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Assignment 5

1 Introduction

In this assignment you will acquire a practical view of the concepts of network virtualization
and cloud management in the context of data center environments. In particular, you will write
SDN applications on top of an OpenFlow controller (POX) to implement routing, enforce fire-
wall policies and provide support for Virtual Machine migration over a data center-like topology.
This controller will essentially act as a network controller for a small cloud facility.

In general, network virtualization permits to share physical network resources so as to form
diverse virtual networks (slices) on top of the infrastructure: each of these slices has e.g., its
dedicated bandwidth allocation, broadcast domain, etc. This concept simplifies network man-
agement and increases the resource utilization of the physical infrastructure, allowing a cloud
provider to amortize the costs of the underlying network. Mechanisms related to network virtu-
alization are commonly used in data centers to orchestrate their multiple applications - servers -
tenants. SDN in general and OpenFlow in particular can be used to implement such mechanisms,
as you have learned in the lecture.

2 Assignment: Emulate a Data Center and Manage it via a
Cloud Network Controller

In this exercise, your first task is to create a multi-rooted tree-like (Clos) topology in Mininet
to emulate a data center (see Figures 1 and 2). Your second task is to implement specific SDN
applications on top of the network controller in order to orchestrate multiple network tenants
within a data center environment, in the context of network virtualization and management.

In Figure 1, we see a sample data center network design with a number of Virtual Machines
(VMs) being hosted by distinct VM end-host servers. For simplicity, we assume that each server
hosts exactly one VM instance (in practice they can of course support tens of VMs). In Figure 1,
each set of VMs with the same color belongs to separate data center tenants; tenants may rep-
resent different application environments (different colors respectively) that the VMs host. For
example, one tenant may be an enterprise client running its big data analytics, while another
tenant may be a research group running simulations for an upcoming publication.

In this assignment you will not need to virtualize your own hosts, since we make the con-
vention that each individual physical host supports a single VM or virtual host; Mininet takes
care of emulating these virtual hosts. It is assumed that each application is pre-installed in
each host, thus you will not need to deal with the application part within a host. The goal is
to become familiar with how the virtualized data center network supports and orchestrates the
applications running on top of its infrastructure.
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Figure 1: Sample layered data center topology

A properly designed data center network should efficiently route traffic across its rich inter-
connection fabric, satisfy isolation constraints, and provide VM migration capabilities for its
tenants, among other requirements that you have learned about in the lecture. For example,
routing strategies could exploit the rich topology of the data center, which contains multiple
redundant paths between any pair of hosts, and choose the shortest path (in terms of number
of hops) thus minimizing the allocated bandwidth on the network links.

According to the isolation requirement, VMs belonging to the same tenant –offering the same
service– should be able to communicate only with each other. Inter-VM communication between
different tenants should be blocked. This is required for security reasons, as tenants generally
require to operate within their private broadcast domains. Regarding the migration part, let’s
assume that a tenant’s host is planned to shut down for maintenance purposes. In this case,
the hosted VM has to move into a different host, i.e., migrate, so as to be able to continue of-
fering the service. Such VM transfers have to be done with minimal reconfiguration and service
disruption within the network, assuming that the selected destination hosts have the available
resources to host the migrated VMs. For example, assume that the green host h2 in Figure 1
is planned to go down. Red hosts h5 and h8 are both available (we assume that they do not
belong to any tenant). Therefore, a possible migration choice is to move the VM from host h2
to host h5. For the exercise you do not need to take care of saving, migrating and restoring
the VM state from the end-host’s perspective; instead, you only need to take into account how
the network treats the migration of traffic destined from the old VM to the new VM, since the
migration should be transparent on the IP layer.
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In the following sections we describe the steps towards satisfying the aforementioned require-
ments in your network topology, using the network controller, so please follow each step carefully.
Part A will take you through the processes of building the network topology, performing shortest
path routing and implementing and configuring a firewall application. Part B will guide you
during the implementation of a VM host migration mechanism.

Part A

2.1 Prerequisites

In this exercise, we use the POX OpenFlow controller [9] to implement our SDN network appli-
cations. The POX carp branch [8] is used as in Exercise 1. We use the Discovery component
of POX [6,7] for dynamic topology discovery, and the Python package NetworkX [5] for graph-
related operations, such as finding suitable paths along which to route traffic within our network.

