
HY150 Programming, University of Crete

Εισαγωγή στον Προγραμματισμό

Introduction to Programming

Διάλεξη 15: Διανύσματα και Ελεύθερη Αποθήκευση

Γ. Παπαγιαννάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

HY150 Programming, University of Crete

Άδειες Χρήσης

- Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια

χρήσης Creative Commons και ειδικότερα

Αναφορά Δημιουργού 3.0 - Μη εισαγόμενο Ελλάδα

 (Attribution 3.0– Unported GR)

- Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου

τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

HY150 Programming, University of Crete

 Χρηματοδότηση

- Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του

εκπαιδευτικού έργου του διδάσκοντα.

- Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο

Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού

υλικού.

- Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος

«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την

Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς

πόρους.

HY150 Programming, University of Crete

Lecture 15:

Vector and Free store

G. Papagiannakis

ΗΥ-150 Προγραμματισμός
CS-150 Programming

Lecture: Vector & Free Store, Slide 5 HY150 Programming, University of Crete

Abstract
• Vector is not just the most useful standard container,

• it is also provides examples of some of the most
important/powerful/ interesting implementation techniques.

• In this and the following lectures, we go through a series of
increasingly sophisticated vector implementations,

• seeing classical problems related to use of memory and providing
solutions.

• Here, we discuss free store (heap storage) management, and
pointers.

Lecture: Vector & Free Store, Slide 6 HY150 Programming, University of Crete

Overview

 Vector revisited

 How are they implemented?

 Pointers and free store

 Allocation (new)

 Access

 Arrays and subscripting: []

 Dereferencing: *

 Deallocation (delete)

 Destructors

 Copy constructor and copy assignment

 Arrays

 Array and pointer problems

 Changing size

 Templates

 Range checking and exceptions

Lecture: Vector & Free Store, Slide 7 HY150 Programming, University of Crete

Vector
• Vector is the most useful container

• Simple

• Compactly stores elements of a given type

• Efficient access

• Expands to hold any number of elements

• Optionally range-checked access

• How is that done?

• That is, how is vector implemented?

• We'll answer that gradually, feature after feature

• Vector is the default container

• prefer vector for storing elements unless there's a good reason
not to

Lecture: Vector & Free Store, Slide 8 HY150 Programming, University of Crete

Building from the ground up
The hardware provides memory and addresses

 Low level

 Untyped

 Fixed-sized

 No checking

 As fast as the hardware architects can make it

The application builder needs something like a vector

 Higher-level operations

 Type checked

 Size varies (as we get more data)

 Run-time checking

 Close-to optimally fast

Lecture: Vector & Free Store, Slide 9 HY150 Programming, University of Crete

Building from the ground up

• At the lowest level, close to the hardware, life’s simple and brutal

• You have to program everything yourself

• You have no type checking to help you

• Run-time errors are found when data is corrupted or the program crashes

• We want to get to a higher level as quickly as we can

• To become productive and reliable

• To use a language “fit for humans”

• Chapter 17-19 basically shows all the steps needed

• The alternative to understanding is to believe in “magic”

• The techniques for building vector are the ones underlying all higher-level work with
data structures

Lecture: Vector & Free Store, Slide 10 HY150 Programming, University of Crete

Vector

• A vector

• Can hold an arbitrary number of elements

• Up to whatever physical memory and the operating system can handle

• That number can vary over time

• E.g. by using push_back()

• Example

vector<double> age(4);

age[0]=.33; age[1]=22.0; age[2]=27.2; age[3]=54.2;

4

0.33 22.0 27.2 54.2

age:

age[0]: age[1]: age[2]: age[3]:

Lecture: Vector & Free Store, Slide 11 HY150 Programming, University of Crete

Vector
// a very simplified vector of doubles (like vector<double>):

class vector {

 int sz; // the number of elements (“the size”)

 double* elem; // pointer to the first element

public:

 vector(int s); // constructor: allocate s elements,

 // let elem point to them

 // store s in sz

 int size() const { return sz; } // the current size

};

• * means “pointer to” so double* is a “pointer to double”

• What is a “pointer”?

• how do we make a pointer “point to” elements?

• How do we “allocate” elements?

