
Μǆχαǌǈǉή ΜάǇǆıǆ

Introduction to Matlab

ΓǈώǏγοǐ ΜποǏǋπουδάǉǆǐ
Tǋήǋα ΕπǈıĲήǋǆǐ ΥποǊογǈıĲώǌ

ȵȿȿΗɁΙȾΗ ȴΗɀΟȾɆΑɈΙΑ

ɅΑɁȵɅΙɇɈΗɀΙΟ ȾɆΗɈΗɇ

About Matlab

 Matlab (MATrix LABoratory) is an interactive system for
doing numerical computations.
 It is easy to use

 Easy and fast to write code

 User-friendly interface

 No memory management

 Has many libraries (toolboxes)
 E.g. for signal processing, bioinformatics, econometrics, neural

networks and many more.

 Great documentation
 Type ‘doc’ in the Matlab prompt to open the documentation window.

Vectors and Matrices

 Every variable in Matlab is a vector or matrix.

 A normal variable is a 1x1 matrix.

 There are two types of vectors:
 Row vectors (1xN)

 E.g. [1 2 3 4 5] is a 1x5 row vector

 Column vectors (Nx1)
 E.g. [1;2;3;4;5] is a 5x1 column vector

 Matrices are of size NxM
 E.g. [1 2 3; 4 5 6; 7 8 9] is a 3x3 matrix

Data Types
 Matlab is dynamically typed (types are determined at runtime)

 The default type for a number is double
 Basic types: single (float), logical (boolean)

 Other types: uint8, uint16, uint32, int8, int16, int32 and more

 But be careful: some of them are not supported by some operations and may not be
compatible to use with other data types.

 Most of the times using the default type is OK (unless memory is an issue)

 Special values
 Inf (Infinity)

 NaN (Not a Number)

 Strings
 They are also arrays (vectors), of characters.

 Unlike most languages, strings begin with ‘ and not with “. E.g. ‘abc’ or [‘a’ ‘b’ ‘c’]

 The characters are represented with ASCII codes

Accessing Elements of an Array

 Unlike most languages, the index of the first element of
an array is 1

 E.g. for x = [4 5 6]; x(1) will return 4.

 Arrays are declared with [..], but accessed with (..)

 To access elements of a multi-dimensional array use
x(i1,i2,…,in)

Operating on Arrays

 Functions (usually) process whole arrays with a single call

 E.g. x = [1 2 3 4]; y = [5 6 7 8]; z = x + y; (z = [6 8 10 12];)

 Forget loops: In most cases you will not have to use
them.

 Easier to make mistakes.

 Using loops in general is a lot slower than using built-in
functions.

 E.g. A simple addition of two arrays will be at least 2 times slower
(depending on the dimension of the arrays : more dimensions imply
more nested for loops which again result in much slower code).

Operators

 Most basic operators are the same as in other languages
(+,-,*,/)

 Modulo operator: mod(x,y) (% is used for comments)

 Power operator: ^

 Transpose operator: ‘

 For some operators such as * / ^ there are two versions:

 The first is for linear algebra operations

 The second is for pair wise operations (.* ./ .^)

Operators

 Comparison operators (>, <, >=, <=, ==)
 Compare a number, vector or matrix with another number or

vector/matrix of same dimensions

 E.g. x = [1,2,3,4];

 x>=3 creates a vector of size 1x4, containing the values true
wherever x contains a value >= 3 ([0,0,1,1] of type logical)

 Can be used to index x: x(x >= 3) = [3,4]

 Logical Operators: && (and), || (or), ~ (not), &, |
 &&, || are used between two values (short circuit evaluation)

 &,| are used between a number, vector or matrix with another
number of vector/matrix of the same dimensions

 E.g. x((x <= 1) | (x >= 4)) gives [1,4]

 ~ can be used with any expression or vector/matrix

Accessing Elements of an Array

(colon operator)

 The Colon Operator (:) is perhaps the most important
operator in Matlab.

