
HY150 Programming, University of Crete	

ΗΥ-150 Προγραμματισμός���
CS-150 Programming	

G. Papagiannakis	

	

University of Crete	

���
Recursion	

Lecture: Recursion, Slide 2	
HY150 Programming, University of Crete	

Recursively Defined functions	

• For some problems, it’s useful to have functions call themselves	

• As often it is difficult to express the members of an object or

numerical sequence explicitly. 	

e.g.: The Fibonacci sequence:	

{fn } = 0,1,1,2,3,5,8,13,21,34,55,…	

• There may, however, be some “local” connections that can give

rise to a recursive definition –a formula that expresses higher
terms in the sequence, in terms of lower terms.	

e.g.: Recursive definition for {fn }:	

	
INITIALIZATION: 	
f0 = 0, f1 = 1	

	
RECURSION: 	
 	
fn = fn-1+fn-2 for n > 1.	

Lecture: Recursion, Slide 3	
HY150 Programming, University of Crete	

Recursive Definitions and Induction	

• Recursive definition and inductive proofs are complement
each other: a recursive definition usually gives rise to natural
proofs involving the recursively defined sequence. 	

• This is follows from the format of a recursive definition as
consisting of two parts:	

•  Initialization –analogous to induction base cases	

•  Recursion –analogous to induction step	

•  In both induction and recursion, the domino analogy is useful. 	

Lecture: Recursion, Slide 4	
HY150 Programming, University of Crete	

Recursion	

• We must always make sure that the recursion bottoms out:	

•  A recursive function must contain at least one non-recursive branch.	

•  The recursive calls must eventually lead to a non-recursive branch.	

• Recursion is one way to decompose a task into smaller subtasks. At
least one of the subtasks is a smaller example of the same task.	

• The smallest example of the same task has a non-recursive solution.	

• Fibonacci numbers:	
	

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

 where each number is the sum of the preceding two.	

• Recursive definition:	

•  F(0) = 0;

•  F(1) = 1;

•  F(number) = F(number-1)+ F(number-2);

Lecture: Recursion, Slide 5	
HY150 Programming, University of Crete	

Recursive Example: Fibonacci
numbers	

//Calculate Fibonacci numbers using recursive function.

//A very inefficient way, but illustrates recursion well

int fib(int number)

{

 if (number == 0) return 0;

 if (number == 1) return 1;

 return (fib(number-1) + fib(number-2));

}

int main(){ // driver function

 int inp_number=0;

 cout << "Please enter an integer: ";

 cin >> inp_number;

 cout << "The Fibonacci number for "<< inp_number

 << " is "<< fib(inp_number)<<endl;

 return 0;

}

f(0) is 0 	

f(1) is 1	

f(2) is 1	

f(3) is 2	

f(4) is 3	

f(5) is 5	

f(6) is 8	

Lecture: Recursion, Slide 6	
HY150 Programming, University of Crete	

Lecture: Recursion, Slide 7	
HY150 Programming, University of Crete	

Trace a Fibonacci Number 	

•  Assume the input number is 4, that is, num=4:	

fib(4):

4 == 0 ? No; 4 == 1? No.

fib(4) = fib(3) + fib(2)

fib(3):
3 == 0 ? No; 3 == 1? No.

fib(3) = fib(2) + fib(1)

fib(2):

2 == 0? No; 2==1? No.

fib(2) = fib(1)+fib(0)

 fib(1):

 1== 0 ? No; 1 == 1? Yes.

 fib(1) = 1;

 return fib(1);
 !

 !

int fib(int num)
{
 if (num == 0) return 0;
 if (num == 1) return 1;
 return

(fib(num-1)+fib(num-2));

}

Lecture: Recursion, Slide 8	
HY150 Programming, University of Crete	

Trace a Fibonacci Number 	

 fib(0):
 0 == 0 ? Yes.
 fib(0) = 0;
 return fib(0);
 fib(2) = 1 + 0 = 1;
 return fib(2);

 fib(3) = 1 + fib(1)
 fib(1):

 1 == 0 ? No; 1 == 1? Yes
 fib(1) = 1;
 return fib(1);

 fib(3) = 1 + 1 = 2;
 return fib(3)

Lecture: Recursion, Slide 9	
HY150 Programming, University of Crete	

Trace a Fibonacci Number	

 fib(2):

2 == 0 ? No; 2 == 1? No.

fib(2) = fib(1) + fib(0)

fib(1):

 1== 0 ? No; 1 == 1? Yes.

 fib(1) = 1;

 return fib(1);

 fib(0):

 0 == 0 ? Yes.

 fib(0) = 0;

 return fib(0);

 fib(2) = 1 + 0 = 1;

 return fib(2);

 fib(4) = fib(3) + fib(2)

 = 2 + 1 = 3;

 return fib(4);

Lecture: Recursion, Slide 10	
HY150 Programming, University of Crete	

Fibonacci number w/o recursion	

//Calculate Fibonacci numbers iteratively

//much more efficient than recursive solution

int fib(int n)

{

 int f[n+1];

 f[0] = 0; f[1] = 1;

 for (int i=2; i<= n; i++)

 f[i] = f[i-1] + f[i-2];

 return f[n];

}	

Lecture: Recursion, Slide 11	
HY150 Programming, University of Crete	

Recursive example: factorial calculation	

• n! = n*(n-1)*(n-2)*….1	

•  Iterative solution: (e.g. 5!= 5*4*3*2*1)	

• Recursive solution: (e.g. 5!=5*4! i.e. n!=n*(n-1)!)	

Lecture: Recursion, Slide 12	
HY150 Programming, University of Crete	

Recursive example: factorial calculation II	

Lecture: Recursion, Slide 13	
HY150 Programming, University of Crete	

Recursive example: factorial calculation III	

HY150 Programming, University of Crete	

Thank you!	