2.2 Understanding the code (Step 0)

As an initial step, please go through the scripts “clos topo.p” and “CloudNetController.py”,
which are bundled with the main exercise assignment. The first script will be used to build the
emulated network topology on Mininet. The second script contains the code relating to the SDN
applications which will run over the controller, so as to orchestrate the data center network. The
parts that you need to fill in are marked with comments such as: “#WRITE YOUR CODE
HERE”. In the following, you will go over the steps needed to complete and test the respective
parts.

2.3 Network Topology (Step 1)

Data centers are usually structured in a tree-like fashion consisting of three layers of switches.
Starting from the root, we have the core, aggregation and edge/access layers. The end hosts are
connected to the edge switches. In this assignment, the first step is to create a clos topology [1].
The number of core switches (tree roots) and the fanout (number of child switches per parent
switch) should be treated as configurable parameters. In a basic tree topology, each switch
(except for the core switches) has a single parent switch. However, in the clos-like topology that
we want to emulate, each switch of both the aggregation and edge layers is connected to all the
switches of the previous upper layer. An example of a clos-like topology with 2 core switches
and fanout equal to 2 is illustrated in Figure 2. Examples of creating custom topologies using
Mininet can be found at [2, 4], while the Mininet Python API Reference Manual can be found
at [3].

2.4 Shortest Path Routing (Step 2)

Your second task is to build a network controller application that forwards traffic along Shortest
Paths in the topology discussed above. In this topology, multiple shortest paths of equal length
(in terms of hop count) may exist. Your application should calculate and store all the shortest
paths of equal length between any two end-points; afterwards, it should randomly choose one
of these paths along which to forward the traffic. Random choice of paths is one way to take
advantage of the offered fabric and randomly distribute the load, assuming a large-scale data-
center environment with redundant paths, used by several tenants.

For this purpose, you will use the NetworkX Python package [5]. Using the structure that
holds information about the node adjacencies in the topology (provided in the code) and ex-
ploiting NetworkX capabilities, you should first generate the topology graph. Then, for a given
source, you should retrieve the list of all equal-length shortest paths for each destination in
the graph (HINT: all shortest paths(G, source, target) nx function) and store this information
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Figure 2: Clos topology with 2 core switches and fanout=2

properly in the source SwitchWithPaths instance (kept on the controller’s side). The function
that you need to complete for this purpose is the ShortestPaths one.

Note that the information about the node adjacencies is dynamically gathered using POX’s
Discovery component, which handles Link State events. This component uses the controller
to inject LLDP messages on the switches; these messages are then propagated to their neigh-
bours. The component then infers link state information based on LLDP PacketIns stemming
from these neighbour switches. You will not need to implement any discovery functionality, but
will directly use the switch adjacency structure populated by this component. At this point,
it is worth mentioning that the shortest path calculation is performed after each link discovery
event in the provided code. This implies that the graph might not be totally connected until
all network links have been discovered. The discovery process is dynamic; in our case it can
take several seconds to discover the full graph and be able to have stable routing. Therefore,
your code should handle the case when the NetworkX package is unable to calculate a path for a
given source and destination because of a disconnected network/graph (HINT: NetworkXNoPath
exception).

After the shortest path calculation has been successfully completed on the discovered graph,
your task is to forward traffic along a randomly selected equal-length shortest path. When new
IP flows (with different source-destination tuples) are triggered, PacketIn events are invoked. As
a result, the controller has to choose at random one of the available shortest paths between the
source and the destination host and then install the corresponding flow rules to all the switches
along the selected path. The installation of flow rules is performed in an inverse fashion, i.e.,
starting from the destination switch up to the source switch. This is useful for limiting the
occurrence of PacketIns on switches that are close to the destination while a FlowMod is on
the fly between the controller and these switches. Note that the nodes contained in the list of
the selected path are stored in the direct order, i.e., from the source to the destination switch.
The function that you need to complete for this path installation for 2-tuple IP flows is called
install end to end IP path.

