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This MOOC is dedicated to Protége, the currently most widely used ontology
building environment.
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The MOOC is divided into 6 parts. We’ll begin by recalling some definitions,
followed by the theoretical principles on which Protégé is based. We’ll then see
how to use Protégé to build an ontology with an example from Digital
Humanities. We’ll conclude with two open questions.
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0. Introduction

https://protege.stanford.edu/

v Protégé is a free, open-source ontology editor written in Java developed at Stanford University

v More than 300,000 users are registered.

protégé e e s s g

v W3C standards compliant

v Customizable user interface

W3C STANDARDS
SUPPORT

¥ Visualization support
EXTENSIBLE OPEN
SOURCE ENVIRONMENT

ACTIVE

¥ Ontology refactoring support COMMUNITY:

Direct interface to reasoners

Protégé is actively supported by a
strong community of users and
developers that field questions,

write documentation, and

Protégé fully supports the latest
OWL 2 Web Ontology Language
and RDF specifications from the
World Wide Web Consortium

Protége is based on Java, is
extensible, and provides a plug
and-play environment that makes it

a flexible base for rapid

¥ Highly pluggable architecture contribite plligdris prototyping and application

development

¥ Cross compatible with WebProtégé
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Protégé is the most widely used ontology-building environment. Written in Java, it
is a free, open-source software developed by Stanford University. It is supported
by a large community of users. Protégé is based on the first-order logic that
allows the use of reasoners to verify the consistency of ontologies. Protégé
supports W3C formats such as OWL, which allows ontologies to be exported as
RDF knowledge graphs.
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1. Definitions

Ontology An ontology is a formally-defined vocabulary for a particular domain of interest. Ontologies are typically based

on a class hierarchy (asserted and/or inferred), supplemented by assorted properties.
https://protegewiki.stanford.edu/wiki/Pr4 UG _mi_Glossary#Ontology

(> Ontologies are used to capture knowledge about some domain of interest. An ontology describes the concepts in the

domain and also the relationships that hold between those concepts.
A Practical Guide To Building OWL Ontologies Using Protégé 4 and CO-ODE Tools - Edition 1.3

Language OWL provides the theoretical basis for Protégé ontologies.
https://protegewiki.stanford.edu/wiki/Pr4 UG mi_Glossary#Ontology

Different ontology languages provide different facilities. The most recent development in standard ontology

languages is OWL from the World Wide Web Consortium (W3C).
A Practical Guide To Building OWL Ontologies Using Protégé 4 and CO-ODE Tools - Edition 1.3

Reasoner The logical model allows the use of a reasoner which can check whether or not all of the statements and
definitions in the ontology are mutually consistent and can also recognise which concepts fit under which

definitions. The reasoner can therefore help to maintain the hierarchy correctly.
A Practical Guide To Building OWL Ontologies Using Protégé 4 and CO-ODE Tools - Edition 1.3

&~ aninconsistent class is a class which cannot contain any individual because of its definition
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Let's start by recalling what an ontology is. Some define an ontology as a formally
defined vocabulary. But it is above all a specification of a conceptualization used
to represent the knowledge of a domain. An ontology defines the concepts of a
domain and the relationships between these concepts.

These definitions are written using a knowledge representation language,
including the W3C standard Ontology Web Language (OWL).

Logical foundations allow the use of reasoners to verify, for example, the
consistency of an ontology.
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2. Principles

Extensional Logic

Goal: Organising the objects which populate the world into classes according to the
relationships that linked objects together

<&
< <
<&
<&
<&
<
<&
' = An object is not defined by its “nature”, but by its relations with other objects
@
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To master a tool, whatever itis, it is mandatory to master the principles on which
itis based. Protégeé is based on an extensional logic, that is, on manipulating
objects, more generally called individuals. The goal is to organise the objects that
populate a reality into sets, called classes, according to the relationships linking
the objects to each other. The notion of Class replaces that of Concept.

Thus, an object is not defined by its nature, but by its relationships with other
objects.
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2. Principles
Components of OWL Ontologies

1) Individuals

Individuals, represent objects in the domain in which we are interested

&
England
3% Italy i

<o USA
Matthew<> e Flufty & Gemma

o Fido

Terminology: « individual », « instance », « object »
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The first principle is therefore the notion of individual, or object, even if it is not

necessary to create individuals to define classes. Individuals can represent any
object in the field of application.




2. Principles

Components of OWL Ontologies
2) Object Properties

Properties are binary relations on individuals, i.e. properties link two individuals together.

