TALOS ERA CHAIR IN ARTIFICIAL INTELLIGENCE
R HUMANITIES AND SOCIAL SCIENCES

MANMEIMIETHMIO KPHTHE
UNIVERSITY OF CRETE

https://talos-ai4ssh.uoc.gr/

A beginner’s notebook on
NLP

Dimitris Bilianos
Postdoctoral Researcher

- Fiﬂ?&'ﬁfaﬁ‘if.?.in Horizon ERA Chair TALOS Al4SSH Project funded by the European Commission
Grant Agreement n° 101087269, https://cordis.europa.eu/project/id/101087269



Welcome to Natural Language Processing with Python!

Over the next few minutes, we'll learn how to:

e Open and read text from .txt files

Calculate some simple but useful metrics to understand our text better,

like how many words and characters it contains.

e Perform a few basic preprocessing steps to clean up our text and make it
easier to analyze.

—We'll be using Python and Google Colab, which provide a fantastic
environment for writing and running code. Let's dive in and see how we can
unlock the power hidden within text!



Loading a file into our Python environment

&« & 25 colab.research.google.com P

Open notebook

ble of conter

Examples > ' 7

Search notebooks C)\ e @
Recent >

Title Last opened J First opened 11'

Google Drive >

% text-processing-tutorialipynb 10:43 17 January B &
GitHub >

QO Welcome to Colab 10:23 15 May 2020 |4

Upload >

% MOOC2 NLP notebook.ipynb 09:49 6 May B 2

% NLTK-Alexander-NER.ipynb 6 May 29 January B A

4+ New notebook Cancel


http://drive.google.com/file/d/1wah2wlePT184Ew53173VXasWhABaK-7_/view

Reading our text file

o 1 # Open the text file in read mode ('r'
2 with open('my_text_file.txt', 'r'
3 text_content = file.read()

r') as file:

S + kA ¥+ 1 ra a4+ and ~ £+, ) -+ -~ 'y 4 . - Avi L - 1 vy AT al
\OwW, The entire content OT The T1Le 1S Storea 1n tne tTtext_content Vvarlec

6 print(text_content)

Explanation of the code block:

All the lines that are green and start with the # symbol are just comments

e open('my_text file.txt', 'r'): This line tries to open a file named my_text_file.txt. The 'r' tells Python we want to read from
this file.
with ... as file:: This way of handling files ensures that the file is automatically closed even if errors occur.
text_content = file.read(): This reads the entire content of the opened file and stores it in a variable called text _content.
print(text_content): This will display the text that was read from the file once we press the play button on the left side of
the code block.



Getting a feel for our text: Basic metrics

Define a function to calculate bas

def calculate_metrics(text): # we define &
word_list = text.split()

num_words = len(word_list)

num_chars = len(text) # Total character co
unique_words = len(set(word_list))

LI B

1#
2 de
3
4
5
6
7
8
9

The set() function creates a set from the word_list.
A set 1s a data structure that can only contain unique elements.
Any duplicate elements in the original list are removed when you create a set

= R
W N

return num_chars, num_words, unique_words # To be

[
BN

Explanation of the code block:
The code above defines a function that takes one argument, text, which represents the text to analyze.

This function breaks the text into words and passes them into a word list. It then calculates the number of words in this list
as well as the overall number of characters in the text. Then, it creates a set of words, removing any duplicate elements,
such as words that appear more than once. Finally, the function is instructed to output the three calculated values



Time to put our function into action

1 text_to_analyze = "This 1s just a simple example to be used as a demonstration’
2 char_count, word_count, unique_count = calculate_metrics(text_to_analyze)

3

4 print(f"Total characters: {char_count}"

5 print(f"Total words: {word_count}")

6 print(f"Number of unique words: {unique_count}")

S5+ Total characters: 59
Total words: 12
Number of unique words: 11

e Understanding these basic metrics is a fundamental first step in exploring any text
data.
e They can give you a quick sense of the text's length and vocabulary richness



Cleaning Up Our Text: Basic Preprocessing

o Converting all the text to lowercase is a common first step.

e Why do we do this? Because computers treat "The" and "the" as different
words.

e By converting everything to lowercase, we ensure that these variations are
counted as the same word, which is usually what we want for analysis.

o 1 text = "This 1s an Example with Mixed Case."
2 lowercased_text = text.lower()
3 print(lowercased_text)

=¥ this is an example with mixed case.




Wrapping up!

In this brief introduction, we've covered some fundamental concepts and practical
techniques:

e We learned how to open and read text data from .txt files using Python's built-in
capabilities.

e \We explored how to calculate basic metrics like the total number of characters, words,
and unique words in a text, giving us an initial understanding of its size and vocabulary.

e Finally, we touched upon basic preprocessing, including converting text to
lowercase, which helps in preparing text for more advanced analysis.



What’s next

This is just the beginning of your NLP journey. There's a vast and fascinating world to explore,
such as:

e Explore more preprocessing techniques: Learn about lemmatization, handling
punctuation, and dealing with different text encodings.

e Use Python libraries such as NLTK, for tasks such as part-of-speech tagging (identifying
the grammatical role of each word) and named entity recognition (identifying people,
places, organizations, etc.).

e Get started with text analysis tasks: Begin exploring techniques like sentiment analysis
(determining the emotional tone of text) and topic modeling (discovering the main topics in
a collection of documents).



	Slide 1
	Slide 2: Welcome to Natural Language Processing with Python!
	Slide 3: Loading a file into our Python environment
	Slide 4: Reading our text file
	Slide 5: Getting a feel for our text: Basic metrics 
	Slide 6: Time to put our function into action
	Slide 7: Cleaning Up Our Text: Basic Preprocessing
	Slide 8: Wrapping up!
	Slide 9: What’s next