Remember that you need to match the IP protocol before matching on the src and dst IP
addresses in OpenFlow. You can set dynamic flow expiration to happen after a 10 sec idle
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timeout (i.e., period of inactivity), while default hard timeouts do not change (infinite dura-
tion). Also, note that a custom function from the existing code can be used for the per-switch
flow rule installation, wrapped around flow-mod messages: this is the install output flow rule
function. We make clear that the packets that invoked the relevant PacketIn events are not
handled by these functions (you can see that no buffer id option is used). This is because we
use two low priority rules from the handle ConnectionUp function to forward entire packets to
the controller, if no other higher priority rules can handle them. We did that to deal with some
timing issues related to the communication between the controller and the switch, in terms of
buffered packets. This means that you should also handle the current full packet that you have
on the controller’s side always with PacketOuts, while all the consecutive packets are handled
with flow rules. Therefore, a PacketOut should also happen on the source switch (using another
custom function for this purpose, the send packet), to propagate the packet along the path. To
retrieve information about the ports on which a flow rule should be applied along the selected
path, we provide a structure in the given code, i.e., the sw sw ports. This structure is updated
upon link discovery events and holds information about the network links. A network link is
identified when two switches are connected. This pair is mapped to the switch ports that are
actually connected with the link. To express the direction of the link, the corresponding port of
the first switch in the pair is stored as value in the 2-level dict structure e.g., (switch1, switch2)
→ switch1 port, (switch2, switch1) → switch2 port.

The OpenFlow protocol does not provide any guarantees regarding the time when a flow rule is
installed on a switch. The controller orders a switch to install a flow rule, but the installation
is not performed immediately. Therefore, a number of PacketIn events might be triggered on
the same switch until the flow rule has finally been installed. To solve this problem, on the
end to end path installation function (install end to end IP path), we initially check whether
the switch that triggered the PacketIn is the destination switch or not. If this is the case, we
install a corresponding flow rule and send the packet (PacketOut). If not, we randomly select a
shortest path from the switch that triggered the PacketIn until the destination switch as it was
previously described in detail, and send the packet on its way (all consecutive packets will be
handled at line-rate upon flow rule installation).

To make the routing application run properly, you should also fill in the missing code in the
SwitchWithPaths class, i.e., flood on switch edge and send arp reply functions. In the initial-
ization of the network, the controller does not have any information about the connected hosts
(i.e., IP, MAC, port of connected switch). Therefore, any requests among hosts should be
flooded throughout the network. To avoid routing loops (i.e., switches receive packets that were
flooded previously on the same port(s)), we have developed a mechanism that identifies the
ports on a switch that are connected to an adjacent switch. In our approach, the remaining
ports on a switch are those connected to hosts. Thus, instead of flooding within the whole
network, we should just flood the ports on each switch that are connected to hosts (HINT:
flood on all switch edges). Regarding the send arp reply function, when the controller holds in-
formation about the connected network hosts, it knows where to forward the requests. In case of
an ARP request, instead of flooding the network during the initialization phase, the controller
replies directly to the corresponding host, acting as an ARP proxy. The controller finds the
switch connected to the host which issued the request, crafts an ARP reply and sends it through
that switch to the host, using the already learned host-facing port of the respective switch.

2.4.1 Sanity checks

Once you have finished your routing-related code, you should check that traffic between any two
VMs is routed and forwarded properly, e.g., using pings. Note that the firewall and migration
scenario which are your next tasks in this assignment are partly integrated in the provided code.
To avoid any relevant errors, since the firewall and migration code are not yet functional at your
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current stage, run your code using the following command:

~/pox> ./pox.py openflow.discovery CloudNetController --firewall_capability=False

--migration_capability=False

Initiate the Mininet topology script, and wait a bit for the controller to connect to the switches.
The script will do an initial pingall as a sanity check.

sudo python clos_topo.py -c 2 -f 2

Now perform a pingall command in Mininet yourselves. Is traffic routed and forwarded as
expected? Are all pings successful? Are there any unexpected packet losses?

2.5 Firewall Configuration / Isolation (Step 3)

Your next task is to enhance your controller application with isolation capabilities. The isolation
functionality should filter packets based on an access list; packets with source and destination
IP addresses belonging to hosts of the same tenant are only allowed to be exchanged. Therefore,
you are actually asked to implement a firewall module enabled by a white-list of host IPs for
each application. This firewall will operate in both Layers 2 and 3; firewall controls access
for both ARP and IP packets. You should create a firewall policies.csv input file which your
program will read. The program will then handle ARP and IP PacketIns and install rules on
the OpenFlow switches to drop packets whenever tenants from different services attempt to
communicate. Given a topology with 2 core switches and fanout of 2, containing 16 end hosts,
the format of the file should be:

1,10.0.0.1,10.0.0.3,10.0.0.5,10.0.0.7,10.0.0.9,10.0.0.11,10.0.0.13,10.0.0.15
2,10.0.0.2,10.0.0.4,10.0.0.6,10.0.0.8,10.0.0.10,10.0.0.12,10.0.0.14,10.0.0.16

Each row starts with a distinct tenant ID, followed by a list of IP addresses of hosts assigned to
the same tenant. A sample file is available within the assignment code folder. For simplicity, we
assume that all odd-numbered hosts (h1,h3,...,h15) belong to tenant 1 while all even-numbered
hosts (h2,h4,...,h16) belong to tenant 2.

