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                  Χρηματοδότηση 

 

- Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του 

εκπαιδευτικού έργου του διδάσκοντα. 

-   Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο 

Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού 

υλικού.  

-   Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος 

«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την 

Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς 

πόρους. 
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Abstract 

• We get data from files, sensors, web connections, etc., 

which we want to analyze, print, graph, etc. Sometimes, 

we want to produce such data.  

• In this lecture, we look at   C++’s basic mechanisms for 

reading and writing streams of data.  

• We also discuss an interesting – apparently trivial – 

problem: how to read an integer. 



Lecture:  I/O Streams, Slide 6 HY150 Programming, University of Crete 

Overview 

Fundamental I/O concepts 

Files 

Opening 

Reading and writing streams  

I/O errors 

Reading a single integer 

 

disk 
I/O system Main memory 
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Input and Output 

input device device driver input library 

our program 

output library device driver output device 

data source: 

data destination: 
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The stream model 

• An ostream 

• turns values of various types into character sequences 

• sends those characters somewhere 

• E.g., console, file, main memory, another computer 

c 

(1,234) 

123 

ostream 

buffer 

“somewhere” 
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The stream model 

• An istream 

• turns character sequences into values of various types  

• gets those characters from somewhere 

• E.g., console, file, main memory, another computer 

c 

(1,234) 

123 

istream 

buffer 

“somewhere” 
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The stream model 

• Reading and writing 

• Of typed entities 

• << (output) and >> (input) plus other operations 

• Type safe 

• Formatted 

• Typically stored (entered, printed, etc.) as text 

• But not necessarily (see binary streams in chapter 11) 

• Extensible 

• You can define your own I/O operations for your own types 

• A stream can be attached to any I/O or storage device 
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Files 

• We turn our computers on and off 

• The contents of our main memory is transient 

• We like to keep our data 

• So we keep what we want to preserve on disks and similar permanent 
storage 

• A file is a sequence of bytes stored in permanent storage 

• A file has a name 

• The data on a file has a format 

• We can read/write a file if we know its name and format 
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A file 

• At the fundamental level, a file is a sequence of bytes 
numbered from 0 upwards 

• Other notions can be supplied by programs that interpret a 
“file format” 

• For example, the 6 bytes "123.45" might be interpreted as the floating-
point number 123.45  

0: 1: 2: 
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Files 

• General model 

disk 
I/O system Main memory 

Files 

(sequences of bytes) 

iostreams 
Objects 

(of various types) 
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Files 
• To read a file 

• We must know its name 

• We must open it (for reading) 

• Then we can read 

• Then we must close it 

• That is typically done implicitly 

• To write a file 

• We must name it 

• We must open it (for writing) 

• Or create a new file of that name 

• Then we can write it 

• We must close it  

• That is typically done implicitly 



Lecture:  I/O Streams, Slide 15 HY150 Programming, University of Crete 

Opening a file for reading 
// … 

int main() 

{ 

 cout << "Please enter input file name: "; 

 string name; 

 cin >> name; 

 ifstream ist(name.c_str()); // ifstream is an“input stream from a file” 

     // c_str() gives a low-level (“system” 

     // or C-style) string from a C++ string 

 

     // defining an ifstream with a name string 

     // opens the file of that name for reading 

 if (!ist) error("can’t open input file ", name); 

 // … 
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Opening a file for writing 

// … 

cout << "Please enter name of output file: "; 

cin >> name; 

ofstream ofs(name.c_str()); // ofstream is an “output stream from a file” 

        // defining an ofstream with a name string 

        // opens the file with that name for writing 

if (!ofs) error("can’t open output file ", name); 

// … 

} 
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Remember 
• Sometimes students want to read to a file or write from a file – 

this causes errors 

• We read in from an input stream (ist >>) 

• We write out to an output stream (ost <<) 

• It’s like a piece of paper: 

• Reading is getting information from the paper 

• Writing is putting information on the paper 
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Reading from a file 
• Suppose a file contains a sequence of pairs representing 

hours and temperature readings 
0 60.7 

1 60.6 

2 60.3 

3 59.22 

• The hours are numbered 0..23 

• No further format is assumed 

• Maybe we can do better than that (but not just now) 

• Termination 

• Reaching the end of file terminates the read 

• Anything unexpected in the file terminates the read 

• E.g., q 
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Reading a file 
 

 struct Reading { // a temperature reading 

  int hour; // hour after midnight [0:23] 

  double temperature; 

  Reading(int h, double t) :hour(h), temperature(t) { } 

 }; 

 

 

 vector<Reading> temps; // create a vector to store the readings 

 

 int hour; 

 double temperature; 

 while (ist >> hour >> temperature) {    // read 

  if (hour < 0 || 23 <hour) error("hour out of range"); // check 

  temps.push_back( Reading(hour,temperature) );  // store 

 } 
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I/O error handling  

• Sources of errors 

• Human mistakes  

• Files that fail to meet specifications 

• Specifications that fail to match reality 

• Programmer errors 

• Etc. 