Lecture: Vector & Free Store, Slide 12 HY150 Programming, University of Crete

Pointer values

• Pointer values are memory addresses

• Think of them as a kind of integer values

• The first byte of memory is 0, the next 1, and so on

0 1 2 2^20-1

7
p2 *p2

 A pointer points to an object of a given type

 E.g. a double* points to a double, not to a string

 A pointer’s type determines how the memory referred to by

the pointer’s value is used

 E.g. what a double* points to can be added not, say, concatenated

Lecture: Vector & Free Store, Slide 13 HY150 Programming, University of Crete

Vector (constructor)

vector::vector(int s) // vector's constructor

 :sz(s), // store the size s in sz

 elem(new double[s]) // allocate s doubles on the free store

 // store a pointer to those doubles in elem

{

}

// Note: new does not initialize elements (but the standard vector does)

Free store:

4

 new allocates memory from the free

store and returns a pointer to the

allocated memory

A pointer

sz: elem:

Lecture: Vector & Free Store, Slide 14 HY150 Programming, University of Crete

The computer’s memory

• As a program sees it

• Local variables “lives on the stack”

• Global variables are “static data”

• The executable code are in “the code section”

Lecture: Vector & Free Store, Slide 15 HY150 Programming, University of Crete

The free store
(sometimes called "the heap")

• You request memory "to be allocated" "on the free store" by the new operator

• The new operator returns a pointer to the allocated memory

• A pointer is the address of the first byte of the memory

• For example

• int* p = new int; // allocate one uninitialized int
 // int* means “pointer to int”

• int* q = new int[7]; // allocate seven uninitialized ints
 // “an array of 7 ints”

• double* pd = new double[n]; // allocate n uninitialized doubles

• A pointer points to an object of its specified type

• A pointer does not know how many elements it points to

15

p:

q:

Lecture: Vector & Free Store, Slide 16 HY150 Programming, University of Crete

Access

• Individual elements
int* p1 = new int; // get (allocate) a new uninitialized int

int* p2 = new int(5); // get a new int initialized to 5

int x = *p2; // get/read the value pointed to by p2

 // (or “get the contents of what p2 points to”)

 // in this case, the integer 5

int y = *p1;

 // undefined: y gets an undefined value; don’t do that

5

p2:

???

p1:

Lecture: Vector & Free Store, Slide 17 HY150 Programming, University of Crete

Access

• Arrays (sequences of elements)

int* p3 = new int[5]; // get (allocate) 5 ints

 // array elements are numbered 0, 1, 2, …

p3[0] = 7; // write to (“set”) the 1st element of p3

p3[1] = 9;

int x2 = p3[1]; // get the value of the 2nd element of p3

int x3 = *p3; // we can also use the dereference operator * for an array

 // *p3 means p3[0] (and vice versa)

7 9

p3:

Lecture: Vector & Free Store, Slide 18 HY150 Programming, University of Crete

Why use free store?

To allocate objects that have to outlive the function that

creates them:

For example

double* make(int i)

{

return new double[i];

}

Another example: vector's constructor

Lecture: Vector & Free Store, Slide 19 HY150 Programming, University of Crete

Pointer values

• Pointer values are memory addresses

• Think of them as a kind of integer values

• The first byte of memory is 0, the next 1, and so on

// you can see pointer value (but you rarely need/want to):

char* p1 = new char('c'); // allocate a char and initialize it to 'c'

int* p2 = new int(7); // allocate an int and initialize it to 7

cout << "p1==" << p1 << " *p1==" << *p1 << "\n"; // p1==??? *p1==c

cout << "p2==" << p2 << " *p2==" << *p2 << "\n"; // p2==??? *p2=7

0 1 2 2^20-1

7

p2 *p2

Lecture: Vector & Free Store, Slide 20 HY150 Programming, University of Crete

Access

A pointer does not know the number of elements that it's
pointing to (only the address of the first element)

double* p1 = new double;

*p1 = 7.3; // ok

p1[0] = 8.2; // ok

p1[17] = 9.4; // ouch! Undetected error

p1[-4] = 2.4; // ouch! Another undetected error

double* p2 = new double[100];

*p2 = 7.3; // ok

p2[17] = 9.4; // ok

p2[-4] = 2.4; // ouch! Undetected error

7.3

8.2

7.3

p1:

p2:

Lecture: Vector & Free Store, Slide 21 HY150 Programming, University of Crete

Access

A pointer does not know the number of elements that it's
pointing to

double* p1 = new double;

double* p2 = new double[100];

p1[17] = 9.4; // error (obviously)

p1 = p2; // assign the value of p2 to p1

p1[17] = 9.4; // now ok: p1 now points to the array of 100 doubles

p1:

p2:

p1:

(after the assignment)

[0]: [99]:

