‘é&s)&“é EAAHNIKH AHMOKPATIA
k\)w NANEMIZTHMIO KPHTHz2

Elcaywyn otnv Emotnun kot
Texvoloyla Twv YInpeoLwV
Evotnta 2: Writing XML

Xpnoto¢ NikoAdou
TuApa Emotipng YrnoAoyiotwyv

EMNIXEIPHEIAKO NMPOIPAMMA
EKMAIAEYZH KAl AIA BIOY M =§ Ez nA
“ H npdypapya yia v ovintuén

YNOYPTEIO MAIAEIAL & BPHEKEYMATQN, MOAITIZMOY & ABAHTIZMOY
EIAIKH YNHPEXZIA AIAXEIPIZHE

Me ™ ouyxpnpartodotnon tng EAAGdag kat tng Evpwnaikng Evwong

Adelec Xpnonc

To opov ekmaldeUTIKO UALKO UTtOKELTAL 0TV adela xpriong Creative
Commons kal el6KOTEPQ

Avapopa — Mn sunopikn Xprnon — Oxt Mapaywyo Epyo v. 3.0

(Attribution — Non Commercial — Non-derivatives)

(@0l

E€atpeitot amo tnv we avw adeta UALKO Tou MepLAABAVETAL OTLC
Sladaveleg ToU HaBAMATOC, KOl UTIOKELTOL 0€ AAAOU TUTIOU AdELla xpnong.
H adela xpriong otnv omoia UTTOKELTOL TO UALKO aUTO avadEPETOL PNTWC.

Xpnupatodotnon

To ap OV ekaAldEUTIKO UALKO €XeL avarmtuxBOel ota mAaiola
ToU ekTtaltdevuTIKOU £pyou tou dLbaokovta.

To €pyo «Avolkta Akadnuaika Madnpota oto Maveniotipio

Kpntne» €xeL xpnuatodotnoetl povo tn avadlapopdwaon tou
eKTIOLOEVUTIKOU UALKOU.

To €pyo uAomoleital oto nmAaiolo tou Emyelpnolokou
Mpoypappatoc «Eknaidevon kot Ala Blov Mabnon» ko
ocuvyxpnuatodoteital amno tnv Evpwmnaikni Evwon (Evpwrmaiko
Kowwviko Tapelo) Kot oo €Bvikou ¢ TOpouc.

EMIXEIPHXIAKO MNPOIPAMMA
EKI'IAIAEYZH KAI AIA BIOY MAGHZH -J Ez rIA

YNOYPFEIO NAIAEIAS & BPHEKEYMATON, NOAITIEMOY & ABAHTIEMOY
EvpwnaikiEvwon EIAIKH YMHPEZIA AIAXEIPIZHE

E 6 K S Toiet
vpamatic Towavu@ TAHEL Me T cuyxpnparodotnon tng EAAadag kat tng Evpwmnaikng ‘Evwong

D. Silberberg

XML
Writing XML
605.44 / 635.444

David Silberberg
Lecture 2

XML Technology & Application
Writing XML

Let’s Represent a House

D. Silberberg

home
owner address layout
.'IIIII III
/
/
i .'"II I|I
first last /
/
street city state room
name width length

ro0In

name

width

length

XML Technology & Application
Writing XML

owner address layout
.'IIIII III
/
/
i ."'Il I|I
first last /
/
street city state room
name width length

Let’s Represent a House

home

D. Silberberg

room

naime

length

XML Technology & Application
Writing XML

owner address layout
.'IIIII III
/
/
i ."'II I|I
first last /
/
street city state room
name width length

Let’s Represent a House

home

D. Silberberg

o011l

name

length

XML Technology & Application
Writing XML

XML Declaration (cont.)

— Encoding and Standalone attributes are optional

— First character in the file should be <
* No breaks allowed
* No spaces allowed
* Some parsers are more flexible

D. Silberberg XML Technology & Application
Writing XML

XML Declaration - Encoding

 Definition

— Character code 1s a one-to-one mapping between characters and their
machine representations

— Character encoding is the method used to represent the characters digitally

« ASCII
— American Standard Code for Information Interchange
— Most common English standard
— Eight bit representations
« “A”is 65
*« “a”1s 97
— Only represents 256 characters
— Fine for English
— Not fine for other character sets

D. Silberberg XML Technology & Application 6
Writing XML

Encoding (cont.)