 It is used to create a sequence of numbers.
 E.g. 1:5 creates a row vector with the numbers [1 2 3 4 5]

 The spacing can be anything
 E.g. 100:-5:80 creates [100 95 90 85 80]

 This operator allows to access portions of matrices
 E.g. x(1:5, 2:3) to access the first 5 rows and the 2nd and 3rd

columns

Accessing Elements of an Array

 We can use arrays of numbers to access elements of
other arrays.

 x([1,5:10,end])

 End is a special keyword used to access the last element of an array.

 x(x >= 3) returns an array of all elements in x greater or equal
to 3

Conditional Statements

 If/Else/Elseif

 E.g. if x > 2 … elseif x < 1 … else … end

 After each opening ‘if ’ an ‘end’ is needed to terminate the
statement.

 Be careful: elseif is not the same as else if.

 The first elseif is connected to the previous if, the second uses
another nested if statement and needs a separate end statement in
the end.

 Avoid the else if combination whenever possible.

Conditional Statements

 Switch/Case
 Can also be used with strings.

 E.g.

 switch x

 case ‘abc’

 …

 case ‘def’

 …

 otherwise

 …

 end

 Notice that you don’t have to use any break statement.

 (doc switch)

Loops / Break-Continue

 For/While

 Examples:

 For

 for i = 1:10 … end

 for i = 1:10

 for j = 10:-1:1

 …

 end

end

 While

 while x > 10 … end

 Break/Continue

 Same as in other languages like C and Java.

Other

 Semicolon
 Used to end statements. If it is not used the result of the expression

is printed to the prompt.

 Also used to change rows when creating an array

 [1;2;3] creates a column vector (3x1)

 Comma
 The comma operator can be used to separate

statements/expressions.

 Comments start with % (% is the same as // in C)

 To continue code in a new line use the ‘…’ operator (three
dots).

Input / Output

 Input
 Read from standard input:

 Function input (see doc/help input)

 Read from file:
 Function fscanf (see doc/help fscanf)

 Output
 Print to file

 fprintf(FileID, format,…) (see doc/help fprintf)

 Print to standard output
 fprintf(format,…) (see doc/help fprintf)

 Save results to file
 save filename variable1 variable2 … variableN

Data Structures

 Structs

 Structs are easy to use. You do not have to define some struct
(like in C), but you can “build it” at runtime.

 To access a field of a struct the ‘.’ operator is used.

 x.a = 1;

 If x.a does not exist it is added at runtime.

 E.g. x.a = 1; x.b = [1,2,3]; x.c = ‘abc’;

 The fields of structs can be of any type.

Data Structures

 Cell Arrays

 Cell arrays can hold any type of data in each cell.

 Instead of ‘[‘ and ‘]’ use ‘{‘ and ‘}’ to create a cell array.

 x = { ‘abc’, 1, [5;6;7], [], {‘def’,2} } (1x5 cell array)

 Instead of ‘(‘ and ‘)’ use ‘{‘ and ‘}’ to access an element of a cell
array.

 x{1} to access ‘abc’

 x{3} = [1 2] to replace the [5;6;7] with [1 2]

Scripts

 In Matlab, you do not need any main function to run the
program.

 Programs are scripts which are running through an
interpreter (code can also be compiled).

 It is not good practice to run everything through scripts
for many reasons.

 That does not mean that scripts are not used; they should
be avoided if a function can be used instead (similar to
avoiding having everything in the main function in C).

Functions
 Functions are organized in a single file.

 The filename is also the function name.

 In a file there can be several functions, but only the function with the same
name as the filename is accessible from outside (like classes in Java).

 The syntax is simple:
 function [r1,r2,…,rn] = function_name(a1,a2,…,an)

 …

 end

 It is not necessary to have an end after each function definition but it is
good practice to do so (especially if there are other functions in the file).

 In Matlab a function can return more than one value.

Functions

 It is possible to call functions with fewer arguments, but
not with more.

 Also, it is possible to get any number of results you want.

 E.g. function [a, b, c] = f (x, y, z) … end

 [~, k] = f(l, m)

 This will ignore the first return value (~), store b into k after
calling f with two arguments.