Lecture: Vector & Free Store, Slide 22 HY150 Programming, University of Crete

Access

A pointer does know the type of the object that it's
pointing to

int* pi1 = new int(7);

int* pi2 = pi1; // ok: pi2 points to the same object as pi1

double* pd = pi1; // error: can't assign an int* to a double*

char* pc = pi1; // error: can't assign an int* to a char*

 There are no implicit conversions between a pointer to one value type to a
pointer to another value type

 However, there are implicit conversions between value types:

*pc = 8; // ok: we can assign an int to a char

*pc = *pi1; // ok: we can assign an int to a char

 7
7

pi1:
pc:

Lecture: Vector & Free Store, Slide 23 HY150 Programming, University of Crete

Pointers, arrays, and vector

• Note

• With pointers and arrays we are "touching" hardware directly

with only the most minimal help from the language. Here is

where serious programming errors can most easily be made,

resulting in malfunctioning programs and obscure bugs

• Be careful and operate at this level only when you really need to

• vector is one way of getting almost all of the flexibility and

performance of arrays with greater support from the language

(read: fewer bugs and less debug time).

Lecture: Vector & Free Store, Slide 24 HY150 Programming, University of Crete

Vector (construction and primitive access)

// a very simplified vector of doubles:

class vector {

 int sz; // the size

 double* elem; // a pointer to the elements

public:

 vector(int s) :sz(s), elem(new double[s]) { } // constructor

 double get(int n) { return elem[n]; } // access: read

 void set(int n, double v) { elem[n]=v; } // access: write

 int size() const { return sz; } // the current size

};

vector v(10);

for (int i=0; i<v.size(); ++i) { v.set(i,i); cout << v.get(i) << ' '; }

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 0.0 9.0 10

Lecture: Vector & Free Store, Slide 25 HY150 Programming, University of Crete

A problem: memory leak

double* calc(int result_size, int max)

{

 double* p = new double[max]; // allocate another max doubles

 // i.e., get max doubles from the free store

 double* result = new double[result_size];

 // … use p to calculate results to be put in result …

 return result;

}

double* r = calc(200,100); // oops! We “forgot” to give the memory

 // allocated for p back to the free store

• Lack of de-allocation (usually called "memory leaks") can be a
serious problem in real-world programs

• A program that must run for a long time can't afford any memory
leaks

Lecture: Vector & Free Store, Slide 26 HY150 Programming, University of Crete

A problem: memory leak

double* calc(int result_size, int max)

{

 int* p = new double[max]; // allocate another max doubles

 // i.e., get max doubles from the free store

 double* result = new double[result_size];

 // … use p to calculate results to be put in result …

 delete[] p; // de-allocate (free) that array

 // i.e., give the array back to the free store

 return result;

}

double* r = calc(200,100);

// use r

delete[] r; // easy to forget

Lecture: Vector & Free Store, Slide 27 HY150 Programming, University of Crete

Memory leaks

• A program that needs to run "forever" can't afford any memory leaks

• An operating system is an example of a program that "runs forever"

• If a function leaks 8 bytes every time it is called, how many days can it run
before it has leaked/lost a megabyte?

• Trick question: not enough data to answer, but about 130,000 calls

• All memory is returned to the system at the end of the program

• If you run using an operating system (Windows, Unix, whatever)

• Program that runs to completion with predictable memory usage may leak
without causing problems

• i.e., memory leaks aren't "good/bad" but they can be a problem in
specific circumstances

Lecture: Vector & Free Store, Slide 28 HY150 Programming, University of Crete

Memory leaks

• Another way to get a memory
leak

void f()

{

 double* p = new double[27];

 // …

 p = new double[42];

 // …

 delete[] p;

}

// 1st array (of 27 doubles) leaked

p:

2nd value

1st value

Lecture: Vector & Free Store, Slide 29 HY150 Programming, University of Crete

Memory leaks

• How do we systematically and simply avoid memory

leaks?

• don't mess directly with new and delete

• Use vector, etc.

• Or use a garbage collector

• A garbage collector is a program the keeps track of all of your allocations

and returns unused free-store allocated memory to the free store (not

covered in this course; see http://www.research.att.com/~bs/C++.html)

• Unfortunately, even a garbage collector doesn’t prevent all leaks

Lecture: Vector & Free Store, Slide 30 HY150 Programming, University of Crete

A problem: memory leak

void f(int x)

{

 vector v(x); // define a vector

 // (which allocates x doubles on the free store)

 // … use v …

 // give the memory allocated by v back to the free store

 // but how? (vector's elem data member is private)

}

Lecture: Vector & Free Store, Slide 31 HY150 Programming, University of Crete

Vector (destructor)

