TALOS ERA CHAIR IN ARTIFICIAL INTELLIGENCE
FOR HUMANITIES AND SOCIAL SCIENCES

TANENIETHMIO KPHTHE
UNIVERSITY OF CRETE

https://talos-aidssh.uoc.gr/
<¢| Protégé

Ontology Building Environment

Prof Christophe Roche
ERA Chair Holder - University of Crete
https://christophe-roche.fr/

May 2025

Horizon ERA Chair TALOS AI4SSH Project funded by the European Commission
Grant Agreement n° 101087269, https://cordis.europa.eu/project/id/101087269

CC BY-NC-ND @YQ@E

This MOOC is dedicated to Protége, the currently most widely used ontology
building environment.

1. Definitions

Contents

0. Introduction

1. Definitions
- Ontology

2. Principles
- Individual
- Property
- Class

3. Example
- Greek Vases

4. Ontology Building
- Class Hierarchy
Property Restriction
Populating
Annotating

5. Open Questions
- Definition
- Linguistic Dimension

6. Conclusion

TALOS ERA Chair Al for SSH - Project n° 101087269

2. Principles

3. Example 4. Ontology building 5.0pen Questions 6. Conclusion

Active ontology x

@ owlThing
v @ Krater

Direct instances:
Lk

For: @& Bell_krater
215332

Calyx_krater

" &
— o= STAFF, g
Column_krater ‘\\ Il hasPart B: DRAPESYOUTHS

@ Volute_krater

Individuals by class = | Classes = OntoGraf = | Data properties =

(IE Annotations | Usage

* Vase Number: 215332
PRRRRRI . \otalions: 215332 « Fabric: ATHENIAN x|

« Technique: RED-FIGURE

pe Name: KRATER, BELL

-450 to -400
uted To: Compare DINOS P by BEAZLEY
-ation: A: SACRIFICE, DRAPED MEN, ONE WI7

& Current Collection: Athens, National Museum: CC1

== '*\ = Previous Collections:
e ¥ = Athens, National Museum: 1466
hasPart Z—-—f * Publication Record: Beazley, 1.D., Attic Red-Figure
'\ / 1963): 1158
rdfs:label =
Description: 215332 (2] S ® & § Property assertions: 215332 0= E 6
pes bject property assertions
rdf:type) Bell_krater

215332 pIDEEE

sme Individual As mEvase_number 215332

<z
“Protégé” Christophe Roche CC BY-NC-ND m

The MOOC is divided into 6 parts. We’ll begin by recalling some definitions,
followed by the theoretical principles on which Protégé is based. We’ll then see
how to use Protégé to build an ontology with an example from Digital
Humanities. We’ll conclude with two open questions.

0, Introduction 1. Definitions 2.principles 3. Example: 4.Ontology building 5. Open Questions 6. Conclusion

0. Introduction

https://protege.stanford.edu/

v Protégé is a free, open-source ontology editor written in Java developed at Stanford University

v More than 300,000 users are registered.

protégé e e s s g

v W3C standards compliant

v Customizable user interface

W3C STANDARDS
SUPPORT

¥ Visualization support
EXTENSIBLE OPEN
SOURCE ENVIRONMENT

ACTIVE

¥ Ontology refactoring support COMMUNITY:

Direct interface to reasoners

Protégé is actively supported by a
strong community of users and
developers that field questions,

write documentation, and

Protégé fully supports the latest
OWL 2 Web Ontology Language
and RDF specifications from the
World Wide Web Consortium

Protége is based on Java, is
extensible, and provides a plug
and-play environment that makes it

a flexible base for rapid

¥ Highly pluggable architecture contribite plligdris prototyping and application

development

¥ Cross compatible with WebProtégé

TALOS ERA Chair Al for SSH - Project n° 101087269 “Protégé” Christophe Roche CC BY-NC-ND @Q

Protégé is the most widely used ontology-building environment. Written in Java, it
is a free, open-source software developed by Stanford University. It is supported
by a large community of users. Protégé is based on the first-order logic that
allows the use of reasoners to verify the consistency of ontologies. Protégé
supports W3C formats such as OWL, which allows ontologies to be exported as
RDF knowledge graphs.

