slide 21 HY150 Programming, University of Crete

Sample integer read “failure”

• Ended by “terminator character”
• 1 2 3 4 5 *

• State is fail()

• Ended by format error
• 1 2 3 4 5.6

• State is fail()

• Ended by “end of file”
• 1 2 3 4 5 end of file

• 1 2 3 4 5 Control-Z (Windows)

• 1 2 3 4 5 Control-D (Unix)

• State is eof()

• Something really bad
• Disk format error

• State is bad()

Lecture: I/O Streams, Slide 22 HY150 Programming, University of Crete

I/O error handling
void fill_vector(istream& ist, vector<int>& v, char terminator)

{ // read integers from ist into v until we reach eof() or terminator

 int i = 0;

 while (ist >> i) v.push_back(i); // read and store in v until “some failure”

 if (ist.eof()) return; // fine: we found the end of file

 if (ist.bad()) error("ist is bad"); // stream corrupted; let’s get out of here!

 if (ist.fail()) { // clean up the mess as best we can and report the problem

 ist.clear(); // clear stream state, so that we can look for terminator

 char c;

 ist>>c; // read a character, hopefully terminator

 if (c != terminator) { // unexpected character

 ist.unget(); // put that character back

 ist.clear(ios_base::failbit); // set the state back to fail()

 }

 }

}

Lecture: I/O Streams, Slide 23 HY150 Programming, University of Crete

Throw an exception for bad()

// How to make ist throw if it goes bad:

ist.exceptions(ist.exceptions()|ios_base::badbit);

// can be read as

// “set ist’s exception mask to whatever it was plus badbit”

// or as “throw an exception if the stream goes bad”

Given that, we can simplify our input loops by no longer checking for bad

Lecture: I/O Streams, Slide 24 HY150 Programming, University of Crete

Simplified input loop
void fill_vector(istream& ist, vector<int>& v, char terminator)

{ // read integers from ist into v until we reach eof() or terminator

 int i = 0;

 while (ist >> i) v.push_back(i);

 if (ist.eof()) return; // fine: we found the end of file

 // not good() and not bad() and not eof(), ist must be fail()

 ist.clear(); // clear stream state

 char c;

 ist>>c; // read a character, hopefully terminator

 if (c != terminator) { // ouch: not the terminator, so we must fail

 ist.unget(); // maybe my caller can use that character

 ist.clear(ios_base::failbit); // set the state back to fail()

 }

}

Lecture: I/O Streams, Slide 25 HY150 Programming, University of Crete

Reading a single value
// first simple and flawed attempt:

cout << "Please enter an integer in the range 1 to 10 (inclusive):\n";

int n = 0;

while (cin>>n) { // read

 if (1<=n && n<=10) break; // check range

 cout << "Sorry, "

 << n

 << " is not in the [1:10] range; please try again\n";

}

 Three kinds of problems are possible
 the user types an out-of-range value

 getting no value (end of file)

 the user types something of the wrong type (here, not an integer)

Lecture: I/O Streams, Slide 26 HY150 Programming, University of Crete

Reading a single value

• What do we want to do in those three cases?

• handle the problem in the code doing the read?

• throw an exception to let someone else handle the
problem (potentially terminating the program)?

• ignore the problem?

• Reading a single value

• Is something we often do many times

• We want a solution that’s very simple to use

Lecture: I/O Streams, Slide 27 HY150 Programming, University of Crete

Handle everything: What a mess!
cout << "Please enter an integer in the range 1 to 10 (inclusive):\n";

int n = 0;

while (n==0) {

 cin >> n;

 if (cin) { // we got an integer; now check it:

 if (1<=n && n<=10) break;

 cout << "Sorry, " << n << " is not in the [1:10] range; please try again\n";

 }

 else if (cin.fail()) { // we found something that wasn’t an integer

 cin.clear(); // we’d like to look at the characters

 cout << "Sorry, that was not a number; please try again\n";

 char ch;

 while (cin>>ch && !isdigit(ch)) ; // throw away non-digits

 if (!cin) error("no input"); // we didn’t find a digit: give up

 cin.unget(); // put the digit back, so that we can read the number

 }

 else

 error("no input"); // eof or bad: give up

}

// if we get here n is in [1:10]

Lecture: I/O Streams, Slide 28 HY150 Programming, University of Crete

The mess: trying to do everything at once

• Problem: We have all mixed together

• reading values

• prompting the user for input

• writing error messages

• skipping past “bad” input characters

• testing the input against a range

• Solution: Split it up into logically separate parts

Lecture: I/O Streams, Slide 29 HY150 Programming, University of Crete

What do we want?

• What logical parts do we what?