 

• iostream reduces all errors to one of four states 

•  good() // the operation succeeded 

•  eof() // we hit the end of input (“end of file”) 

•  fail() // something unexpected happened 

•  bad() // something unexpected and serious happened 
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Sample integer read “failure” 

• Ended by “terminator character” 
• 1 2 3 4 5 * 

• State is fail() 

• Ended by format error 
• 1 2 3 4 5.6 

• State is fail() 

• Ended by “end of file” 
• 1 2 3 4 5 end of file 

• 1 2 3 4 5 Control-Z (Windows) 

• 1 2 3 4 5 Control-D (Unix)  

• State is eof() 

• Something really bad 
• Disk format error 

• State is bad() 
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I/O error handling 
void fill_vector(istream& ist, vector<int>& v, char terminator) 

{   // read integers from ist into v until we reach eof() or terminator 

 int i = 0; 

 while (ist >> i) v.push_back(i);      // read and store in v until “some failure” 

 if (ist.eof()) return;       // fine: we found the end of file 

 if (ist.bad()) error("ist is bad");   // stream corrupted; let’s get out of here! 

 

 if (ist.fail()) {       // clean up the mess as best we can and report the problem 

  ist.clear();         // clear stream state,  so that we can look for terminator 

  char c; 

  ist>>c;           // read a character, hopefully terminator 

  if (c != terminator) {   // unexpected character 

   ist.unget();   // put that character back 

   ist.clear(ios_base::failbit); // set the state back to fail() 

  }    

 } 

} 
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Throw an exception for bad() 

// How to make ist throw if it goes bad: 

ist.exceptions(ist.exceptions()|ios_base::badbit); 

 

// can be read as 

//  “set ist’s exception mask to whatever it was plus badbit” 

//  or as “throw an exception if the stream goes bad” 

 

 

Given that, we can simplify our input loops by no longer checking for bad 
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Simplified input loop 
void fill_vector(istream& ist, vector<int>& v, char terminator) 

{   // read integers from ist into v until we reach eof() or terminator 

 int i = 0; 

 while (ist >> i) v.push_back(i); 

 if (ist.eof()) return; // fine: we found the end of file 

 

 // not good() and not bad() and not eof(), ist must be fail() 

 ist.clear();  // clear stream state 

 char c; 

 ist>>c;  // read a character, hopefully terminator 

 if (c != terminator) { // ouch: not the terminator, so we must fail 

  ist.unget(); // maybe my caller can use that character 

  ist.clear(ios_base::failbit); // set the state back to fail() 

 } 

} 
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Reading a single value 
// first simple and flawed attempt: 

 

cout << "Please enter an integer in the range 1 to 10 (inclusive):\n"; 

int n = 0; 

while (cin>>n) {   // read 

 if   (1<=n && n<=10) break; // check range 

 cout << "Sorry, " 

    << n 

    << " is not in the [1:10] range; please try again\n"; 

} 

 

 Three kinds of problems are possible 
 the user types an out-of-range value 

 getting no value (end of file) 

 the user types something of the wrong type (here, not an integer) 
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Reading a single value 

• What do we want to do in those three cases?  

• handle the problem in the code doing the read? 

• throw an exception to let someone else handle the 
problem (potentially terminating the program)? 

• ignore the problem? 

 

• Reading a single value 

• Is something we often do many times 

• We want a solution that’s very simple to use 



Lecture:  I/O Streams, Slide 27 HY150 Programming, University of Crete 

Handle everything: What a mess! 
cout << "Please enter an integer in the range 1 to 10 (inclusive):\n"; 

int n = 0; 

while (n==0) {  

 cin >> n; 

 if (cin) { // we got an integer; now check it: 

  if (1<=n && n<=10) break; 

  cout << "Sorry, " << n << " is not in the [1:10] range; please try again\n"; 

 } 

 else if (cin.fail()) { // we found something that wasn’t an integer 

  cin.clear(); // we’d like to look at the characters 

  cout << "Sorry, that was not a number; please try again\n"; 

  char ch; 

  while (cin>>ch && !isdigit(ch)) ; // throw away non-digits 

  if (!cin) error("no input");  // we didn’t find a digit: give up 

  cin.unget(); // put the digit back, so that we can read the number 

 } 

 else  

  error("no input"); // eof or bad: give up 

} 

// if we get here n is in [1:10] 
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The mess: trying to do everything at once 

 

• Problem: We have all mixed together 

• reading values 

• prompting the user for input 

• writing error messages 

• skipping past “bad” input characters 

• testing the input against a range 

 

• Solution: Split it up into logically separate parts 
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What do we want? 