* Unicode
— UTF-16 (Unicode Transformation Format-16)
* 16 bits = 2 bytes for every character
« 216 different characters can be represented

* If you are representing ASCII text, you waste much space because
every character can be represented by 1 byte

— UTE-8

* 8 bits = 1 byte for every character
Actually, the high bit encodes whether or not 7-bit ASCTI 1s used
If the bit 1s set one way, it represents 7-bit ASCII characters in one
byte
I the bit 1s set the other way. two bytes are used

This saves much space

D. Silberberg XML Technology & Application
Writing XML

Encoding (cont.)

« XML specification requires Unicode to be used internally
— This 1s not usually the case for external files

— Most are encoded with other standards
¢ ISO-8859-1
* windows-1252
+ EBCDIC
— These are variants of ASCII, but not subsets of UTF-8 like ASCII
* The encoding attribute specified in the ?xml statement
indicates the character encoding of the text to the parser

» Parser reads text and translates it to Unicode internally
» Ifno encoding is specified, UTF-8 or UTF-16 1s assumed

D. Silberberg XML Technology & Application 8
Writing XML

Encoding (cont.)

* An XML document may ignore the encoding if there 1s a protocol
specific encoding
— For example, HTTP may have a protocol specific encoding
— HTTP takes precedence over XML

* An XML document created in Notepad on Microsoft Windows
— Some versions save characters in windows-1252 form by default

* You need to create the corresponding ?xml statement:
<?xml encoding="windows-1252"72>

— If the parser does not understand this encoding, then use ISO-8859-1 or
ASCTI instead

— In Notepad using Windows 2000 and NT

» Saves characters in ANSI form by default

+ You can save a file in Unicode format

D. Silberberg XML Technology & Application
Writing XML

Standalone

Standalone Document Declaration (SDD)
— Either “yes” or “no” if used

— “yes” mdicates that the XML document does not depend on other
documents (stands alone)

— “no” indicates that the XML document depends on other files
— Not required
XML parser 1s not required do anything with the
standalone attribute

— Provides a hint to the parser

— If standalone 1s "no." it lets the parser know that it should validate
the document with an external DTD file

— Standalone 1s not used with external XMIL. Schema files

D. Silberberg XML Technology & Application 10

Writing XML

Sample Headers

¢ <7xml version="1.0"7>
— Standard. no frills header
— Unicode 1s assumed since no encoding 1s specified
— It 1s assumed to be standalone="yes”

« <?7xml version="1.0" encoding="ASCII” standalone="no”?=
— ASCII encoding
— Uses an external DTD file

» <7?xml version="1.0" encoding= “UTF-8" standalone="yes”?>
— UTEF-8 encoding
— Does not use an external DTD file

D. Silberberg XML Technology & Application
Writing XML

11

Sample Headers

« <7xml version="1.0"7>
— Standard, no frills header
— Unicode 1s assumed since no encoding 1s specified
— It 1s assumed to be standalone="yes”

« <7xml version="1.0" encoding="ASCII"” standalone="no?>
— ASCII encoding
— Uses an external DTD file

+ <?xml version="1.0" encoding= “UTF-8" standalone="yes”?>
— UTE-8 encoding
— Does not use an external DTD file

D. Silberberg XML Technology & Application
Wiiting XML

11

PIs Continued

* There can be many PIs in one XML file

* Convention
— PIs that start with xml-[something] refer to XML-related

technology
— Other PIs are not XML-related technology
— Example

* Stylesheets are XML technology
+ <?xml-stylesheet href="House.xsl” type="text/xs]"?>
* We will cover stylesheets later
« <?xml ...?>1s notreally a PI
— Cannot get the 'xml' declarations from most parsers
— <?xml ...?> can only be placed at the beginning of the document

D. Silberberg XML Technology & Application 13
Writing XML

Document Type Declarations

* Specifies a DTD for an XML document
<IDOCTYPE home SYSTEM “C:\home.dtd”>

* Must start with <!DOCTYPE

* Must end with >

» The first parameter is the root element
— This 1s the outermost tag in the content of an XML document
— XML permits only one root in a document

— If your XML document includes another XML document, then the
other document’s root element is enclosed in your root element

— If the root element does not match, the parser returns an error

D. Silberberg XML Technology & Application 14
Writing XML

DTDs (continuted)

« Second element
— SYSTEM

Corresponding DTD i1s available on your system or another system

Need to specify the location of the DTD using a
— Uniform Resource Locator (URL) or
— More generally. Uniform Resource Identifier (URI)
» URI can be a URL or Universal Resource Name (URN)

