
Institute of Computer Science (ICS)

Foundation for Research and Technology – Hellas (FORTH)

� Manolis Marazakis (maraz@ics.forth.gr)

Virtualization in the ARMv7 Architecture

Lecture for the Embedded Systems Course

CSD, University of Crete (May 19, 2015)

Virtualization Benefits in Embedded Systems

� Workload consolidation

� E.g. Applications + Baseband sharing a multicore SoC

� Flexible resource provisioning

� License barrier

� Legacy software support

� important with the multitude and variety of embedded

operating systems (commercial and even home-brew)

� Reliability

� Security

2 Virtualization in the ARMv7 Architecture

Virtualization trade-off

� Performance:

� Applications that used to own the whole processor must now share

� Hypervisor adds runtime overhead & increases memory footprint

� Real-time properties ?

� Full virtualization without hardware support means software
emulation

� Complexity:

� Old scenario: two software stacks + two hardware systems

� New scenario: two software stacks + one hardware system + one host
kernel

� More abstraction layers � more bugs …

� Security & reliability:
� Increased size of Trusted Computing Base (TCB)

� Increased impact of hardware failure

� I/O: emulation vs (para)virtual vs direct access

3 Virtualization in the ARMv7 Architecture

Essentials of a hypervisor

� Parent partition (minimum-footprint OS) + Hypervisor

� Hypervisor: Thin layer of software running on the hardware

� Supports creation of partitions (virtual machines)

� Each partition has one or more virtual processors

� Partitions can own or share hardware resources

� Enforces memory access rules

� Enforces policy for CPU usage

� Virtual processors are scheduled on real processors

� Enforces ownership of other devices

� Provides inter-partition messaging

� Messages appear as interrupts

� Exposes simple programmatic interface: “hypercalls”

4 Virtualization in the ARMv7 Architecture

Virtualization extensions to the ARMv7-A architecture

� Virtualization extensions to the ARMv7-A architecture:
� Available in Cortex A-15 / A-7 CPUs

� Hyp - New privilege level (for hypervisor)

� GuestOS: SVC privilege level, Applications: USR privilege level

� 2-stage address translation (for OS and hypervisor levels)

� Complementary to TrustZone security extensions

� Mechanisms to minimize hypervisor intervention for “routine”
GuestOS tasks:
� Page table management

� Interrupt masking & Communication with the interrupt controller (GIC)

� Device drivers (hypervisor memory relocation)

� Emulation of Load/Store accesses and trapped instructions

� Hypervisor Syndrome Register: Hype mode entry reason (syndrome)

� Traps into Hyp mode for ID register accesses & idling (WFI/WFE)

� System instructions to read/write key registers

5 Virtualization in the ARMv7 Architecture

Privilege levels

6 Virtualization in the ARMv7 Architecture

� Guest OS: same kernel/user privilege structure

� HYP mode: higher privilege than OS kernel level

� hvc instruction (hypercall)

� VMM controls wide range of OS accesses

� Hardware maintains TZ security (4th privilege level)
User Mode

(Non-privileged)

Supervisor Mode

(Privileged)

Hyp Mode

(More Privileged)

Guest Operating System1

App2App1

Guest Operating System2

App2App1

Virtual Machine Monitor / Hypervisor

1

2

3

TrustZone Secure Monitor (Highest Privilege)

Secure

Apps

Secure

Operating System

Non-secure State Secure State

E
x
c
e

p
ti
o

n
s

E
x
c
e

p
ti
o

n
 R

e
tu

rn
s

Virtual Memory (1-stage translation)

7 Virtualization in the ARMv7 Architecture

� Without virtualisation, the OS owns the memory

� Allocates areas of memory to the different applications

� Virtual Memory commonly used in “rich” operating systems
V

ir
tu

a
l
a
d
d
re

s
s
 m

a
p
 o

f

e
a
c
h
 a

p
p
lic

a
ti
o
n

P
h
y
s
ic

a
l A

d
d
re

s
s
 M

a
pTranslations

from

translation

table (owned

by the OS)