England

ANY
o)

S

O
Matthew hassibllﬂ Gemma

Terminology: « properties », « slots » (Protégé), « roles » (DL), « relations », « attributes »
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The second principle is that of relation or property. Properties are binary
relationships between two individuals. The same individual can, as in this
example, be linked to several individuals, whether through the same relationship
or different relationships. Relationships are always oriented and named.



2. Principles

Components of OWL Ontologies
3) Classes

OWL classes are interpreted as sets that contain individuals.

¢ Italy
England

<© USA

Classes are a concrete representation of concepts.

Country Classes are defined using formal descriptions that state
precisely the requirements for membership of the class.

Pet

/\/ Person =?

Person ={x /3y Country(y) A livesInCountry (x,y) }
Person ={x /3y Pet(y) A hasPet (x,y) }

Person ={x /3y hasSibling(x,y) v hasSibling (y,x) }
TALOS ERA Chair Al for SSH - Project n® 101087269 “Protégé” Christophe Roche CCBY-NC-ND 8

Itis then possible to define classes, sets of individuals, according to the
relationships linking individuals. So, in this example, a person is not defined
according to his nature but according to his relationships. Itis then possible to
propose different definitions of the Person class. These definitions are not
necessarily equivalent.
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2. Principles

%&j Change your way of thinking

Objects with feet and back
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CC BY-NC-ND 9

This approach to definition requires changing the way we think about things. A
thing is no longer a whole, but a set of related entities. Some domains are well-

suited to this approach. For example, a chair is an individual linked to its parts,
its backrest, its legs, and so on.



2. Principles

4) Property restriction A means to define classes of individuals

a) Existential Restrictions: describes (anonymous) classes of individuals that participate in at least one (some)
relationship along a specified property to individuals that are members of a specified class.

Tte----hasPart.__.o...-- -

Ty hasPart=="""" W

Objects with feet and back

b) Universal Restrictions: describes (anonymous) classes of individuals that for a given property only (only) have

relationships along this property to individuals that are members of a specified class (all values of the
property must be of a certain type)

c) Has value: at least one of the values of the property is a certain value

TALOS ERA Chair Al for SSH - Project n° 101087269
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A class is then defined as a set of property restrictions, that is, restrictions on the
objects that can be linked by the property. Restricting the hasPart relationship to

the Back Class allows to define the class of individuals which have a Back of
which the Chair Class is a subset.

10



3. Example
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CLASSICAL ART RESEARCH CENTRE

Beazley Archive: https://www.carc.ox.ac.uk/carc/Home

The Krater Ontology

“The term 'krater' suggests a mixing-vessel (compare Greek kerannumi - to mix), and we know that the wine served at
the symposium was mixed with water.

=
@,

T

=

@

Column-krater: Named for its column-like handles, the column-krater is first known from Corinthian examples dated to
the late seventh century. It is regularly produced by Athenian potters from the first half of the sixth-century until the third
quarter of the fifth. It seems from graffiti on Athenian red-figure examples that the vessel was referred to as Korinthios or
Korinthiourges.

Volute-krater: The volute-krater is named after its handles. The Francois Vase is a famous and early example, but the
typical Athenian form occurs only later in the sixth century, with the handles tightly curled so that they look like the
volutes on lonic columns. The shape is also found in metal. Over the course of the fifth and fourth centuries, examples
become slimmer, and Apulian volute-kraters from South Italy are particularly elaborate.

Calyx-krater: The handles of the calyx-krater are placed low down on the body, at what is termed the cul. Their upward
curling form lends the shape an appearance reminiscent of the calyx of a flower, hence the name. The earliest known
example was possibly made by Exekias in the third quarter of the sixth century. It continues to be produced, mainly in red-
figure, becoming more elongated over the course of the fifth and fourth centuries.

Bell-krater: The latest of the four krater-types, it first occurs in the early fifth century, and is not found decorated in black-
figure. It is named for its bell-like shape, perhaps originating in wood. It has small horizontal upturned handles just over
halfway up the body. Some do not have a foot, and earlier examples may have lugs for handles.

TALOS ERA Chair Al for SSH - Project n° 101087269 “Protégé” Christophe Roche
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Let us take for example the definition in Protégé of the ontology of Greek vases,
and more precisely, the ontology of kraters as defined in the Beazley archive. A
krater is an ancient Greek vessel used to mix water and wine. There are different
types of kraters: column, volute, calyx, bell craters, etc. These types of kraters
are distinguished by the type of their handles or their shape.