» We’ll cover URNs later when we speak about Namespaces

Examples on personal PC system
— =!DOCTYPE home SYSTEM “C:\home.dtd"=
— =!DOCTYPE home SYSTEM *“tile:///DTD/home.dtd"=
Example on other systems
— <!DOCTYPE home SYSTEM “http://www.apl.jhu.eduw/home.dtd”=
— <!DOCTYPE home SYSTEM “urn:HomeStandard:home-design"=

D. Silberberg XML Technology & Application
Writing XML

15

DTDs (continuted)

« PUBLIC

Publicly available resources
Well known standards
Not 1n traditional URI format
Allows second URI 1n case the first 1s unavailable
Examples
* <!IDOCTYPE home PUBLIC
“-//W3C//DTD XHJTML 1.0 Transitional//EN"
“http://www.apl.jhu.eduw/home.dtd >
« <!DOCTYPE home PUBLIC
“HomeDesign/Home Template/”
“http://www.apl.jhu.eduw/home.dtd>
May go into more detail in future lectures

D. Silberberg XML Technology & Application

Writing XML

16

Comments

« Standard comment syntax
» Starts with <!--
* Ends with -->
* (Can span multiple lines
* Anything can go in between (almost anything)
* (Cannot have nested comments
— <!-- comment <!-- subcomment --> -->
« (Cannot exist inside a tag
— <home <!-- comment --> >
* Cannot contain --

— <!-- comment -- not valid -->

D. Silberberg XML Technology & Application
Writing XML

17

The Document Root Element

* Highest level tag in document

* In well-formed documents, the document root element
must be the first opening tag and the last closing tag.

<home>

</home=>
* Otherwise, 1t 1s just like any other tag
* There 1s only one document root element per document

* Allows document inclusion to work seamlessly

D. Silberberg XML Technology & Application 18
Writing XML

XML Data Elements - Names

» (Can start with letters or

» After the first character, numbers,

" Gl 2?

or

e 2F

. and

« Names are case sensitive
— <HOME-= 1s different than <home=

« Names cannot:

— start with numbers or punctuation symbols

— contamn Spaces

ke 33

are allowed

— (Should not) contain “:”” unless vou are using Namespaces

— start with XML 1n upper, lower, or mixed case

Names should be readable and reasonable

— Not too long, too short, or too cryptic

D. Silberberg

XML Technology & Application
Writing XML

19

D

Names (cont.)

Names should be meaningtul

Need to have beginning and end

— End starts with /

— <length>14</length>
— <width>12</width>

If there 1s no text between begin and end tag

— <painted></painted> 1s a bit tedious

— <painted/> 1s just as good
— <owner ssn="S-111-11-1111"/=
Tags cannot overlap
— <length>12<width></length>12</width>

. Silberberg

XML Technology & Application
Writing XML

20

Attributes

« What 1s the difference between elements and attributes?
— ssn element
<owner=
<ssn>S-111-11-1111</ssn>
</owner=
— ssn attribute
<owner ssn="S-111-11-1111"></owner=>
<owner ssn="S-111-11-1111"/=
It 1s often a matter of preference

* There are no differences 1n usage or meaning. (However,
IDs and IDREFSs can only be defined in attributes.)

D. Silberberg XML Technology & Application 21
Writing XML

Attributes (continued)

» Usually, element data 1s information that 1s of interest to a
user or someone looking at the document

» Usually, attribute data 1s information that is of interest to a
program for some reason
— Can be 1denfification number that 1s not of concern to average user
— Can be mnformation used for indexing or searching

 Must have values
— Invalid: <name paid>...</name>

— Valid: <name paid="true”>...</name>

(%0

* Values must be surrounded by “” or ©’

— Single quotes can be contained 1n double quotes or visa versa

D. Silberberg XML Technology & Application 22
Writing XML

White Space

« HITML

— Strips white space that 1s considered msignificant
<P>You can write a paragraph. This one has two
sentences.</P=

— HTML prints it as follows
You can write a paragraph. This one has two sentences.

— To preserve the space in HITML, special “non-breaking

spaces” () are used

<P>You can write a paragraph. . : : :
 : :This one has two sentences.</P>

— HTML prints 1t as follows
You can write a paragraph. This one has two sentences.

D. Silberberg XML Technology & Application 23
Writing XML

White Space (cont.)

« XML

— Does not strip white space
<P>You can write a paragraph. This one has two
sentences.</P>
— Data 1s as follows
You can write a paragraph. This one has two
sentences.