You should place the firewall policies.csv file under ∼/pox/ext/ . The provided code reads
and properly handles the information contained in the file; check the read firewall policies func-
tion to see how the policy information is stored, mapping IPs to tenants. Then, in presence of
an ARP or IP packet in a PacketIn event, the controller should check the corresponding packet
headers to find out whether the source and destination IP addresses of the packet belong to the
same tenant (same row in the file) or not1. If this is not the case, the controller should install a
flow rule in the switch which generated the PacketIn in order to drop packets belonging to the
same micro-flow (HINT: drop packets function). In a nut-shell, you implement a packet-level
firewall by installing specific micro-flow rules matching exactly the packet headers with an empty
action list, equivalent to a drop action. The current packet which generated the PacketIn can
simply be ignored, if it is illegal. Packets that have passed the firewall check can be processed
by later stages of the controller application (e.g., by the normal shortest path routing process).

2.5.1 Sanity checks

Once you have finished your firewall code, you should check that traffic belonging to the same
tenant is routed and forwarded properly, whereas any other inter-tenant traffic, ARP or IP, is
blocked. Note that the migration scenario which is your next task in this assignment is partly
integrated in the provided code. To avoid any relevant errors, since the migration code is not
yet functional at your current stage,run your code using the following command:

1e.g., for ARP requests you should check whether an IP which belongs to tenant 1 is requesting the MAC of

an IP which belongs to a different tenant; this communication is illegal and should be dropped
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~/pox> ./pox.py openflow.discovery CloudNetController --firewall_capability=True

--migration_capability=False

Initiate the Mininet topology script, and wait a bit for the controller to connect to the switches.
The script will trigger an initial pingall as a sanity check.

sudo python clos_topo.py -c 2 -f 2

You should open three xterms, e.g. at hosts h1, h3 and h4. Then, from h1 ping h3 checking
whether the traffic is forwarded as expected. Afterwards, from h1 ping h4 checking whether the
traffic is blocked as expected. For larger scale testing, perform a pingall command in Mininet. All
pings between odd-odd and even-even hosts should be successful, while all odd-even or even-odd
pings should fail. Be careful with packet losses that are not related to the firewall functionality;
such losses could indicate bugs in your controller code (e.g., wrong packet handling and timing
issues with the shortest path routing process).

Part B

2.6 Host Migration (Step 5)

Under certain circumstances (e.g., maintenance, failure, resource allocation optimization etc.),
running application VMs have to move from some hosts (servers) to other hosts within a data
center network. This VM transfer is usually called VM migration. Since we assume that a
single host (server) serves exactly one tenant VM, we call it host migration in our case. One
crucial point in the migration process is that it needs to be transparent on the IP layer. This
practically means that we have to avoid service interruption (e.g., TCP sessions should not
break; IP addresses should be at least preserved). Figures 3 and 4 describe what is expected to
happen when a migration event is triggered.
We assume that host 1 runs the same application and belongs to the same tenant (e.g., tenant
A) with hosts 3, 5 and 7 (see Figure 3). We also assume that host 5 is initially inactive, while
the other hosts (1,3,7) are actively running the application. Then, a migration event is triggered
and we decide to migrate host 1 to host 5 (since the latter one is inactive) on the fly. Now host 1
becomes inactive/unavailable, while host 5 assumes its role. You don’t need to take into account
the details of the end host state migration in this exercise, but you need to take into account
that the new host adopts the IP of the old one. According to Figure 4, you notice that host 5
starts running application A, while host 1 becomes unavailable. This happens in a transparent
way: the service is interrupted for the least possible time and host 5 now serves the application
pretending to be host 1. Similarly to the isolation part of the assignment, you should create a
file called migration events.csv as input, to describe this migration event. This file should look
like the following:

180,10.0.0.1,10.0.0.5

The first column represents how much time (in secs) it takes to trigger the migration event,
after the initial execution of the controller application script. This is used in order to simulate
a planned host migration event (e.g., for maintenance reasons). The pair of IPs that follows
mandates that the host with IP address equal to 10.0.0.1 (host 1) is migrated to the host with
IP address 10.0.0.5 (host 5).