11
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4. Ontology

logy-2 (hitp: 3 iogy-2) : [http: = o x
. .
Bu Ild I ng File Edit View Reasoner Tools Refactor Window Help
@ untitied-ontology-2 (hito emanticweb. org/rochefontologies/2025/3/untitlzd-ontology-2. ~Q
|Active ontology = |Entities = Indwiduals by class = DL Quary =
Ontology header: EDE®E | Ontology metrics DIEEE
Ontology IRI http:www. X 0] Metrics
Ontology Version IR Adom 0
Logical adiom count 0
Annetations Declaration axioms count o
Ciass count 0
roté é Object property count 0
p g Data property count o
Individual count ]
Annotation Properfy count o
Class axioms
SubClassOf 0
EquivalentClasses 1]
DisjoiniClasses 0
GCl count )
Hidden GC1 Count o
Ontology imports | Ontology Prefixes General class axioms
Imported ontologies: BIEEE
Diroct fmport
Ho Reasoner set. Select s reasones from menu ¥ Show inferences =
. . o . DO
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When Protégé is opened, a window is displayed with different tabs. Each tab is
divided into views. The first tab named 'Active ontology' lists information about
the ontology in use such as the number of classes, individuals, properties, etc.
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Building

protégé
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% untitied-ontology-2 (hitp: ntitled-ontology-2) : [httpyfwwisemanticweb.orglrochefon..  — O X
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The definition of classes is done using a dedicated tab that must be created, as
illustrated in the figure of slide 13

13
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Class hierarchy

<

protégé
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4, OntOIOgy 4 untitled-ontology-5 (http:// b.org 025/3/untitled-ontology-5) : [httpy/wwwsemanticweb... — O X
Build i n Eile Edit View Reasoner Tools Refactor Window Help
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The ontology of kraters is a set of classes organized in a hierarchy according to
the set relationship of inclusion: column krater is a subclass of the class krater.

14
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4. Ontology Building
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Every class is a subclass of the Thing root class, which groups all objects. The
creation of the Krater class is therefore done from the Thing root class.




4. Ontology Building: Class Hierarchy

Class higrarchy (inferred) Annotations |Usage

Class hierarchy
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protégé
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The different types of Kraters are subclasses of the Krater class. They are created

in a similar way to what we have just seen.

16
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The result is the class hierarchy of slide 17
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Defining the different types of kraters as subclasses of the class krater does not
define them. Indeed, nothing distinguishes, except their name, the different
types of kraters. They still need to be defined more precisely.

18
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Afirst property is to declare the different classes of kraters as disjoint: a given

krater can only be of one type and therefore belong to only one class. But that
still doesn't define what a particular krater is.



Object Properties

Relationships between individuals
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- : o—
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=
\*\‘ >
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Column krater W T
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_________ Lﬁ foot
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Since a class is defined on the basis of relations between individuals, a krater
must be thought of not as a whole, but as a set of individuals, for example as the

set of its parts: A column krater is linked by the property hasPart to a foot, a neck,
two column-like handles, etc.

20
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It is therefore necessary to define a new class, the class of parts, disjoint from
the class of kraters. The different parts, Foot, Handle, Neck, etc., are subclasses

of the class Part.

21
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The next step is to set a new property between objects, the hasPart relationship.

This relationship links individuals of the krater class, which is the domain of the
relationship, to individuals of the class Part, the range of the relationship, which
includes all the individuals of its subclasses: Foot, Handle, Neck, etc.

22
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Definition of Krater Classes: Property Restrictions

v- @ owiThing
) Greek_God
v @ Krater
@ Bell_krater
@ Calyx_krater
b
@ Volute_krater
v @ Part
@ Foot
v @ Handle
@ Column_like_handle

@ Volute_like_handle
® Lip
»- @ Mouth
@ Neck

@ Upward_curling_handle

Asserted v,

rdfs:label [language: en]

column krater

rdfs:label  [language: f

cratére d colonnettes

4.Ontology building 5. Open Questions 6. Conclusion
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It then remains to specify how the individuals of a class are related to its different
parts through the hasPart relation. Thus, the class of column kraters is a
subclass of the class of objects linked to exactly 2 column-like handles.