0, Introduction 1. Definitions 2. Principles 3. Example 4.Ontology building 5. Open Questions 6. Conclusion

1. Definitions

Ontology An ontology is a formally-defined vocabulary for a particular domain of interest. Ontologies are typically based

on a class hierarchy (asserted and/or inferred), supplemented by assorted properties.
https://protegewiki.stanford.edu/wiki/Pr4 UG _mi_Glossary#Ontology

(> Ontologies are used to capture knowledge about some domain of interest. An ontology describes the concepts in the

domain and also the relationships that hold between those concepts.
A Practical Guide To Building OWL Ontologies Using Protégé 4 and CO-ODE Tools - Edition 1.3

Language OWL provides the theoretical basis for Protégé ontologies.
https://protegewiki.stanford.edu/wiki/Pr4 UG mi_Glossary#Ontology

Different ontology languages provide different facilities. The most recent development in standard ontology

languages is OWL from the World Wide Web Consortium (W3C).
A Practical Guide To Building OWL Ontologies Using Protégé 4 and CO-ODE Tools - Edition 1.3

Reasoner The logical model allows the use of a reasoner which can check whether or not all of the statements and
definitions in the ontology are mutually consistent and can also recognise which concepts fit under which

definitions. The reasoner can therefore help to maintain the hierarchy correctly.
A Practical Guide To Building OWL Ontologies Using Protégé 4 and CO-ODE Tools - Edition 1.3

&~ aninconsistent class is a class which cannot contain any individual because of its definition

TALOS ERA Chair Al for SSH - Project n° 101087269 “Protégé” Christophe Roche CC BY-NC-ND 4

Let's start by recalling what an ontology is. Some define an ontology as a formally
defined vocabulary. But it is above all a specification of a conceptualization used
to represent the knowledge of a domain. An ontology defines the concepts of a
domain and the relationships between these concepts.

These definitions are written using a knowledge representation language,
including the W3C standard Ontology Web Language (OWL).

Logical foundations allow the use of reasoners to verify, for example, the
consistency of an ontology.

0, Introduction 1. Definitions 2. Principles 3. Example 4.Ontology building 5. Open Questions 6. Conclusion

2. Principles

Extensional Logic

Goal: Organising the objects which populate the world into classes according to the
relationships that linked objects together

<&
< <
<&
<&
<&
<
<&
' = An object is not defined by its “nature”, but by its relations with other objects
@
TALOS ERA Chair Al for SSH - Project n® 101087269 “Protégé” Christophe Roche CCBY-NC-ND 5

To master a tool, whatever itis, it is mandatory to master the principles on which
itis based. Protégeé is based on an extensional logic, that is, on manipulating
objects, more generally called individuals. The goal is to organise the objects that
populate a reality into sets, called classes, according to the relationships linking
the objects to each other. The notion of Class replaces that of Concept.

Thus, an object is not defined by its nature, but by its relationships with other
objects.

0, Introduction 1. Definitions 2. Principles

3. Example 4.Ontology building 5. Open Questions 6. Conclusion

2. Principles
Components of OWL Ontologies

1) Individuals

Individuals, represent objects in the domain in which we are interested

&
England
3% Italy i

<o USA
Matthew<> e Flufty & Gemma

o Fido

Terminology: « individual », « instance », « object »

TALOS ERA Chair Al for SSH - Project n° 101087269

“Protégé” Christophe Roche

CCBY-NC-ND

6

The first principle is therefore the notion of individual, or object, even if it is not

necessary to create individuals to define classes. Individuals can represent any
object in the field of application.

2. Principles

Components of OWL Ontologies
2) Object Properties

Properties are binary relations on individuals, i.e. properties link two individuals together.

England

ANY
o)

S

O
Matthew hassibllﬂ Gemma

Terminology: « properties », « slots » (Protégé), « roles » (DL), « relations », « attributes »

TALOS ERA Chair Al for SSH - Project n° 101087269 “Protégé” Christophe Roche

7

ccav-nenp BO8T

The second principle is that of relation or property. Properties are binary
relationships between two individuals. The same individual can, as in this
example, be linked to several individuals, whether through the same relationship
or different relationships. Relationships are always oriented and named.

2. Principles

Components of OWL Ontologies
3) Classes

OWL classes are interpreted as sets that contain individuals.

¢ Italy
England

<© USA

Classes are a concrete representation of concepts.

Country Classes are defined using formal descriptions that state
precisely the requirements for membership of the class.

Pet

/\/ Person =?

Person ={x /3y Country(y) A livesInCountry (x,y) }
Person ={x /3y Pet(y) A hasPet (x,y) }

Person ={x /3y hasSibling(x,y) v hasSibling (y,x) }
TALOS ERA Chair Al for SSH - Project n® 101087269 “Protégé” Christophe Roche CCBY-NC-ND 8

Itis then possible to define classes, sets of individuals, according to the
relationships linking individuals. So, in this example, a person is not defined
according to his nature but according to his relationships. Itis then possible to
propose different definitions of the Person class. These definitions are not
necessarily equivalent.