 Of course it is not always possible to call with fewer
arguments! Most functions use all of their arguments.

Functions: Pre-Allocation

 x = zeros(s1,s2,…,sn): create a s1xs2x…xsn matrix
initialized with zeros.

 x = ones(s1,s2,…,sn): create a s1xs2x…xsn matrix
initialized with ones.

 s = struct('field1', values1, 'field2', values2, ...): create a
struct with some fields and values.

 s = struct('field1', {}, 'field2', {}, ...): create a struct with
some fields and empty values.

 c = cell(s1,s2,…,sn): create a s1xs2x…xsn empty cell
array.

 (see doc cell, doc struct for more constructors)

Functions: Arrays

 size, length

 reshape, squeeze, permute, repmat

 sort, sortrows

 union, intersect, setdiff, setxor, unique

 ismember, issorted

 all, any, find

 full, sparse

Functions: Statistics / Distributions /

Operations

 min, max

 mean, median, mode

 std, var, corr, cov

 normcdf, normpdf, normrnd

 chi2cdf, chi2pdf

 rand, randi

 sum, prod, cumsum, cumprod

Functions: Plots

 figure, plot, plot3, ezplot, subplot

 hist, bar

 scatter, scatter3

 hold on, hold off (used to plot multiple graphs)

 title, legend, xlabel, ylabel

 axis, xlim, ylim

Ȯɚɉος Ƞɋότητας

ΧρηɊατοɁότηση

• Ɉο ʋαʌόʆ ɸʃʋαιɷɸʐʏιʃό ʐʄιʃό έχɸι αʆαʋʏʐχθɸί σʏα ʋʄαίσια ʏοʐ
ɸʃʋαιɷɸʐʏιʃού έʌɶοʐ ʏοʐ ɷιɷάσʃοʆʏα.

• Ɉο έʌɶο «Αʆοικτά Ακαɷηʅαϊκά Μαθήʅατα στο Παʆɸʋιστήʅιο
Κʌήτης» έχɸι χʌɻʅαʏοɷοʏήσɸι ʅόʆο ʏɻ αʆαɷιαʅόʌφωσɻ ʏοʐ
ɸʃʋαιɷɸʐʏιʃού ʐʄιʃού.

• Ɉο έʌɶο ʐʄοʋοιɸίʏαι σʏο ʋʄαίσιο ʏοʐ ȵʋιχɸιʌɻσιαʃού Πʌοɶʌάʅʅαʏος
«ȵʃʋαίɷɸʐσɻ ʃαι ȴια Ȳίοʐ Μάθɻσɻ» ʃαι σʐɶχʌɻʅαʏοɷοʏɸίʏαι αʋό ʏɻʆ
ȵʐʌωʋαϊʃή Έʆωσɻ ;ȵʐʌωʋαϊʃό Κοιʆωʆιʃό ɈαʅɸίοͿ ʃαι αʋό ɸθʆιʃούς
ʋόʌοʐς.

ȭηɊɂιώɊατα

ȭηɊɂɜωɊα αɁɂιοɁότησης ȋͳȌ

• Ɉο ʋαʌόʆ ʐʄιʃό ɷιαʏίθɸʏαι ʅɸ ʏοʐς όʌοʐς ʏɻς άɷɸιας
χʌήσɻς Creative CoŵŵoŶs Αʆαφοʌά, Μɻ ȵʅʋοʌιʃή Χʌήσɻ,
Όχι Παʌάɶωɶο Έʌɶο ϰ.Ϭ [ϭ] ή ʅɸʏαɶɸʆέσʏɸʌɻ, ȴιɸθʆής
Έʃɷοσɻ. ȵʇαιʌούʆʏαι ʏα αʐʏοʏɸʄή έʌɶα ʏʌίʏωʆ ʋ.χ.
φωʏοɶʌαφίɸς, ɷιαɶʌάʅʅαʏα ʃ.ʄ.ʋ., ʏα οʋοία
ɸʅʋɸʌιέχοʆʏαι σɸ αʐʏό ʃαι ʏα οʋοία αʆαφέʌοʆʏαι ʅαɺί ʅɸ
ʏοʐς όʌοʐς χʌήσɻς ʏοʐς σʏο «ɇɻʅɸίωʅα Χʌήσɻς Έʌɶωʆ
Ɉʌίʏωʆ».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