Now, host 5 is reserved to serve the application for host 1 while host 1 remains inactive. You
should place the migration events.csv file under ∼/pox/ext/ . The provided code reads and
properly handles the information contained into the file. Check the read migration events func-
tion to see how the information is stored internally on the controller’s side.
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Figure 3: Data center topology with VMs before migration event. Hosts 1, 3 and 7 serve the
application of tenant A while host 5, belonging to the same tenant, is inactive.
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Figure 4: Data center topology with VMs after migration event. Host 1 has moved to host
5. IP traffic from other sources (e.g., host 7) destined to the IP address of host 1 should be
transparently redirected to host 5.
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When the migration event is triggered, all the switch flow rules that relate to flows towards the
old destination IP of host 1 (including the ones that construct the path to the to-be-migrated
host) are deleted so as to “force” the migration (HINT: handle migration function). This will
result in PacketIn events directed to the controller, for any new IP flow destined to the old IP.
Now the controller should install rules that redirect IP traffic that is destined to host 1 towards
host 5. The host that now communicates with host 5 should still think that it communicates
with host 1, since it addresses the same IP. Therefore, relevant forward (traffic from host X to
host 1) and reverse (traffic from host 5 to host X) path installation and packet header rewrit-
ing are needed in order to enable the migration on the IP layer. The controller should act
(HINT: install migrated end to end IP path function) in a similar way as in the context of the
routing/forwarding task that was discussed in the beginning (HINT: install end to end IP path
function).

However, the controller should also instruct the switch to rewrite the packet headers to make the
migration transparent to the rest of the network (remember the “Transparent Load Balancer”
assignment). To enable this mechanism, the controller identifies the direction of the relevant
packets (i.e, traffic stemming from host 5 or directed towards host 1), imposes the relevant
header translations and then installs the corresponding randomly selected shortest paths. Note
that the headers should only be rewritten at the switch that raised the corresponding PacketIn;
the updated headers should then match the intermediary switches’ flow tables. Therefore, rele-
vant flow rules should be installed.

Be careful while rewriting the forward and reverse paths (HINT: you will need to use both
the install forward migration rule and install reverse migration rule from the SwitchWithPaths
instance for FlowMods, plus the send forward migrated packet and send reverse migrated packet
for managing the PacketIn full packets via sending PacketOuts). Flow rules that match the new
packet headers should be installed along the remaining path nodes. If the process is done cor-
rectly, IP traffic towards the old host should migrate transparently to the new host (addressed
now to the new destination IP and MAC, after the rewrites), while traffic stemming from the
new host should be masked as if it originated from the old host (using the old source IP and
MAC, after the rewrites).

2.6.1 Sanity checks

Once you have finished your solution, you should check that the transparent migration properly
works. Run your code using the following command:

~/pox> ./pox.py openflow.discovery CloudNetController --firewall_capability=False

--migration_capability=True

This ensures that your code for this task will run irrespectively of whether you have completed
your previous task or not. In order to test a unified solution for both the isolation and migration
tasks, you could simply run your network application using the following command:

~/pox> ./pox.py openflow.discovery CloudNetController --firewall_capability=True

--migration_capability=True

Initiate the Mininet topology script, and wait a bit for the controller to connect to the switches.
The script will do an initial pingall as a sanity check.

sudo python clos_topo.py -c 2 -f 2

You should open one xterm at either host h3 or h7, continuously pinging host h1 and wait until
the migration event is triggered (after about 180 secs from controller startup). Remember that
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you can tune the waiting value in the file; of course please make sure that the controller has
enough time in the beginning to detect the network and achieve stable routing, before the mi-
gration happens. You might use Wireshark or Tcpdump to verify the accuracy of your solution,
e.g., does the service (ping in our case) still run without interruptions? Is traffic redirected as
expected? For example, pings should not break during the testing process, while no packet loss
should be observed.

Please make sure that you have already studied the [1,2,3,4,5,9] thoroughly. Also,
please check the code and the comments that have been already provided within
the code by the assistants.

Good luck!
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