0, Introduction 1. Definitions 2. Principles 3. Example 4.Ontology building 5. Open Questions 6. Conclusion

2. Principles

%&j Change your way of thinking

Objects with feet and back

TALOS ERA Chair Al for SSH - Project n° 101087269 “Protégé” Christophe Roche

CC BY-NC-ND 9

This approach to definition requires changing the way we think about things. A
thing is no longer a whole, but a set of related entities. Some domains are well-

suited to this approach. For example, a chair is an individual linked to its parts,
its backrest, its legs, and so on.

2. Principles

4) Property restriction A means to define classes of individuals

a) Existential Restrictions: describes (anonymous) classes of individuals that participate in at least one (some)
relationship along a specified property to individuals that are members of a specified class.

Tte----hasPart.__.o...-- -

Ty hasPart=="""" W

Objects with feet and back

b) Universal Restrictions: describes (anonymous) classes of individuals that for a given property only (only) have

relationships along this property to individuals that are members of a specified class (all values of the
property must be of a certain type)

c) Has value: at least one of the values of the property is a certain value

TALOS ERA Chair Al for SSH - Project n° 101087269

“Protégé” Christophe Roche ©C BY-NC-ND 10

A class is then defined as a set of property restrictions, that is, restrictions on the
objects that can be linked by the property. Restricting the hasPart relationship to

the Back Class allows to define the class of individuals which have a Back of
which the Chair Class is a subset.

10

3. Example

0, Introduction 1. Definitions 2. Principles 3. Example 4.Ontology building 5. Open Questions 6. Conclusion

CLASSICAL ART RESEARCH CENTRE

Beazley Archive: https://www.carc.ox.ac.uk/carc/Home

The Krater Ontology

“The term 'krater' suggests a mixing-vessel (compare Greek kerannumi - to mix), and we know that the wine served at
the symposium was mixed with water.

=
@,

T

=

@

Column-krater: Named for its column-like handles, the column-krater is first known from Corinthian examples dated to
the late seventh century. It is regularly produced by Athenian potters from the first half of the sixth-century until the third
quarter of the fifth. It seems from graffiti on Athenian red-figure examples that the vessel was referred to as Korinthios or
Korinthiourges.

Volute-krater: The volute-krater is named after its handles. The Francois Vase is a famous and early example, but the
typical Athenian form occurs only later in the sixth century, with the handles tightly curled so that they look like the
volutes on lonic columns. The shape is also found in metal. Over the course of the fifth and fourth centuries, examples
become slimmer, and Apulian volute-kraters from South Italy are particularly elaborate.

Calyx-krater: The handles of the calyx-krater are placed low down on the body, at what is termed the cul. Their upward
curling form lends the shape an appearance reminiscent of the calyx of a flower, hence the name. The earliest known
example was possibly made by Exekias in the third quarter of the sixth century. It continues to be produced, mainly in red-
figure, becoming more elongated over the course of the fifth and fourth centuries.

Bell-krater: The latest of the four krater-types, it first occurs in the early fifth century, and is not found decorated in black-
figure. It is named for its bell-like shape, perhaps originating in wood. It has small horizontal upturned handles just over
halfway up the body. Some do not have a foot, and earlier examples may have lugs for handles.

TALOS ERA Chair Al for SSH - Project n° 101087269 “Protégé” Christophe Roche

UNIVERSITY OF

XFORD

CC BY-NC-ND @I‘)i?] 11

Let us take for example the definition in Protégé of the ontology of Greek vases,
and more precisely, the ontology of kraters as defined in the Beazley archive. A
krater is an ancient Greek vessel used to mix water and wine. There are different
types of kraters: column, volute, calyx, bell craters, etc. These types of kraters
are distinguished by the type of their handles or their shape.

11

0, Introduction 1. Definitions 2.principles 3. Example: 4.Ontology building 5. Open Questions 6. Conclusion

4. Ontology

logy-2 (hitp: 3 iogy-2) : [http: = o x
. .
Bu Ild I ng File Edit View Reasoner Tools Refactor Window Help
@ untitied-ontology-2 (hito emanticweb. org/rochefontologies/2025/3/untitlzd-ontology-2. ~Q
|Active ontology = |Entities = Indwiduals by class = DL Quary =
Ontology header: EDE®E | Ontology metrics DIEEE
Ontology IRI http:www. X 0] Metrics
Ontology Version IR Adom 0
Logical adiom count 0
Annetations Declaration axioms count o
Ciass count 0
roté é Object property count 0
p g Data property count o
Individual count]
Annotation Properfy count o
Class axioms
SubClassOf 0
EquivalentClasses 1]
DisjoiniClasses 0
GCl count)
Hidden GC1 Count o
Ontology imports | Ontology Prefixes General class axioms
Imported ontologies: BIEEE
Diroct fmport
Ho Reasoner set. Select s reasones from menu ¥ Show inferences =
. . o . DO
TALOS ERA Chair Al for SSH - Project n° 101087269 “Protégé” Christophe Roche CC BY-NC-ND m 12

