
0018-9162/05/$20.00 © 2005 IEEE May 2005 57

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Rethinking the
Design of Virtual
Machine Monitors

A virtual machine monitor is a software sys-
tem that partitions a single physical
machine into multiple virtual machines.
Traditionally, VMMs have created a pre-
cise replica of the underlying physical

machine. Through faithful emulation, VMMs sup-
port the execution of legacy guest operating sys-
tems such as Windows or Linux without modifi-
cations. However, traditional VMMs suffer from
poor scalability and extensibility.

Over the past several years, our research group
has developed the Denali VMM (denali.cs.
washington.edu/), working from the premise that
it is both possible and useful to consider a virtual
machine abstraction that differs from a physical
machine. The two major results from this effort are
paravirtualization and hardware interposition.

• In paravirtualization, the virtual hardware
architecture differs from the underlying phys-
ical architecture. We have leveraged this char-
acteristic to construct a scalable VMM that
supports hundreds of concurrently executing
virtual machines.

• Hardware interposition lets programmers
extend the VMM with new implementations of
virtual hardware components such as virtual
disks and Ethernet devices. These new hard-
ware components can differ dramatically from
native devices. For example, a new virtual disk
implementation could provide encryption or
access a network storage device. Higher-level

services can also be realized, such as the ability
to migrate a running virtual machine.

VMMs provide many advantages: They are sim-
ple, encapsulate a complete software system, and
support execution of multiple legacy operating sys-
tems on a single machine.

VMM ADVANTAGES
VMMs have a long history. IBM conceived the

technology in the 1960s and achieved notable suc-
cess with its VM/370,1 which served as both a time-
sharing system and a platform for operating system
development.

Recently, VMMs have experienced a rebirth of
popularity, due in large part to the success of the
VMware virtual machine monitor for the x86.
Buoyed by this success, research groups are ex-
ploring innovative ways to apply virtual machine
technology.

The continued success of VMMs suggests that
the technology possesses inherently useful traits. In
our view, several factors contribute to the current
popularity of VMMs:

• Simple implementation. Compared to a full-
blown operating system like Linux or Win-
dows, a VMM has a comparatively simple
implementation. VMMs achieve simplicity by
eschewing the implementation of high-level
abstractions like TCP/IP sockets and file sys-
tems. This simplicity makes VMMs well suited

To overcome the poor scalability and extensibility of traditional virtual
machine monitors that partition a single physical machine into multiple
virtual machines, the Denali VMM uses paravirtualization to promote
scalability and hardware interposition to promote extensibility.

Andrew
Whitaker
Richard S.
Cox
Marianne
Shaw
Steven D.
Gribble
University of
Washington

58 Computer

Core operating system

Hardware abstraction layer

Physical hardware

Core operating system

Hardware abstraction layer

Physical hardware

Core operating system

Hardware abstraction layer

Physical hardware

Knows about

(a) (b) (c)

Virtual machine monitor Virtual machine monitor

Knows aboutKnows about

Figure 1. System
architecture
comparison. (a) On
a conventional
operating system,
the hardware
abstraction layer
is the only OS
subsystem with
knowledge of the
underlying physical
hardware. (b) A
traditional VMM
exposes an
unmodified replica
of the physical
hardware
architecture. (c) A
paravirtualized
VMM exposes a
modified hardware
architecture.

for addressing system reliability and security
issues.2 In addition, their simplicity makes
VMMs easier to extend and modify than tra-
ditional operating systems. For example, the
Disco project used a VMM to provide system
services for CC-NUMA machines.

• Whole-system services. A virtual machine cap-
tures a complete software system, including the
operating system and its applications suite. This
is important because many services of interest
transcend traditional encapsulation mecha-
nisms such as address spaces or OS processes.
For example, virtual machine migration lets a
user transfer a complete working environment
to another physical machine.

• Support for legacy guest operating systems.
The ability to run multiple legacy OSs on a sin-
gle machine has proven useful over time. In the
1970s, this capability found application in
time-sharing across users and for testing new
operating system functionality. Today, system
administrators use this capability to consoli-
date several underutilized servers onto a sin-
gle machine and to enforce isolation for
untrusted or insecure code.

• Tolerable performance. Historically, VMMs
have suffered the drawback of slow perfor-
mance relative to conventional system archi-
tectures. As processor speed has increased,
however, this virtualization penalty has
become tolerable in many settings. In addition,
recent advances in VMM design3 have driven
the cost of virtualization still lower.