Virtual Memory (2-stage translation)

8 Virtualization in the ARMv7 Architecture

Stage 1 translation owned

by each Guest OS

Virtual address (VA) map of

each App on each Guest OS
“Intermediate Physical” address

map of each Guest OS (IPA)

Physical Address (PA) Map

Stage 2 translation owned by the VMM

Hardware has 2-stage

memory translation

Tables from Guest OS

translate VA to IPA

Second set of tables from

VMM translate IPA to PA

Allows aborts to be routed to

appropriate software layer

Virtualization of interrupts
� An interrupt might need to be routed to one of:

� Current or different GuestOS

� Hypervisor

� OS/RTOS running in the secure TrustZone environment

� Physical interrupts are taken initially in the Hypervisor

� If the Interrupt should go to a GuestOS :

� Hypervisor maps a “virtual” interrupt for that GuestOS

Virtual Interrupt Controller

� ISR of GuestOS interacts with the virtual controller
� Pending and Active interrupt lists for each GuestOS

� Interact with the physical GIC in hardware

� Creates Virtual Interrupts only when priority indicates it is necessary

� GuestOS ISRs therefore do not need calls for:
� Determining interrupt to take [Read of Interrupt Acknowledge]

� Marking the end of an interrupt [Sending EOI]

� Changing CPU Interrupt Priority Mask [Current Priority]

� GIC has separate sets of internal registers:
� Physical registers and virtual registers

� Non-virtualized system and hypervisor access the physical registers

� Virtual machines access the virtual registers

� Guest OS functionality does not change when accessing the vGIC

� Hypervisor remaps virtual registers for use by GuestOS’es
� Interrupts generate a hypervisor trap

10 Virtualization in the ARMv7 Architecture

Virtual interrupt sequence
� External IRQ (configured as virtual by the hypervisor) arrives at the GIC

� GIC Distributor signals a Physical IRQ to the CPU

� CPU takes HYP trap, and Hypervisor reads the interrupt status from the Physical
CPU Interface

� Hypervisor makes an entry in register list in the GIC

� GIC Distributor signals a Virtual IRQ to the CPU

� CPU takes an IRQ exception, and Guest OS running on the virtual machine reads
the interrupt status from the Virtual CPU Interface

11 Virtualization in the ARMv7 Architecture

Distributor
Physical

CPU

Interface

Virtual

CPU

Interface

Virtual IRQ

Physical IRQ

CPU

External
Interrupt
source

Hypervisor

Guest OS

Virtual I/O devices

� Memory-mapped devices

� Read/write accesses to device registers have specific side-effects

� Virtual devices � emulation

� Typically, read/write accesses have to trap to Hypervisor

� Fetch & interpretation of emulated load/stores is performance-intensive

� Syndrome: key information about an instruction

� Source/destination register, Size of data transfer, …

� Available for some loads/stores (on abort)

� If not available, then it is required to fetch the instruction for full emulation

� System MMU: 2nd-stage address translation for devices

� Allows devices to be programmed into Guest’s VA space

12 Virtualization in the ARMv7 Architecture

System MMU (IO-MMU)

13 Virtualization in the ARMv7 Architecture

ARM TrustZone (Secure System Partitioning)

14 Virtualization for Embedded Systems

Propagation of System Security Mode

15 Virtualization in the ARMv7 Architecture

NS : Not Secure - treated like an address line

Boot sequence with Hypervisor

16 Virtualization in the ARMv7 Architecture

Sources

� David Brash, Extensions to the ARMv7-A Architecture,

HotChips 2010

� John Goodacre, Hardware accelerated Virtualization in the

ARM Cortex Processors, XenSummit Asia 2011

� Roberto Mijat and Andy Nightingale, Virtualization is

Coming to a Platform Near You: The ARM Architecture

Virtualization Extensions and the importance of System

MMU for virtualized solutions and beyond, ARM White

paper, 2011

17 Virtualization in the ARMv7 Architecture