When Protégé is opened, a window is displayed with different tabs. Each tab is
divided into views. The first tab named 'Active ontology' lists information about
the ontology in use such as the number of classes, individuals, properties, etc.

4. Ontology
Building

protégé

TALOS ERA Chair Al for SSH - Project n° 101087269

0, Introduction 1. Definitions 2. Principles 3. Example 4. Ontology building 5. Open Questions 6. Conclusion
% untitied-ontology-2 (hitp: ntitled-ontology-2) : [httpyfwwisemanticweb.orglrochefon.. — O X
File Edi View Reasoner Tools Refactor Help

@ untitled-ontology-2 (httr s ¥ pntology-2 -Q

-

Active ontology = |Enfities = Individuals by class Create new tab... v Eniities

Ontology header:

Object rties
Ontology IRI hitp/iwew.semantiowe.or Mmoot tab. = ml P"’T
i a properties
Ontology Version IRI Export current tab... e . .
Store current layout MIASLION PIOPSIY o5 5
Arntations Reset selected tab to default state ¥ Indviduals by class 5
OWLViz 0
Capture view to clipboard... ' DL Query 5
Timestamp log / console AOWLN 0
Show log. OntoGraf o
o
Look & Feel & SRtIsh
OWLAX
Refresh user interface SQWRLTab .
SPARQL Query o
o
GCI count 0
Hidden GCl Count]
Ontology imports | Ontology Prefixes General class axioms
Imporied ontologies DIEEE

o Reasoner ser. Select a reasoner from the Reasoner menu v Show Inferances

“Protégé” Christophe Roche

ccBY-NC-ND &)

The definition of classes is done using a dedicated tab that must be created, as
illustrated in the figure of slide 13

13

Class hierarchy (inferred) Annotations ' Usage

Class hierarchy

<

protégé

Asserted ~

Class Hierarchy Krater |

rdfs:sb

rdfs:subClassOf

rdfs:subClassOf
Volute krater | rdfs:subClassOf

Calyx krater

Bell krater |
Column krater Ly

No Ressoner set. Select a reascner from the Reasoner menu
TALOS ERA Chair Al for SSH - Project n° 101087269 “Protégé” Christophe Roche

¥ Show Inferences

0, Introduction 1. Definitions 2. Principles 3. Example 4. Ontology building 5. Open Questions 6. Conclusion
4, OntOIOgy 4 untitled-ontology-5 (http:// b.org 025/3/untitled-ontology-5) : [httpy/wwwsemanticweb... — O X
Build i n Eile Edit View Reasoner Tools Refactor Window Help
g @ untitled-ontology-5 (htt -Q
Active ontology = Entities = Individuals by class x DL Query x Classes x

ccev-nenp @BOSG 14

The ontology of kraters is a set of classes organized in a hierarchy according to
the set relationship of inclusion: column krater is a subclass of the class krater.

14

0, Introduction 1. Definitions 2. Principles 3. Example 4. Ontology building 5. Open Questions 6. Conclusion
Ontol ildi /AN
4. Ontology Building

Class hierarchy (inferred) Annctations | Usage

Class hierarchy Annotations: owl:Thing BIEEE

Annotations

2% (%) Asserted v

[Jowi Thing

<4 Create a new Class X
Name
protégé

IRI hitp:/www.semanticweb.orgirochelontolo 2025/3/untitied-ontology-5#Krater

New entity options...

OK Annuler
T e G ST gy
°

Class Hierarchy Krater ubClass Of (Anonymous Ancestor)

e stances

rdfs:subClassO 5

rdfs:subClassOf rdfs:subClassOf
Volute krater | rdfs:subClassOf Calye kraterm arget for Key
B
Column krater Eell krater sioirt With
No Reasoner set. Select a reasoner from the Reasoner menu v Show Inferences [E
TALOS ERA Chair Al for SSH - Project n° 101087269 “Protégé” Christophe Roche CCBY-NC-ND 15

Every class is a subclass of the Thing root class, which groups all objects. The
creation of the Krater class is therefore done from the Thing root class.