— Carriage returns, line feeds, and new lines
* All different on different operating systems
* XML strips them out and replaces with a single line feed character
* Data exchange 1s simplified

D. Silberberg XML Technology & Application
Writing XML

24

White Space (cont.)

« XML

— White space between tags

<owner ssn="S-111-11-1111"=

<first=David</first>

</owner=
— Should there be a line feed after <owner> and before <first=?
— If so. this 1s extraneous white space
— Cannot tell from this document alone
— DTD or Schema files answer this question

D. Silberberg XML Technology & Application
Writing XML

25

[llegal Characters

* (Cannotuse “<* and “&” characters

« Example:

— <fact>8 < 80 & 80 > 8</fact>
— Parser expects no space after <

— Parser expects no space after &

— Need escaping characters

D. Silberberg

XML Technology & Application
Wiiting XML

26

Escaping Characters

* Escaping characters

— & - the & character

— < - the < character

— > - the > character

— ' - the © character

— " - the * character

— &nnn: - the Unicode character

— &#xnnn; - the hexadecimal number (&169; or ©:1s ©)
« Example
— <fact>8 < 80 &: 80 > 8</fact>

D. Silberberg XML Technology & Application
Wiiting XML

Constants

» (Can represent constant values with escaping characters

» Anything after an & and before ; 1s considered an enfity
reference

* XML handles the escaped characters on the previous page
in a special way

* In general, the parser will use DTD and Schema files or
other means to deal with constants

» Examples
— <room>&MyFavoriteRoom;</room=>

— Parser or program will deal with it

D. Silberberg XML Technology & Application 28
Writing XML

Unparsed Data (CDATA)

» CDATA stands for Character Data
» Usetul for passing large chunks of literal text without the
parser touching it
» Example:
<I[CDATA]
<Room 1>Dining Room
<Room 2>Living Room

D. Silberberg XML Technology & Application
Writing XML

29

Parsers

* Apache Xerces: http://Xerces.apache.org/

* IBM XML4J: http://alphaworks.ibm.com/tech/xml4j
* James Clark’s XP:
— http:/www.jelark.com/xml/xp
— http:/~swww.jclark.com/xml/expat.hitml
* OpenXML: http://www.openxml.org
* Oracle XML Parser: http://technet.oracle.com/tech/xml
* Sun Microsystems Project X: http://java.sun.com/products/xml
* Tim Bray’s Lark and Larval: http://www.textuality.com/Lark
* Vivid Creations ActiveDOM: http://www.vivid-creations.com

D. Silberberg XML Technology & Application
Writing XML

DataChannel XJ Parser: http://xdev.datachannel.com/directory/xml parser.html

30

XML Parser Errors

* Two types of errors in XML

* FErrors

— Violation of the rules in the specification where results are
undefined

— Parser 1s allowed to recover from the error and continue

« Fatal Errors
— XML document 1s not well formed
— Parser may only continue to identify more errors
— Parser will not try to recover

D. Silberberg XML Technology & Application
Wiiting XML

31

Design Considerations

* Should one model a given data item as a subelement or as
an attribute of an existing element?

» Example, you could model the title of a slide either as:

<slide>
<title>This 1s the title</title>
</slide>

* Or1 as.
<slide title="This 1s the title">
</slide>

D. Silberberg XML Technology & Application 32
Writing XML

Forced Choices

» Sometimes, the choice between an attribute and an element
1s forced on you by the nature of attributes and elements

* The data contains substructures
— Must be modeled as an element
— Attributes take only simple strings.
— So 1f the title can contain emphasized text like this:
The Best Choice, then the title must be
an element.
* The data contains multiple lines
— Here,. 1t also makes sense to use an element

— Attributes need to be sumple, short strings or else they become
unreadable. if not unusable.

D. Silberberg XML Technology & Application 33
Writing XML

Forced Choices (2)

* The data changes frequently
— When the data will be frequently modified, especially by the end
user, then it makes sense to model it as an element

— XML-aware editors tend to make it easy to find and modify
element data

— Attributes can be somewhat harder to get to, and therefore
somewhat more difficult to modify.
» The data 1s a small, simple string that rarely if ever
changes
— This 1s data that can be modeled as an attribute
— However, just because you can does not mean that you should

D. Silberberg XML Technology & Application 34
Writing XML

Forced Choices (3)

 The data 1s confined to a small number of fixed choices
— Here 1s one time when 1t makes sense to use an attribute