The Denali research group seeks to leverage
VMMs to address problems in areas such as secu-
rity, reliability, and system administration. During
this process, we have discovered limitations that
plague conventional VMMs. We have modified the
Denali VMM to overcome two such challenges:
scalability and extensibility.

SCALING A VMM
Scalability refers to the ability to run many vir-

tual machines on a single physical machine. Two
observations motivated our interest in scalability.
First, application domains have emerged that
require minimal or sporadic processor time. For
example, a network measurement service inside the
PlanetLab infrastructure may only require a CPU
slice every few seconds. Second, Moore’s law has
produced an abundance of raw CPU power,
enabling the collocation of many such services to
decrease administrative overhead.

Our research has revealed that traditional
VMMs suffer from scalability bottlenecks that arti-
ficially restrict the number of virtual machines a
given system can support.4 These bottlenecks exist
because the notion of time is more complex on a
VMM. A VMM runs multiple virtual machines in
parallel, so each VM only runs on the real proces-
sor for 1/N of the total CPU time, on average. This
effect creates a notion of virtual time that advances
at a different rate than physical or wall-clock time.

As the number of virtual machines increases, the
disjunction between virtual time and physical time
increases, adversely affecting any timing-dependent
aspect of the hardware, including interrupt delivery
and timers. To address these challenges, we pro-
pose paravirtualization. The key idea in this tech-
nique is to expose a virtual hardware architecture
that differs from the underlying physical hardware
architecture. Small changes to the virtual architec-
ture are sufficient to eliminate the artificial scala-
bility bottlenecks that plague traditional systems.
Figure 1 compares a paravirtualized VMM to other
system architectures.

Denali’s use of paravirtualization has parallels
with earlier work in operating system design.
Researchers in the 1970s proposed impure virtual
machine architectures to improve performance or
reduce implementation complexity. In a similar
vein, microkernel systems such as Mach expose

May 2005 59

low-level abstractions, which are similar to but dif-
fer from a hardware interface.

All these approaches have a downside: Legacy
guest operating systems require modifications to run
on the modified architecture. A major goal of our
work was to avoid wholesale changes to legacy code
bases. We achieve this goal by confining our archi-
tectural modifications to fit within the operating
system’s hardware abstraction layer. A primary pur-
pose of the HAL is to ensure portability across a set
of physical hardware architectures. Thus, by con-
fining our virtual architecture changes to the HAL,
porting an OS to Denali is no more difficult than
porting that OS to a new physical hardware archi-
tecture. In contrast to Denali, microkernel systems
have introduced more disruptive architectural
changes, greatly complicating support for legacy
guest operating systems and their applications.

To date, we have ported the NetBSD operating
system to the Denali architecture. This port required
only a one-line change outside the NetBSD’s hard-
ware abstraction layer. The Xen research group at
Cambridge has applied paravirtualization tech-
niques to a broader set of operating systems, includ-
ing Linux and Windows. Their experience has been
similar to ours:3 A small team of programmers can
accomplish the relatively straightforward task of
porting an OS to a paravirtualized architecture.

Architecture changes for scale
Three aspects of the traditional hardware-soft-

ware interface limit scalability: idling, interrupts,
and timers.

The presence of idle loops within a guest operat-
ing system poses one barrier to scalability. On phys-
ical hardware, the OS executes an idle loop while
waiting for some event of interest to transpire. On
a VMM, these idle loops waste useful cycles that
could be devoted to another virtual machine.

To avoid this performance degradation, Denali
exposes an idle-with-timeout instruction, which lets
the guest OS yield the CPU for a bounded time.
This allows full processor utilization while ensur-
ing that a virtual machine awakes to handle timer-
related functionality.

As Figure 2 shows, the idle-with-timeout instruc-
tion prevents a 66 percent throughput degradation
in aggregate throughput for a collection of Web
server virtual machines. This experiment ran on a
1,700-MHz Pentium 4 with 256 Kbytes of L2
cache, 1 Gbyte of RAM, and an Intel PRO/1000
PCI gigabit Ethernet card.

On physical hardware, interrupt delivery occurs
immediately after the arrival of some hardware

event such as packet arrival or timer firing. On a
VMM, preserving immediate interrupt delivery is
difficult because a given virtual machine runs only
1/N percent of the time.

To account for this limitation, Denali uses a
batched, asynchronous interrupt model that queues
virtual hardware events until the virtual machine’s
normal-scheduler quantum occurs. Using this
approach, Denali avoids a 30 percent performance
degradation for many VMs.