4. Ontology Building: Class Hierarchy

Class higrarchy (inferred) Annotations |Usage

Class hierarchy

Asserted v
¥ @ owl Thing
)
4 Create a new Class X

p

protégé

Name Bell Krateq

FNEEE

IRl www.semanticweb.org/rochelontologies/2025/3untitied-ontolagy-6#8ell_Krater

Mew entity options..

OK Annuler

.
. i \Nony r
Class Hierarchy , rater
ance
rdlfs:subClassOf :
rdfs:subClassOf rdfs:subClassOf
" arget for Key
Volute krater rdfs:subClassOF Eape R
Bell krater isjoint With

°
Column krater

il

Nc Reasoner set. Select s reasoner from the Reasoner menu v Show

TALOS ERA Chair Al for SSH - Project n° 101087269 “Protégé” Christophe Roche

o

CC BY-NC-ND

Tiacies

@080 16

The different types of Kraters are subclasses of the Krater class. They are created

in a similar way to what we have just seen.

16

4. Ontology
Building

Class hierarchy: (0= @ § Annotations: Volute_Krater
1: & (%} Asserted ¥ 1 iions
v-- @ owl:Thing
v-- @ Krater
@ Bell_Krater

@ Calyx_Krater . ‘ °
@ Column_Krater Class Hierarchy _ Krater |

@
Description: Vo

S50 rdfs:subClassOf :
protégeé Equivelend To rdfsisubClassOf it cubClassaf
et
SubClass Of M rdfs:subClassOf | -Eam krater'|
Krat ——
i Bell krater.\

L]
| Column krater

General class axioms

SubClass Of (Anonymous Ancestor)
Instances

Target for Key

Disjoint With

TALOS ERA Chair Al for SSH - Project n® 101087269 “Protégé” Christophe Roche CC BY-NC-ND

The result is the class hierarchy of slide 17

0, Introduction

4. Ontology _
Building . .

V. owl:Thing

v Krater
protégé

Bell_Krater

Calyx_Krater
) Column_Krater
__JVolute_Krater

e/

TALOS ERA Chair Al for SSH - Project n° 101087269

1. Definitions 2. Principles

3. Example

(%] Asserted v ;o one

Krater

4.Ontology building 5. Open Questions 6. Conclusion

Class Hierarchy Krater
rdfs:subClassOf :
RfsisUbClassOF rdfs:subClassOf
Volute krater rdfs:subClassOf

Column krater

Definition?

“Protégé” Christophe Roche

Calyx krater

Bell krater

CC BY-NC-ND 18

Defining the different types of kraters as subclasses of the class krater does not
define them. Indeed, nothing distinguishes, except their name, the different
types of kraters. They still need to be defined more precisely.

18

4. Ontology

B .I d Class hierarchy: Volute_Krate:Z]() 5 ® & § Annotations: Volute_Krater
ul Ing we ® O Asserted v
v @ owlThing
v @ Krater
- Bell_Krater
~ @ Calyx_Krater

Annotations

L J
@ Column_Krater Class Hierarchy Krater |
®
Description: Vd
Py rdfs:subClassOf dfs:subClassOf
protege SubClass Of D i rdfs:subClassOf
@ krater Volute krater | rdfs:subClassOf | L4
Calyx krater |
General class axio I Bellkiaters
Column krater
SubClass Of (Anenymous Ancestor)
Instances
Target for Key Definition?
T
— @ﬁrjmﬂ. Column_Krater, Bell_Krater
- ,& Nicin n Of
TALOS ERA Chair Al for SSH - Project n° 101087269

“Protégé” Christophe Roche

CCBY-NC-ND € 19

Afirst property is to declare the different classes of kraters as disjoint: a given

krater can only be of one type and therefore belong to only one class. But that
still doesn't define what a particular krater is.

Object Properties

Relationships between individuals

open mouth

Mouth W—rz‘?
| ‘ < . neck
i |~ Handle p ‘\nu ‘
Lip) ?
| o / handle
Shoulder Il . ; .
-~ Neck ring ; p '__
! hasPart .-~ ih .
Body — ; _‘-"/ ?
/ T S
’ ’ -
: - T hasPart .-
- : o—
: e) handle
=
*\‘ >
N hasPart . _’
Column krater W T
hasPart
_________ Lﬁ foot

TALOS ERA Chair Al for SSH - Project n° 101087269

“Protégé” Christophe Roche

CC BY-NC-ND 20

Since a class is defined on the basis of relations between individuals, a krater
must be thought of not as a whole, but as a set of individuals, for example as the

set of its parts: A column krater is linked by the property hasPart to a foot, a neck,
two column-like handles, etc.