• int get_int(int low, int high); // read an int in [low..high] from cin

• int get_int(); // read an int from cin
 // so that we can check the range int

• void skip_to_int(); // we found some “garbage” character
 // so skip until we find an int

• Separate functions that do the logically separate actions

Lecture: I/O Streams, Slide 30 HY150 Programming, University of Crete

Skip “garbage”
void skip_to_int()

{

 if (cin.fail()) { // we found something that wasn’t an integer

 cin.clear(); // we’d like to look at the characters

 char ch;

 while (cin>>ch) { // throw away non-digits

 if (isdigit(ch)) {

 cin.unget(); // put the digit back,

 // so that we can read the number

 return;

 }

 }

 }

 error("no input"); // eof or bad: give up

}

Lecture: I/O Streams, Slide 31 HY150 Programming, University of Crete

Get (any) integer
int get_int()

{

 int n = 0;

 while (true) {

 if (cin >> n) return n;

 cout << "Sorry, that was not a number; please try again\n";

 skip_to_int();

 }

}

Lecture: I/O Streams, Slide 32 HY150 Programming, University of Crete

Get integer in range

int get_int(int low, int high)

{

 cout << "Please enter an integer in the range "

 << low << " to " << high << " (inclusive):\n";

 while (true) {

 int n = get_int();

 if (low<=n && n<=high) return n;

 cout << "Sorry, "

 << n << " is not in the [" << low << ':' << high

 << "] range; please try again\n";

 }

}

Lecture: I/O Streams, Slide 33 HY150 Programming, University of Crete

Use

int n = get_int(1,10);

cout << "n: " << n << endl;

int m = get_int(2,300);

cout << "m: " << m << endl;

• Problem:

• The “dialog” is built into the read operations

Lecture: I/O Streams, Slide 34 HY150 Programming, University of Crete

What do we really want?
// parameterize by integer range and “dialog”

int strength = get_int(1, 10,

 "enter strength",

 "Not in range, try again");

cout << "strength: " << strength << endl;

int altitude = get_int(0, 50000,

 "please enter altitude in feet",

 "Not in range, please try again");

cout << "altitude: " << altitude << "ft. above sea level\n";

• That’s often the really important question

• Ask it repeatedly during software development

• As you learn more about a problem and its solution, your answers improve

Lecture: I/O Streams, Slide 35 HY150 Programming, University of Crete

Parameterize
int get_int(int low, int high, const string& greeting, const string& sorry)

{

 cout << greeting << ": [" << low << ':' << high << "]\n";

 while (true) {

 int n = get_int();

 if (low<=n && n<=high) return n;

 cout << sorry << ": [" << low << ':' << high << "]\n";

 }

}

• Incomplete parameterization: get_int() still “blabbers”
• “utility functions” should not produce their own error messages

• Serious library functions do not produce error messages at all

• They throw exceptions (possibly containing an error message)

Lecture: I/O Streams, Slide 36 HY150 Programming, University of Crete

User-defined output: operator<<()

• Usually trivial

ostream& operator<<(ostream& os, const Date& d)

{

 return os << '(' << d.year()

 << ',' << d.month()

 << ',' << d.day() << ')';

}

• We often use several different ways of outputting a value

• Tastes for output layout and detail vary

Lecture: I/O Streams, Slide 37 HY150 Programming, University of Crete

Use

void do_some_printing(Date d1, Date d2)

{

 cout << d1; // means operator<<(cout,d1) ;

 cout << d1 << d2;

 // means (cout << d1) << d2;

 // means (operator<<(cout,d1)) << d2;

 // means operator<<((operator<<(cout,d1)), d2) ;

}

Lecture: I/O Streams, Slide 38 HY150 Programming, University of Crete

User-defined input: operator>>()

istream& operator>>(istream& is, Date& dd)

 // Read date in format: (year , month , day)

{

 int y, d, m;

 char ch1, ch2, ch3, ch4;

 is >> ch1 >> y >> ch2 >> m >> ch3 >> d >> ch4;

 if (!is) return is; // we didn’t get our values, so just leave

 if (ch1!='(' || ch2!=',' || ch3!=',' || ch4!=')') { // oops: format error

 is.clear(ios_base::failbit); // something wrong: set state to fail()

 return is; // and leave

 }

 dd = Date(y,Month(m),d); // update dd

 return is; // and leave with is in the good() state

}

Lecture: I/O Streams, Slide 39 HY150 Programming, University of Crete

Next Lecture

Customizing input and output (chapter 11)

Lecture: I/O Streams, Slide 40 HY150 Programming, University of Crete

Acknowledgements

Bjarne Stroustrup

Programming -- Principles and Practice Using C++

http://www.stroustrup.com/Programming/

Lecture: I/O Streams, Slide 41 HY150 Programming, University of Crete

Thank you!