Operating systems use the arrival of timer inter-
rupts to measure the passage of physical time. With
each virtual machine limited to 1/N percent of the
CPU, and therefore missing the majority of physi-
cal timer ticks, Denali exposes a global physical
timer that operating systems can read to learn how
much physical time has transpired since the VM’s
last scheduler quantum.

Architecture changes for simplicity
Beyond promoting scalability, we leveraged the

freedom that paravirtualization offers to simplify
our VMM implementation. Denali’s virtual archi-
tecture omits several rarely used features, such as
the BIOS, x86 segmentation hardware, and pro-
tection rings. Denali also replaces the x86’s hard-
ware-filled translation lookaside buffer with a
software-filled TLB, resulting in a simpler and more
efficient implementation.

Denali’s use of paravirtualization also cleanly
sidesteps the problem of unvirtualizable instruc-
tions. The x86 architecture contains several instruc-

450
400
350
300
250
200
150

50
0

100

500

10050 150 200 250 300
Number of virtual machines

Ag
gr

eg
at

e
se

rv
ed

 lo
ad

 (r
eq

/s
ec

)

With idle instruction
Without idle instruction

Figure 2. Benefit of idle-with-timeout instruction. The graph depicts the
aggregate throughput across an increasing number of virtual machines, which
run a custom Web server atop a lightweight operating system. Each Web server
VM serves a static 130-Kbyte document. The x-axis reflects the number of VMs
across which the workload is spread. Denali avoids a 66 percent throughput
degradation for a large collection of Web server virtual machines.

60 Computer

tions that behave differently in user and kernel
mode, yet do not force a trap into the VMM.5 This
is problematic for conventional VMMs, which
attempt to precisely emulate the underlying physi-
cal hardware’s behavior.6 Denali makes no attempt
to precisely emulate physical hardware, thereby
avoiding the complexity inherent in handling these
instructions.

EXTENDING A VMM
The VMM’s traditional role has been to multi-

plex a single physical machine across multiple users
or applications. Recently, researchers have moved
beyond multiplexing to explore novel applications
of virtual machine technology.

As Figure 3 shows, these virtual machine services
leverage the layer of indirection between virtual
and physical hardware to realize functionality such
as migration, intrusion detection, and performance
analysis.7

A key advantage of implementing services within
a VMM is that such services have a whole-system
perspective: They capture the complete state of a
running operating system and its suite of applica-
tions. This perspective is important because many
services of interest cut across traditional OS encap-
sulation mechanisms, such as processes or address
spaces. For example, with a virtual machine migra-
tion primitive, users can move a complete com-
puting environment, including an operating system
and application suite.

Virtual machine services also benefit from a
VMM’s simplicity relative to a full-blown OS. For
this reason, virtual machine migration primitives
have proven easier to implement and maintain than
corresponding process migration primitives. The
VMware ESX server supports VM migration. We
know of no process migration implementation that
has received major operating system support.

Despite the utility of virtual machine services,
realizing such services within the current genera-
tion of VMMs can be difficult. Implementing a ser-
vice requires the ability to change or extend parts
of the VMM implementation.

Unfortunately, traditional VMMs support only
a single, fixed implementation of hardware abstrac-
tions such as virtual disks and virtual Ethernet. As
a result, service designers must expend consider-
able effort to refactor an existing VMM’s imple-
mentation.

An alternative to modifying source code is to
reverse engineer a black-box VMM such as
VMware. However, developers did not design con-
ventional VMMs with extensibility in mind, and
thus VMMs lack the necessary hooks to realize
some services.8

Given the difficulty of realizing any particular
virtual machine service, research groups have paid
little attention to how they might cooperate. This
has led to repetition in research and development.
For example, although the Hypervisor9 and Revirt8

projects both rely on the same underlying logging
primitive, it would be difficult for these groups to
share this functionality with existing virtual
machine technology.

µDenali,10 a system that facilitates the rapid
development of new virtual machine services,
embodies our solution to these problems. The sys-
tem achieves extensibility through two primary
components. First, it exposes a set of programmatic
interfaces. Developers can extend these interfaces
to modify the implementation of hardware abstrac-
tions such as virtual disks without getting bogged
down in the VMM’s implementation details.
Second, µDenali supports hardware interposition,
which lets user extensions override the default sys-
tem functionality.