20

4. Ontology
Building

<

protégé

Class hierarchy: Part

Be B o
v @ owl:Thing
v @ Krater
i @ Bell_Krater
i @ Calyx_Krater
i @ Column_Krater

@ Column_like_Handle
@ upward_Curling_Handle
@ Volute_like_Handle

E[DESmEE jAnnotations: Part

Asserted v .. cictions

SubClass Of (Anonymous Ancestor)

Instances bt 2=t =
hasPart __»,’ =
Target for Key .\\ Sy A
hasPart -\‘--,,. =
Disjoint With foot
@ Krater

Description: Part i =0]e)
Equivalent To g
open mouth
S ——r neck
SubClass Of - W:—ﬂf
hasPar;"' ?
2 hasPart
General class axioms handle

\\ fr hasPart _:“E
o W handle

TALOS ERA Chair Al for SSH - Project n® 101087269

“Protégé” Christophe Roche

It is therefore necessary to define a new class, the class of parts, disjoint from
the class of kraters. The different parts, Foot, Handle, Neck, etc., are subclasses

of the class Part.

21

4. Ontology
Building

<

protégé

i

TALOS ERA Chair Al for SSH - Project n° 101087269

—

e X O

V- owltopObjectProperty
L ghasPart]

hasPart

- X

Obiject property hierarchy: hasPart 2101 S m & JFNEENERERIEree
LEETL EL R Gl Annotations: hasPart

ChaE IS EE

Functional Equivaler

Inverse functio

v Transitive e
Symmetric Inverse Of

v Asymmetric

Reflexive

Irreflexive

“Protégé” Christophe Roche

CC BY-NC-ND @Y‘-’I"Iﬂ

22

The next step is to set a new property between objects, the hasPart relationship.

This relationship links individuals of the krater class, which is the domain of the
relationship, to individuals of the class Part, the range of the relationship, which
includes all the individuals of its subclasses: Foot, Handle, Neck, etc.

22

0, Introduction 1. Definitions

2. Principles 3. Example:

Definition of Krater Classes: Property Restrictions

v- @ owiThing
) Greek_God
v @ Krater
@ Bell_krater
@ Calyx_krater
b
@ Volute_krater
v @ Part
@ Foot
v @ Handle
@ Column_like_handle

@ Volute_like_handle
® Lip
»- @ Mouth
@ Neck

@ Upward_curling_handle

Asserted v,

rdfs:label [language: en]

column krater

rdfs:label [language: f

cratére d colonnettes

4.Ontology building 5. Open Questions 6. Conclusion

TALOS ERA Chair Al for SSH - Project n° 101087269

s 2
protégé
il
n
4 Column_krater X
| Data restriction creator | Class exprassion editor | Object restriction creator [Class hierarchy
Restricted property Restriction filler
TS| | 3xd Asserted %o | Asserted ~
v = owltopObjectProperty v @ owlThing
= figured @ Greek_God
| JhasPart » @ Krater
v-@ Part
@ Foot
v @ Handle
L JColumn_like_handie
’ & Upward_curling_handle
@ volute_like_handle

@ Lip

» @ Mouth

@ Neck

Restriction type
Exactly (exact cardinality) + Cardinality 2
OK Annuler

“Protégé” Christophe Roche

ccBy-Nc-ND EES0)

It then remains to specify how the individuals of a class are related to its different
parts through the hasPart relation. Thus, the class of column kraters is a
subclass of the class of objects linked to exactly 2 column-like handles.

23

Definition of Krater Classes: Property Restrictions

Class hierarchy: Column_krat EIME

0N X Asserted

v @ owlThing
1 Greek_God
v O Krater
@ Bell_krater

[] \Jnlule_raler
v @ Part
@ Foot

Annotations: Column_krater

Annctations

rdfslabel [language: en]
column krater

rdfslabel [language: fi]
cratere d colonneties

¥ @ Handle
@ Column_like_handie
@& Upward_curling_handle
@ Volute_like_handie

@ hasPart exactly 2 Column_like_handie
@ Krater

General class axioms

TALOS ERA Chair Al for SSH - Project n® 101087269

protégé

hierarchy: Volute_krate Z100 5@ & § Annotations: Volule_krater

e+ ®
Lo | o+

v

»

2]

v~ @ owi:Thing
@ Greek_God
v @ Krater
@ Bell_krater

@ Calyx_krater

- @ Column_krater

B _JVolute_krater

v- @ Part

@ Foot
@ Handle

@ Column_like_handle

& Upward_curling_handie

@ Volute_like_handle
@ Lp

@ Mouth

~ @ Neck

Annotations

rdfs:label [language: en]
volute krater

skos:definition [language: fr]
Krater with a clearly defined neck and volute-like hand

Description: Volute_krater

Equivalert To

@ hasPart exactly 2 Volute_like_handle
@ Krater

Gene

SubC

Of (Anonymous Ancestor)

“Protégé” Christophe Roche

CC BY-NC-ND

This slide illustrates the formal definitions of the column krater and the volute

krater classes.