— Using DTD or Schema specifications, attributes can be prevented
from taking on values that are not in the pre-approved lists

— An XML-aware editor can even provide those choices in a drop-
down list

— Note: the gain 1n validity restriction comes at a cost 1n extensibility

* Author of the XML document cannot use any value that is not part of
the DTD

* If another value becomes useful in the future. the DTD or Schema
will have to be modified before the document author can make use of
it

D. Silberberg XML Technology & Application 35
Writing XML

Forced Choices (3)

* The data 1s confined to a small number of fixed choices
— Here 1s one time when i1t makes sense to use an attribute

— Using DTD or Schema specifications, attributes can be prevented
from taking on values that are not in the pre-approved lists

— An XML-aware editor can even provide those choices in a drop-
down list

— Note: the gain in validity restriction comes at a cost in extensibility

* Author of the XML document cannot use any value that is not part of
the DTD

* If another value becomes useful in the future. the DTD or Schema
will have to be modified before the document author can make use of
it

D. Silberberg XML Technology & Application 35
Wiiting XML

Stylistic Choices (2)

. Visibility
— If data 1s intended to be shown to end users. then it is reasonable to

model them as elements

— If the data guides XML processing but are never displaved, then it
may be better to model them as attributes
— Example
* manufacturer name can be modeled as an element
* mamnifacturer's code number can be modeled as an attribute

D. Silberberg XML Technology & Application 37
Writing XML

Stylistic Choices (3)

* Consumer / Provider
— Determine who 1s the consumer and/or provider of the information
— Human enters manufacturer name so it 1s modeled as an element
— Software supplies manufacturer's code number so it 1s modeled as
an attribute
* (Container vs. Contents

— Another way of thinking about elements and attributes 1s to think
of an element as a container

— The contents of the container (water or milk) correspond to XML
data modeled as elements

— On the other hand, the characteristics of the container (blue or
white, pitcher or can) correspond to XML data modeled as

attributes

D. Silberberg XML Technology & Application 38
Wiiting XML

Modeling XML

* Pictures are always useful when conveying a design of a
data model

* I will present just one of many possible XML data
structure models

* This will be modified slightly later in the semester when
representing DOM structure

* The main point 1s to model the hierarchy correctly

D. Silberberg XML Technology & Application 39
Writing XML

Modeling a Stmple XML Structure

» Represent each element/attribute using a rectangle

— Do not be concerned about whether you will ultimately represent
data as an element or an attribute

— The hierarchy 1s the most important aspect right now
— Lines between elements/attributes represent direct hierarchical
structure

» Example hierarchy:

store parts [0/%] part name [1/1]

cost [1/1]

manufacturer [1/1]

D. Silberberg XML Technology & Application 40
Writing XML

Hierarchy Explanation

* Document root element is sfore
— Does not need a cardinality
— There can only be one of these in an XML document
* store has one type of child which 1s parts
— At a minimum, there can be no parts
— At a maximum, there can be an mnfinite number of parts

* parts must have 3 children — part name, cost,

manufacturer
— At a mmimum, there can be one of each of these children per each
parts
— At a maximum, there can be one of each of these children per each
parts
D. Silberberg XML Technology & Application 41

Writing XML

Modeling Choice

* Suppose the location of a manufacturer 1s either
represented as a U.S. state or a foreign country, but not
both.

— An or 1s used to represent this choice
— The or 1s placed in the hierarchy as:

— manufacturer [1/1] location [1/1] ; state [1/1]

foreign country [1/1]

D. Silberberg XML Technology & Application
Writing XML

Modeling Known Values

* In general, the range of data values of elements and
attributes are many
— It does not make sense to list all values
* In some cases, the range of data values are few
— It 1s useful to list all the values
— This 1s how it can be represented in the model:

state [1/1] —range: AK. AL. ...

title [1/1] — range: Mr.. Ms.. Mrs.. Miss. Dr.

D. Silberberg XML Technology & Application
Wiiting XML

43

Normalization

* The process of eliminating redundancies 1s known as
normalization

* Defining DTD entities or Schema types 1s one good
mechanism to help guide data normalization

* The considerations for defining an entity reference are
similar to those you would apply to modularize database
tables or program code

D. Silberberg XML Technology & Application
Wiiting XML

44

Normalization (2)

Whenever you find yourself writing the same thing more than once,
create one element substructure

— Use IDREFs to reference the element substructure
— IDs and IDREFs can only be defined in attributes

— Lets you write it one place and reference 1t multiple places.