ȭηɊɂɜωɊα αɁɂιοɁότησης ȋʹȌ

• Ως Μη Εʅʋοʌική οʌίɺɸʏαι ɻ χʌήσɻ:
– ʋοʐ ɷɸʆ ʋɸʌιʄαʅβάʆɸι άʅɸσο ή έʅʅɸσο οιʃοʆοʅιʃό όφɸʄος αʋό

ʏɻʆ χʌήσɻ ʏοʐ έʌɶοʐ, ɶια ʏο ɷιαʆοʅέα ʏοʐ έʌɶοʐ ʃαι αɷɸιοɷόχο

– ʋοʐ ɷɸʆ ʋɸʌιʄαʅβάʆɸι οιʃοʆοʅιʃή σʐʆαʄʄαɶή ως ʋʌοϋʋόθɸσɻ ɶια
ʏɻ χʌήσɻ ή ʋʌόσβασɻ σʏο έʌɶο

– ʋοʐ ɷɸʆ ʋʌοσʋοʌίɺɸι σʏο ɷιαʆοʅέα ʏοʐ έʌɶοʐ
ʃαι αɷɸιοɷόχο έʅʅɸσο οιʃοʆοʅιʃό όφɸʄος ;ʋ.χ. ɷιαφɻʅίσɸιςͿ αʋό
ʏɻʆ ʋʌοβοʄή ʏοʐ έʌɶοʐ σɸ ɷιαɷιʃʏʐαʃό ʏόʋο

• Ο ɷιʃαιούχος ʅʋοʌɸί ʆα ʋαʌέχɸι σʏοʆ αɷɸιοɷόχο ʇɸχωʌισʏή
άɷɸια ʆα χʌɻσιʅοʋοιɸί ʏο έʌɶο ɶια ɸʅʋοʌιʃή χʌήσɻ,
ɸφόσοʆ αʐʏό ʏοʐ ɺɻʏɻθɸί.

 .

ȭηɊɂɜωɊα Αɋαφορəς

Copyright Παʆɸʋισʏήʅιο Κʌήʏɻς, Ιωάʆʆɻς Ɉσαʅαʌɷίʆος ϮϬϭϱ.

ȳιώʌɶος Μʋοʌʅʋοʐɷάʃɻς «Μɻχαʆιʃή Μάθɻσɻ. Introduction

to Matlab». Έʃɷοσɻ: ϭ.Ϭ. Ηʌάʃʄɸιο ϮϬϭ5. ȴιαθέσιʅο αʋό ʏɻ
ɷιʃʏʐαʃή ɷιɸύθʐʆσɻ:
https://opencourses.uoc.gr/courses/course/view.php?id=362.

ȟιατɛρηση ȭηɊɂιωɊəτωɋ

Οʋοιαɷήʋοʏɸ αʆαʋαʌαɶωɶή ή ɷιασʃɸʐή ʏοʐ ʐʄιʃού θα
ʋʌέʋɸι ʆα σʐʅʋɸʌιʄαʅβάʆɸι:

 ʏο ɇɻʅɸίωʅα Αʆαφοʌάς

 ʏο ɇɻʅɸίωʅα Αɷɸιοɷόʏɻσɻς

 ʏɻ ɷήʄωσɻ ȴιαʏήʌɻσɻς ɇɻʅɸιωʅάʏωʆ

 ʏο ɇɻʅɸίωʅα Χʌήσɻς Έʌɶωʆ Ɉʌίʏωʆ ;ɸφόσοʆ ʐʋάʌχɸιͿ

ʅαɺί ʅɸ ʏοʐς σʐʆοɷɸʐόʅɸʆοʐς ʐʋɸʌσʐʆɷέσʅοʐς.

