HY-150 ITpoypooauuatiopuog
CS-150 Programming

Recursion

G. Papagiannakis

University of Crete

HY 150 Programming, University of Crete

Recursively Defined functions

- For some problems, it’s useful to have functions call themselves

- As often it 1s difficult to express the members of an object or
numerical sequence explicitly.

e.g.. The Fibonacci sequence:
R0 3.5.8,13.21,34 .55, ..

- There may, however, be some “local” connections that can give
rise to a recursive definition —a formula that expresses higher
terms 1n the sequence, in terms of lower terms.

e.g.. Recursive definition for {f, }:
INBMATIZATION: f,=0,1,=1
RECURSION: o= en iy il

HY 150 Programming, University of Crete Lecture: Recursion, Slide 2

Recursive Definitions and Induction

- Recursive definition and inductive proofs are complement
each other: arecursive definition usually gives rise to natural
proofs involving the recursively defined sequence.

« This 1s follows from the format of a recursive definition as
consisting of two parts:

- Initialization —analogous to induction base cases
- Recursion —analogous to induction step

- In both induction and recursion, the domino analogy is useful.

HY 150 Programming, University of Crete Lecture: Recursion, Slide 3

Recursion

- We must always make sure that the recursion bottoms out:

« A recursive function must contain

- The recursive calls must eventually lead to a non-recursive branch.

- Recursion is one way to decompose a task into smaller subtasks. At
least one of the subtasks 1s a smaller example of the same task.

- The smallest example of the same task has a non-recursive solution.
- Fibonacci numbers:

DEEe 2, 3, 5, 8, 13, 21, 34,

where each number 1s the sum of the preceding two.

-« Recursive definition:
-« F(O0) = O;
) = 1;
- F(number) = F(number-1)+ F (number-2);

HY 150 Programming, University of Crete Lecture: Recursion, Slide 4

Recursive Example: Fibonacci

numbers

fib (number)

(number == 0) 0;
(number == 1) e
(fib (number-1) + fib (number-2)) ;

main () {
inp number=0;
cout << "Please enter an integer: ";
cin >> inp number;
cout << "The Fibonacci number for "<< inp number
<< " is "<< fib(inp number)<<endl;
0;

f(0) is 0
f(1)is |
f2) s |
f(3) is 2
f(4) is 3
f(5) is 5
f(6) is 8

HY 150 Programming, University of Crete

Lecture: Recursion, Slide 5

Fib, Fib(4)
Fiby,_1 + Fiby,_» Fib(3) + Fib(2)
Fibyo | 4+ |Fibp.3 Fibr.l_g, + Fibr.l_4 Fib(2) | 4+ Fibl(l) Fibl(l) + Fil?_)(O)
Fibr.l_g, + Fibr.l_4 | Fib](l) + Fil?)(O)
o : .(a) Fib(n) (b) Fib(4)

HY 150 Programming, University of Crete

Lecture: Recursion, Slide 6

Trace a Fibonacci Number

fib(num)
- Assume the input number is 4, that is, num=4: {
(num == 0) 0,
Zib(4) : (num == 1) 1%
4 == 0 ? No; 4 == 17 No.
fib(4) = £ib(3) + £ib (2) (fib (num-1) +£ib (num-2)) ;
« 3 l
£.b(3): Fib(4)
3 =0 ? No; 3 == 17? No.
fib(3) = £fib(2) + f£ib (1)
£ib (2) : rs
== 0>"No- 2==17? No. Fib(3) + Fib(2)
fib(2) = £fib (1) +£fib (0)
fib (1) :
l== 0 ? No; == \? Yes. f 2
: = : Fib(2) | + |Fib(1) Fib(1) | + | Fib(0)
fib(l) = 1; 1 | 0
fib (1)

Fib(1) [+ | Fib(0)

] 0
HY 150 Programming, University of Crete

Trace a Fibonacci Number

fib (0) : Fib(4)
O == 0 ? Yes.
£fib(0) = 0;
£ib (0) ;
fiby—3—4+6—3% Fib(2)
fib(2) ;
fib(3) =1 + £fib (1)
fib (1)
== tnyiv2 - NOo,;, I == 17 YeS
1y, = 1; Fib(2) | + |Fib(1) ~ Fib(1) | + | Fib(0)
=D 1 ‘ !
fibh(3) =1 + 1 = 2; A%V
fib (3) /

HY 150 Programming, University of Crete

Lecture: Recursion, Slide 8

Trace a Fibonacci Number

¥ib(2) :

ga=—"0"2 No; 2 =— 1? No.
#ib(2) = fib(1) + £ib(0)
¥ib (%) :

=02 "No;, 1 == 1? Yes.

fib(1) = 1;
Eali(1);

fib(0)—

PR 00 0 Yes.
fib(0) = 0;
£ib(0) ;
fib(2) =1 + 0 = 1:
fib(2) ;
fib(4) = fib(3) + fib(2)
=2k 1 = 3;
fib(4) ;

HY 150 Programming, University of Crete

Fib(4)

Fib(3) N Fib(2)

4

Fib(2) | 4 |Fib(1) ~ Fib(1) | + | Fib(0)

Fib(1)

1 1 0

Fib(0)
0

Lecture: Recursion, Slide 9

Fibonacci number w/o recursion

fib (n)

f[n+l];
HROIE=0; £[1] = 1;
EorE(Int 1=2; 1<= n; 1++)
£f[i] = £[1i-1] + £[i-2];
fln];

HY 150 Programming, University of Crete Lecture: Recursion, Slide 10

Recursive example: factorial calculation

Sn=n"m-1)"(n-2)*....1

Slicrative solution: (e.g. S!= 5*4*3%2*])

factorial = 1;

for (int counter = number; counter >= 1; counter--)
factorial *= counter;

- Recursive solution: (e.g. 5!=5*4!1.e. n!l=n*(n-1)!)

5!=5-4.3.2.1
5!=5-(4:3:2.1)
5!=5-(4)

HY 150 Programming, University of Crete Lecture: Recursion, Slide | |

Recursive example: factorial calculation 11

51
'
5 * 41
'
4 * 31
'
32
'
S ¢
'
1

(a) Procession of recursive calls.

Final value = 120

51
T 5/ =5%* 24 =120 s returned
SRk
T 4! =4 " 6=24is retumed
4:%:3]
T 31=3"2=6Is retumed
3R]
T 21=2%| =2 s returned
" Qoo H
T | retumed
1

(b) Values returned from each recursive call.

HY 150 Programming, University of Crete

Lecture: Recursion, Slide 12

Recursive example: factorial calculation 111

#include <iostream>
#include <iomanip>
using namespace std;

unsigned long factorial(unsigned long); // function prototype

int main()

{
// calculate the factorials of 0 through 10
for (int counter = 0; counter <= 10; counter++)
cout << setw(2) << counter << "! = " << factorial(counter)
<< endl;
} // end main

// recursive definition of function factorial
unsigned long factorial(unsigned long number)
{
if (number <= 1) // test for base case
return 1; // base cases: 0! =1 and 1! =1
else // recursion step
return number * factorial(number - 1);
} // end function factorial

HY 150 Programming, University of Crete Lecture: Recursion, Slide |3

[hank you!

HY 150 Programming, University of Crete