• What logical parts do we what? 

 

• int get_int(int low, int high);   // read an int in [low..high] from cin 

 

• int get_int();  // read an int from cin 
    // so that we can check the range int  

 

• void skip_to_int();  // we found some “garbage” character 
    // so skip until we find an int 

 

• Separate functions that do the logically separate actions 
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Skip “garbage” 
void skip_to_int() 

{ 

 if (cin.fail()) {  // we found something that wasn’t an integer 

  cin.clear(); // we’d like to look at the characters 

  char ch; 

  while (cin>>ch) { // throw away non-digits 

   if (isdigit(ch)) { 

    cin.unget(); // put the digit back, 

      // so that we can read the number 

    return; 

   } 

  } 

 } 

 error("no input"); // eof or bad: give up 

} 
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Get (any) integer 
int get_int() 

{ 

 int n = 0; 

 while (true) { 

  if (cin >> n) return n;   

  cout << "Sorry, that was not a number; please try again\n"; 

  skip_to_int(); 

 } 

} 
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Get integer in range 

int get_int(int low, int high) 

{ 

 cout << "Please enter an integer in the range " 

  << low << " to " << high << " (inclusive):\n"; 

 while (true) { 

  int n = get_int(); 

  if (low<=n && n<=high) return n; 

  cout << "Sorry, " 

   << n << " is not in the [" << low << ':' << high 

   << "] range; please try again\n"; 

 } 

} 
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Use 

int n = get_int(1,10); 

cout << "n: " << n << endl; 

 

int m = get_int(2,300); 

cout << "m: " << m << endl; 

 

• Problem: 

• The “dialog” is built into the read operations 
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What do we really want? 
// parameterize by integer range and “dialog” 

 

int strength = get_int(1, 10, 

    "enter strength", 

    "Not in range, try again"); 

cout << "strength: " << strength << endl; 

 

int altitude = get_int(0, 50000, 

    "please enter altitude in feet", 

    "Not in range, please try again"); 

cout << "altitude: " << altitude  << "ft. above sea level\n"; 

 

 

• That’s often the really important question 

• Ask it repeatedly during software development 

• As you learn more about a problem and its solution, your answers improve 



Lecture:  I/O Streams, Slide 35 HY150 Programming, University of Crete 

Parameterize 
int get_int(int low, int high, const string& greeting, const string& sorry) 

{ 

 cout << greeting << ": [" << low << ':' << high << "]\n"; 

 while (true) { 

  int n = get_int(); 

  if (low<=n && n<=high) return n; 

  cout << sorry  << ": [" << low << ':' << high << "]\n"; 

 } 

} 

 

• Incomplete parameterization: get_int() still “blabbers” 
• “utility functions” should not produce their own error messages 

• Serious library functions do not produce error messages at all 

• They throw exceptions (possibly containing an error message) 
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User-defined output: operator<<() 

• Usually trivial 

ostream& operator<<(ostream& os, const Date& d) 

{ 

 return os << '(' << d.year() 

   << ',' << d.month() 

   << ',' << d.day() << ')'; 

} 

 

• We often use several different ways of outputting a value 

• Tastes for output layout and detail vary  
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Use 

void do_some_printing(Date d1, Date d2) 

{ 

 cout << d1;          // means operator<<(cout,d1) ; 

 

 cout << d1 << d2; 

   // means (cout << d1)  <<  d2; 

        // means (operator<<(cout,d1)) <<  d2; 

   // means operator<<((operator<<(cout,d1)), d2) ; 

} 
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User-defined input: operator>>() 

istream& operator>>(istream& is, Date& dd) 

 // Read date in format: ( year , month , day ) 

{ 

 int y, d, m; 

 char ch1, ch2, ch3, ch4; 

 is >> ch1 >> y >> ch2 >> m >> ch3 >> d >> ch4; 

 if (!is) return is; // we didn’t get our values, so just leave 

 if (ch1!='(' || ch2!=',' || ch3!=',' || ch4!=')') { // oops: format error 

  is.clear(ios_base::failbit);    // something wrong: set state to fail() 

  return is;     // and leave 

 } 

 dd = Date(y,Month(m),d); // update dd 

 return is;   // and leave with is in the good() state 

} 
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Next Lecture 
 

 

 

Customizing input and output (chapter 11) 
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Thank you! 