24

0, Introduction 1. Definitions 2.principles 3. Example: 4.Ontology building 5. Open Questions 6. Conclusion

4. Ontology Building: Annotating

Class hi ¥ iCiass i h Usage
chy: B krate !7, Bell_kra

Annotations ter = “pell krater”@en
—— [a = S —— ,.-”" “cratére en cloche”@fr
] 2 i refs:ldbel
v @ owlThing ’
v Koater (Bellrater 4~
N

Calyx_krater

Column_krater

Volute_krater (Q Be"_kfatEf prd
T | G || 2§ | Literal E’nl‘i_ly IRI | IRI Editor | Property values |

REAN: B owl:backwardCompatibleWith
Krater m owl.deprecated

B owl:incompatibleWith

B owl-priorVersion

== owlversioninfo

W rdfs:comment

B rdfs;isDefinedBy

aaad rats:iabel
rdfs:seeAlso

bell krater

Type b Lang (en hd
oK Annuler

Volute_krater, Calyx_krater, Column_krater

To use the reasoner click Ressoner > Start reasoner v Show Inferences

-
TALOS ERA Chair Al for SSH - Project n° 101087269 “Protégé” Christophe Roche CC BY-NC-ND @m‘“‘i?} 25

It is also possible to associate different information with classes in the form of
annotations. For example, associating a term designating the class in different
languages. The use of W3C vocabularies facilitates the exchange and
interoperability of ontologies. In our example, the terms "bell krater" in English
and "cratere en cloche" in French refer through the rdfs:label property to the
class Bell_Krater

25

4. Ontology Building: Annotating

Class hierarc Em “bell krater”@en
L F o R o Asserted ~ [“cratére en cloche”@fr
v @ owl:Thing rdfs:dabel [language: fr] rdfs:abel
¥ @ Krater cratére en cloche
P YBei_Krater Bell krater
@ Calyx_Krater rdfs:label [language: en]
© Column_Krater bell krater
| ® Volute_Krater
> @ Part
Description: Bell_Krater BD=SEE
Equivalent To
SubClass Of
@ Krater
General class axioms
SubClass Of (Anonymous Ancestor)
Instances
TALOS ERA Chair Al for SSH - Project n° 101087269 “Protégé” Christophe Roche CC BY-NC-ND

26

4. Ontology Building: Annotating

He B O Asserted v L “bell krater”@en

-~~~ “cratere en cloche”@fr
v owl:Thing rdfs:dabel [language: 1] K
v Krater cratére & cloche rdfs:label
JBeil_Krater
Calyx_Krater rdfs:label [language: en] Bell krater |4-~
) Column_Krater bell krater R \
) Volute_Krater B
»> Part skos:definition [language: en] VN
Itis named for its bell-like shape, perhaps originating in wood. It has small horizontal upturned L
handles just over halfway up the body. ' skos:definition

' “Krater with a clearly
oieadation \ Rt 2 deflned. neck and
volute-like handles.”

hitps:/iwww.carc.ox.ac.uklcarciresources/introduction-to-Greek-Pottery/Shapesi/i<raters

\
rdfs:seeAlso

https://www.carc.ox.ac.uk/carc/resou
"M rces/Introduction-to-Greek-
Pottery/Shapes/Kraters
Krater

Calyx_Krater, Column_Krater, Volute_Krater

-
TALOS ERA Chair Al for SSH - Project n° 101087269 “Protégé” Christophe Roche CC BY-NC-ND @‘“‘i?] 27

Itis also possible, using annotations and standardized vocabularies such as
SKOS, to associate a definition using the skos:definition property and to link a
class to external resources using the rdfs:seeAlso property