// a very simplified vector of doubles:

class vector {

 int sz; // the size

 double* elem; // a pointer to the elements

public:

 vector(int s) // constructor: allocates/acquires memory

 :sz(s), elem(new double[s]) { }

 ~vector() // destructor: de-allocates/releases memory

 { delete[] elem; }

 // …

};

• Note: this is an example of a general and important technique:

• acquire resources in a constructor

• release them in the destructor

• Examples of resources: memory, files, locks, threads, sockets

Lecture: Vector & Free Store, Slide 32 HY150 Programming, University of Crete

A problem: memory leak

void f(int x)

{

 int* p = new int[x]; // allocate x ints

 vector v(x); // define a vector (which allocates another x ints)

 // … use p and v …

 delete[] p; // deallocate the array pointed to by p

 // the memory allocated by v is implicitly deleted here by vector's destructor

}

• The delete now looks verbose and ugly

• How do we avoid forgetting to delete[] p?

• Experience shows that we often forget

• Prefer deletes in destructors

Lecture: Vector & Free Store, Slide 33 HY150 Programming, University of Crete

Free store summary
• Allocate using new

• New allocates an object on the free store, sometimes initializes it, and returns a
pointer to it

• int* pi = new int; // default initialization (none for int)

• char* pc = new char('a'); // explicit initialization

• double* pd = new double[10]; // allocation of (uninitialized) array

• New throws a bad_alloc exception if it can't allocate

• Deallocate using delete and delete[]

• delete and delete[] return the memory of an object allocated by new to the free
store so that the free store can use it for new allocations

• delete pi; // deallocate an individual object

• delete pc; // deallocate an individual object

• delete[] pd; // deallocate an array

• Delete of a zero-valued pointer ("the null pointer") does nothing

• char* p = 0;

• delete p; // harmless

Lecture: Vector & Free Store, Slide 34 HY150 Programming, University of Crete

void*

• void* means "pointer to some memory that the compiler doesn't know
the type of"

• We use void* when we want to transmit an address between pieces of
code that really don't know each other's types – so the programmer has
to know

• Example: the arguments of a callback function

• There are no objects of type void

• void v; // error

• void f(); // f() returns nothing – f() does not return an object of type void

• Any pointer to object can be assigned to a void*

• int* pi = new int;

• double* pd = new double[10];

• void* pv1 = pi;

• void* pv2 = pd;

Lecture: Vector & Free Store, Slide 35 HY150 Programming, University of Crete

void*
• To use a void* we must tell the compiler what it points to

void f(void* pv)

{

 void* pv2 = pv; // copying is ok (copying is what void*s are for)

 double* pd = pv; // error: cannot convert void* to double*

 pv = 7; // error: you can’t dereference a void

 // good! The int 7 is not represented like the double 7.0)

 pv[2] = 9; // error: you can’s subscript a void*

 pv++; // error: you can’t increment a void*

 int* pi = static_cast<int*>(pv); // ok: explicit conversion

 // …

}

• A static_cast can be used to explicitly convert to a pointer to object type

• "static_cast" is a deliberately ugly name for an ugly (and dangerous) operation – use it
only when absolutely necessary

Lecture: Vector & Free Store, Slide 36 HY150 Programming, University of Crete

void*

• void* is the closest C++ has to a plain machine address

• Some system facilities require a void*

• Remember FLTK callbacks?

• Address is a void*:

typedef void* Address;

void Lines_window::cb_next(Address,Address)

Lecture: Vector & Free Store, Slide 37 HY150 Programming, University of Crete

Pointers and references I

• Think of a reference as an automatically dereferenced

pointer

• Or as “an alternative name for an object”

• A reference must be initialized

• The value of a reference cannot be changed after initialization

int x = 7;

int y = 8;

int* p = &x;

*p = 9; ///Iuse * to assign to x through p

p = &y; // ok

int& r = x; x = 10;

r = &y; // error (and so is all other attempts to change what r refers to)

Lecture: Vector & Free Store, Slide 38 HY150 Programming, University of Crete

Pointers and references II
• Pointers example

• Equivalent references example

Lecture: Vector & Free Store, Slide 39 HY150 Programming, University of Crete

Next lecture
• The next lecture discusses copying and arrays

Lecture: Vector & Free Store, Slide 40 HY150 Programming, University of Crete

Acknowledgements

Bjarne Stroustrup

Programming -- Principles and Practice Using C++

http://www.stroustrup.com/Programming/

Lecture: Vector & Free Store, Slide 41 HY150 Programming, University of Crete

Thank you!