23



Definition of Krater Classes: Property Restrictions

Class hierarchy: Column_krat EIME

0N X Asserted

v @ owlThing
1 Greek_God
v O Krater
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[ ] \Jnlule_raler
v @ Part
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This slide illustrates the formal definitions of the column krater and the volute

krater classes.
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To use the reasoner click Ressoner > Start reasoner v Show Inferences
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It is also possible to associate different information with classes in the form of
annotations. For example, associating a term designating the class in different
languages. The use of W3C vocabularies facilitates the exchange and
interoperability of ontologies. In our example, the terms "bell krater" in English
and "cratere en cloche" in French refer through the rdfs:label property to the
class Bell_Krater
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4. Ontology Building: Annotating

Class hierarc Em “bell krater”@en
L F o R o Asserted ~ [ “cratére en cloche”@fr
v @ owl:Thing rdfs:dabel [language: fr] rdfs:abel
¥ @ Krater cratére en cloche
P YBei_Krater Bell krater
@ Calyx_Krater rdfs:label [language: en]
© Column_Krater bell krater
| ® Volute_Krater
> @ Part
Description: Bell_Krater BD=SEE
Equivalent To
SubClass Of
@ Krater
General class axioms
SubClass Of (Anonymous Ancestor)
Instances
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4. Ontology Building: Annotating

He B O Asserted v L “bell krater”@en

-~~~ “cratere en cloche”@fr
v owl:Thing rdfs:dabel [language: 1] K
v Krater cratére & cloche rdfs:label
JBeil_Krater
Calyx_Krater rdfs:label [language: en] Bell krater |4-~
) Column_Krater bell krater R \
) Volute_Krater B
»> Part skos:definition [language: en] VN
Itis named for its bell-like shape, perhaps originating in wood. It has small horizontal upturned L
handles just over halfway up the body. ' skos:definition

' “Krater with a clearly
oieadation \ Rt 2 deflned. neck and
volute-like handles.”

hitps:/iwww.carc.ox.ac.uklcarciresources/introduction-to-Greek-Pottery/Shapesi/i<raters

\
rdfs:seeAlso

https://www.carc.ox.ac.uk/carc/resou
"M rces/Introduction-to-Greek-
Pottery/Shapes/Kraters
Krater

Calyx_Krater, Column_Krater, Volute_Krater

-
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Itis also possible, using annotations and standardized vocabularies such as
SKOS, to associate a definition using the skos:definition property and to link a
class to external resources using the rdfs:seeAlso property
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4. Ontology Building: Populating

Beazley-215424
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R EEETIOTE

To usa the rassones click Reasonar > Startressonet v Show Infarences &
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Vase Number: 215424
Fabric: ATHENIAN
Technique: RED-FIGURE
Shape Name: KRATER, CALYX

Date: -450 to -400
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A particular vase, for example, the krater reference 215424 in the Beazley
archive, will be represented by an individual instance of the calyx krater class. Its
attributes, such as the technique used, are represented using data properties,
linking the instance not to another object as with object properties, but to data

such as a string or numeric value
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5. Open Questions <@
Amphora protegeé

=

Definition: { essential characteristics } I"‘TJ‘ for storing and transport
g
Lt
h

without neck

Krater

Bell_Krater ::= { for_mixing_wine_and_water , without_neck,
with_foot, with_open_mouth,

with_upward_curling_handles } for mixing wine and water
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Protégé is an extremely powerful tool. However, some questions remain open
concerning the notion of definition and the linguistic dimension associated with
an ontology. Considering an object as a set of related entities does not represent
all the knowledge that defines a class. If the absence of a part, a bell krater has
no neck, can be expressed in the form of a logical property, how can the function
of a vase be represented: kraters are for mixing water and wine, while amphorae
are for storage and transport?

'for storage and transport' and 'for mixing water and wine' are essential
characteristics, which contribute to the definition of these classes.

While the representation of essential characteristics in the form of individuals is
logically correct, it is not satisfactory from the point of view of the domain
knowledge.




5. Open Questions

Linguistic Dimension

Terms as individuals

designates ’?

[ o,
t..
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\
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Concerning the linguistic dimension, a term, defined as a verbal designation of a
concept, cannot be reduced to a simple label attached to a class. The term
requires explicit representation in the form of an individual in order to be able to
attach information such as their grammatical category (part of speech) or status.
Such a representation raises problems whose solutions complicate the ontology
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6. Conclusion

Free environment

Large Community

v
v
v’ Definition based on relations between objects (Class)
v’ Description Logic Reasoners

v

W3C Standards compliant
A o How to represent essential characteristics (Concept)?
' o How to represent the linguistic dimension?
@

o How to take into account the way of thinking of Experts?

-
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To conclude. Protégé is an extremely powerful open-source tool with a large user
community. Compliant with W3C standards, it is based on logical foundations
that allow to verify several properties, including the consistency of the ontology.
Protégé is based on the notion of class, not concept. A class is defined not
according to the nature of its instances, but according to the relationships that
its instances have with other objects. These principles are well-suited for
organizing objects into a hierarchy of classes. However, they do not always align
with the way experts think. Moreover, the essential characteristics underlying
concept definitions and the linguistic dimension of ontology raise issues whose
solutions in Protégé are not entirely satisfactory..
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