27

4. Ontology Building: Populating

Beazley-215424

eazley. o)
on
Direct instances: Beazley-215- DB EE g

L il
For @ Calyx_krater

Beazley-215424 T

© Calyx_krater

[DADs loud\Inst. - o X
File Edit View Reasoner Tools Refactor Window Help
© untitled-ontology-4 (http:/www semanticweb org/croche/ontologies/2023/4/untit ~ | Search
Krater) Calyx_krater
Active ontology = | Entities = | Individuals by class x| Classes x | Data properies x|
Class hierarchy: -‘-’:‘-:\7 r FIDE J:L“E Annotations mU_Si_EB_
%8 | PERTVRA Annotations: Beazley-215424 DISEE
v @ Krater
© Bell_krater rdfs:label
qcanyx krater]
@ Column_krater

@ Volute_krater rdfs:seeAlso
hitp:fiark dasch swissiark72163/080e- 76825801 7ac42-7

Description; Beaziey-215424 FIM=MEE | Property asserlions: Beazley-215424 ME®EE

Data propsrty assertions (@
== technique “"Red-Figure”@en
mfabric "Athenian"@en

R EEETIOTE

To usa the rassones click Reasonar > Startressonet v Show Infarences &

TALOS ERA Chair Al for SSH - Project n® 101087269

“Protégé” Christophe Roche

Vase Number: 215424
Fabric: ATHENIAN
Technique: RED-FIGURE
Shape Name: KRATER, CALYX

Date: -450 to -400

28

CCBY-NC-ND &

A particular vase, for example, the krater reference 215424 in the Beazley
archive, will be represented by an individual instance of the calyx krater class. Its
attributes, such as the technique used, are represented using data properties,
linking the instance not to another object as with object properties, but to data

such as a string or numeric value

28

5. Open Questions <@
Amphora protegeé

=

Definition: { essential characteristics } I"‘TJ‘ for storing and transport
g
Lt
h

without neck

Krater

Bell_Krater ::= { for_mixing_wine_and_water , without_neck,
with_foot, with_open_mouth,

with_upward_curling_handles } for mixing wine and water

TALOS ERA Chair Al for SSH - Project n° 101087269 “Protégé” Christophe Roche CC BY-NC-ND 29

Protégé is an extremely powerful tool. However, some questions remain open
concerning the notion of definition and the linguistic dimension associated with
an ontology. Considering an object as a set of related entities does not represent
all the knowledge that defines a class. If the absence of a part, a bell krater has
no neck, can be expressed in the form of a logical property, how can the function
of a vase be represented: kraters are for mixing water and wine, while amphorae
are for storage and transport?

'for storage and transport' and 'for mixing water and wine' are essential
characteristics, which contribute to the definition of these classes.

While the representation of essential characteristics in the form of individuals is
logically correct, it is not satisfactory from the point of view of the domain
knowledge.

5. Open Questions

Linguistic Dimension

Terms as individuals

designates ’?

[o,
t..

TALOS ERA Chair Al for SSH - Project n° 101087269

rdfs:subCIassOf/

A

-- “volute krater”@en

rdfs:label

-- prefLabel
status

T~ rdfitype

AN
\
\

* il
volute_krater [¢-<<=<:

_ skos:note " “...’@en

skos:definition
T77ms----- “Krater with a clearly defined neck and volute-like handles.”@en

“a term is a designation of a concept” [ISO 1087: 2019]

a[term] is a verbal

\

designation

of aconcept

CC BY-NC-ND 30

“Protégé” Christophe Roche

Concerning the linguistic dimension, a term, defined as a verbal designation of a
concept, cannot be reduced to a simple label attached to a class. The term
requires explicit representation in the form of an individual in order to be able to
attach information such as their grammatical category (part of speech) or status.
Such a representation raises problems whose solutions complicate the ontology

30

6. Conclusion

Free environment

Large Community

v
v
v’ Definition based on relations between objects (Class)
v’ Description Logic Reasoners

v

W3C Standards compliant
A o How to represent essential characteristics (Concept)?
' o How to represent the linguistic dimension?
@

o How to take into account the way of thinking of Experts?

-
TALOS ERA Chair Al for SSH - Project n° 101087269 “Protégé” Christophe Roche CC BY-NC-ND @@‘“‘i?j 31

To conclude. Protégé is an extremely powerful open-source tool with a large user
community. Compliant with W3C standards, it is based on logical foundations
that allow to verify several properties, including the consistency of the ontology.
Protégé is based on the notion of class, not concept. A class is defined not
according to the nature of its instances, but according to the relationships that
its instances have with other objects. These principles are well-suited for
organizing objects into a hierarchy of classes. However, they do not always align
with the way experts think. Moreover, the essential characteristics underlying
concept definitions and the linguistic dimension of ontology raise issues whose
solutions in Protégé are not entirely satisfactory..

31