Programmatic API
Traditional operating systems such as Unix pro-

vide programmatic interfaces that third-party devel-
opers can use to extend system functionality. For
example, programmers can use the BSD virtual file
system interface to supply new file system imple-
mentations. µDenali’s programmatic API provides
a similar level of programmability and extensibility
to the VMM domain. Whereas traditional OS
extensions provide high-level abstractions like a file
system, VMM extensions provide low-level abstrac-
tions like a virtual disk device.

Supporting extensibility through a clean pro-
grammatic interface offers numerous benefits. For
example, this interface shields programmers from
the implementation details of the underlying VMM
and avoids wasting effort on refactoring or reverse
engineering. Using abstract interfaces also can serve
as the basis for component-based programming,
letting developers reuse service components. Finally,

Physical hardware

Virtual machine monitor

Linux Windows Migration
Intrusion detection
Configuration debugging
Replay logging
Fault tolerance
Performance analysis

Figure 3. Virtual
machine services.
Virtual machine
monitors have
proven useful
for realizing
whole-system
services that apply
to virtual machines.

the system can port extensions across any VMM
that exposes the same programmatic API.

We designed µDenali’s programmatic API based
on a survey of existing virtual machine services. This
survey identified four aspects of VMM behavior that
would benefit from a clean extensibility mechanism:

• Extending I/O devices. Many services must be
able to monitor or modify the behavior of I/O
devices such as virtual disks and the Ethernet.
For example, the Chronus tool implements a
“time-travel” disk that facilitates system con-
figuration debugging.

• Exposing virtual machine state. To enhance
performance, µDenali caches some virtual
machine state inside the hardware or within
the VMM. For example, the current register
contents of a virtual machine can reside inside
the processor. µDenali provides an API to
extract this state, which is used by services such
as checkpointing and migration that require
up-to-date knowledge of the complete virtual
machine state.

• Tracking nondeterminism. Services such as vir-
tual machine replay8 and fault tolerance9

require precise timing information for nonde-
terministic events such as timer interrupts.

• Controlling virtual machines. Developers can
use µDenali’s programmatic API to start, stop,
and kill virtual machines.

The programmatic API consists of a set of
C-based interfaces. Figure 4 shows µDenali’s API
for implementing a new virtual-disk abstraction.
The virtual-disk interface contains a set of upcalls
invoked in response to actions within the target vir-
tual machine. For example, a disk read operation
in the target virtual machine triggers a corre-
sponding invocation of the diskRead function.
Other programmatic interfaces contain downcalls
that programs can use to exert active control over
a virtual machine. For example, the virtual machine
control API provides the ability to start, stop, and
suspend virtual machines.

Hardware interposition
Denali’s initial implementation contained hard-

coded abstractions such as virtual disks. To sup-
port extensibility, it was necessary to separate the
interface of virtual hardware abstractions from
their implementations. We achieved this separation
using a technique called hardware interposition.

The key idea in this approach is to transform the
VMM into a general message-routing framework.

The system transforms all virtual hardware events,
such as disk reads, into messages that the VMM
routes to an appropriate destination. Some events
are handled by default implementations within the
VMM, and some are handled by extension code
running inside of virtual machines.

The message-routing framework’s general nature
makes it possible to build up arbitrary message-
routing topologies. Thus, a child virtual machine
could have multiple parents, each of which imple-
ments some portion of its virtual hardware func-
tionality. Figure 5 depicts the µDenali’s software
architecture.

May 2005 61

x86
hardware

VM1 VM2 VM3 VM4 VM5

Virtual
device 1

Physical
device 1

Virtual
device 2

Physical
device 2

Virtual
device 3

Physical
device 3

µDenali
VMM

Event routing
framework

Figure 5. µDenali software architecture. An event-routing framework separates a
virtual device’s interface from its implementation. Some devices have default
implementations within the VMM, while user-supplied extensions inside separate
virtual machines implement other devices.

// the virtual Disk device callback functions
typedef struct {

// the child generated a write event.
int (*diskWrite)(char *buffer, int offset,

int num_sectors);
// the child generated a read event. If the
// parent chooses to handle the event, it
// puts the appropriate data in “buffer”.
int (*diskRead)(char *buffer, int offset,

int num_sectors);
// the child is asking the disk to report
// how many sectors it contains.
int (*getSectorSize)(void);

} Disk;

Figure 4. I/O device interposition functions. The API permits parents to interpose
on and respond to their children’s device operations. Only the interface
associated with the virtual disk is shown, but other devices have similar
interfaces.