If the mformation 1s likely to change and 1s used 1n more than one
place, define 1t in one place

Normalization produces modular XML that 1s smaller as well as easier
to update and maintain

The normalization process can make the resulting document somewhat
more difficult to visualize

However, once you understand 1t, it makes sense

D. Silberberg XML Technology & Application 45

Writing XML

Problems of Un-normalized Data

store parts [0/%] part_name [1/1]
cost [1/1]
manufacturer [1/1]
— | state [1/1]
part_name cost manufacturer state

widgit $3 |Acme Inc. MD
thing-a-ma-bob $5 |Acme Inc. MD
doodad $4 |XYZ Ent. NJ

D. Silberberg

XML Technology & Application
Wiiting XML

46

<gtore=

Un-normalized XML

<parts=

<part name> widget </part name>

<cost™ 3 </cost>

<manufacturer> Acme Inc. </manufacturer>
<state> MD </state>

</parts=
<parts=

<part_name> thing-a-ma-bob </part name>
<gost™ 5 </cost>

<manufacturer> Acme Inc. </manufacturer>
<state> MD </state>

c::..-'pm.;jj:*
::pm'ts::—

<part_name> doodad </part_name>

<cost™ 4 </cost>

<manufacturer> XYZ Ent. </manufacturer>
<state> NJ </state>

c:i,-"paﬂ-:_,{.':*
</store>
D. Silberberg XML Technology & Application

Writing XML

47

Problems of Un-normalized Data (2)

* Repetition anomaly - state repeated
» Update anomaly - state updated twice
* Insertion anomaly

— (Cannot add new manufacturer until we have part
— Visa versa

* Deletion anomaly - deleting 'doodad' deletes XYZ from
DB

D. Silberberg XML Technology & Application
Writmg XML

Modeling References

e Tonormalize

— The data must be aggregated into logical groups

— The groups must reference through identifier references

store

D. Silberberg

parts [0/*]

part_name [1/1]

cost [1/1]
manufacturer [1/1] mfg 1d [1/1]
manufacturer [0/*] id [1/1] PR memmmmmT

name [1/1]

—| state [1/1]

XML Technology & Application
Writing XML

49

Normalized XML

<store>

<parts=
<part_name> widget </part name>
<cost> 3 </cost>
<manufacturer mfg id="m1"/=
</parts=
<parts=
<part_name> thing-a-ma-bob
</part_name=
<cost> 5 </cost>
<manufacturer mfg_id="m1"/>
</parts=
<parts=
<part_name=> doodad </part name=
<cost> 4 </cost=
<manufacturer mfg id="mz2"/=
</parts=

<manufacturer id="m1"=>
<name=Acme Inc. </name=
<state> MD </state>
</manufacturer=
<manufacturer id="m2"=>
<pame>XY 7 Ent. </name=>
<gtate> NJ </state=
</manufacturer=

</store=

D. Silberberg

XML Technology & Application 50

Writing XML

Another Possible Model

store parts [0/*] part_name [1/1]

cost [1/1]

mig id [1/1] F-~_

manufacturer [0/*] id [1/1] <

name [1/1]

state [1/1]

D. Silberberg XML Technology & Application
Writing XML

Normalized Version of Other Model

A

<store= ~manufacturer id="ml"=

<parts mfg_id="m1l"> <name>Acme Inc. </name=>
<part_name> widget </part_name= <state> MD </state=
<cost> 3 </cost> </manufacturer=
</parts= <manufacturer id="m2"=
<parts mfg_id="m1"> <name>XYZ Ent. </name=
<part_name> thing-a-ma-bob <state> NJ </state>
-c".'r - il ™
</part_name=> </manufacturer=
oot & = e =t - -
-COST= 5 </cost: </store=

</parts=

<parts mfg_id="m2">
<part_name> doodad </part_name>
<cost> 4 </cost>

</parts=

D. Silberberg XML Technology & Application 52
Writing XML

TéAoc Evotntoc

ENIXEIPHEIAKO MPOrPAMMA
EKTAIAEYZH KAI AIA BIOY MAGHZH =’ EZ I-IA

YNOYPIEIO NMAIAEIAL & BPHEKEYMATAN, NOAITIZMOY & ABAHTIZMOY
Eupwriadikr Evwon EIAIKH YNHPEZXZIIA AIAXEIPIZHZ

Eupunaiko Kowwvik Tapeio

Me ™ ouyxpnuatodétnon e ENGSag kat e Evpwmaikrg Evwong