62 Computer

Service examples
We have implemented a range of virtual machine

services atop µDenali’s extensibility mechanisms.
A service called Apache* uses a virtual cluster of
Apache Web servers to improve reliability in the
face of software errors. The Chronus tool uses
“time travel” debugging to help diagnose computer
configuration errors. In addition to these novel ser-
vices, we have used µDenali to reimplement previ-
ously proposed services such as virtual machine
migration. Using µDenali’s clean programmatic
APIs, our migration implementation required only
289 lines of C source code.

A well-known maxim in computer science holds
that any problem can be solved with a layer of
indirection. Virtual machine monitors intro-

duce such a layer beneath an entire computer sys-
tem. This mechanism has proven useful for
realizing a wide range of system services. Our work
on the Denali VMM has expanded the applicabil-
ity of VMMs by improving the scalability and
extensibility of these systems.

In the future, we expect that innovations will
arise from applying virtual machine technology in
new and innovative ways. One opportunity will be
to leverage the strong isolation of virtual machines
to avoid configuration conflicts between applica-
tions running on a single system. Another oppor-
tunity would be to use VMMs to simplify software
testing and debugging. �

References
1. R.J. Creasy, “The Origin of the VM/370 Time-Shar-

ing System,” IBM J. Research and Development, vol.
25, no. 5, 1981, pp. 483-490.

2. P.A. Karger et al., “A Retrospective on the VAX
VMM Security Kernel,” IEEE Trans. Software Engi-
neering, Nov. 1991, pp. 1147-1165.

3. P. Barham et al., “Xen and the Art of Virtualization,”
Proc. 19th Symp. Operating System Principles (SOSP
2003), ACM Press, 2003, pp. 164-177.

4. A. Whitaker, M. Shaw, and S.D. Gribble, “Scale and
Performance in the Denali Isolation Kernel,” Proc.
5th Symp. Operating Systems Design and Imple-
mentation (OSDI 02), Usenix, 2002, pp. 195-209.

5. J.S. Robin and C.E. Irvine, “Analysis of the Intel Pen-
tium’s Ability to Support a Secure Virtual Machine
Monitor,” Proc. 9th Usenix Security Symp., Usenix,
2000, pp. 129-144.

6. G.J. Popek and R.P. Goldberg, “Formal Require-
ments for Virtualizable Third-Generation Architec-

tures,” Comm. ACM, July 1974, pp. 412-421.
7. A.J. Whitaker, “Building Robust Systems with Vir-

tual Machine Monitors,” Univ. Washington Gener-
als Examination, 2004; www.cs.washington.edu/
homes/andrew/papers/general.pdf.

8. G.W. Dunlap et al., “Enabling Intrusion Analysis
through Virtual Machine Logging and Replay,” Proc.
2002 Symp. Operating Systems Design and Imple-
mentation (OSDI 02), Usenix, 2002, pp. 211-224.

9. T.C. Bressoud and F.B. Schneider, “Hypervisor-Based
Fault Tolerance,” ACM Trans. Computer Systems,
vol. 14, no. 1, 1996, pp. 80-107.

10. A. Whitaker et al., “Constructing Services with Inter-
posable Virtual Hardware,” Proc. 1st Symp. Net-
work Systems Design and Implementation, Usenix,
2004, pp. 169-182.

Andrew Whitaker is a graduate student in the
Department of Computer Science at the University
of Washington. His research interests are operat-
ing systems, networking, and software engineer-
ing. Whitaker received an MS in computer science
from the University of Washington. He is a mem-
ber of the ACM and Usenix. Contact him at
andrew@cs.washington.edu.

Richard S. Cox is a graduate student in the Depart-
ment of Computer Science at the University of
Washington. His research interests are operating
systems, security, and the design of “future-proof”
systems that will stand the test of time. Cox
received an MS in computer science from the Uni-
versity of Washington. He is a member of Usenix.
Contact him at rick@cs.washington.edu.

Marianne Shaw is a graduate student in the Depart-
ment of Computer Science at the University of
Washington. Her research interests are operating
systems, networking, and security. Shaw received
an MS in computer science from the University of
Washington. She is a member of the ACM and
Usenix. Contact her at mar@cs.washington.edu.

Steven D. Gribble is an assistant professor in the
Department of Computer Science at the University
of Washington. His research interests include the
design and operation of robust, scalable Internet
infrastructure and services, the measurement and
design of wide-scale distributed systems, and vir-
tual machine monitors. Gribble received an MS in
computer science from the University of California,
Berkeley. He is a member of the ACM and Usenix
and cofounded ProxiNet, now a division of Puma-
Tech. Contact him at gribble@cs.washington.edu.

