‘é&s)&“é EAAHNIKH AHMOKPATIA
k\)w NANEMIZTHMIO KPHTHz2

Elcaywyn otnv Emotnun kot
Texvoloyla Twv YInpeoLwV
Evotnta 11: XQuery

Xpnoto¢ NikoAdou
TuApa Emotipng YrnoAoyiotwyv

ENIXEIPHEIAKO MPOIPAMMA
EKMMAIAEYZH KAI A 5 z nA
npdypopya yia v ovinén

Me ™ ovyxpnpatodotnon tng EAAGdag kat tng Evpwnaiki¢ Evwong

Adelec Xpnonc

To opov ekmaldeUTIKO UALKO UTtOKELTAL 0TV adela xpriong Creative
Commons kal el6KOTEPQ

Avapopa — Mn sunopikn Xprnon — Oxt Mapaywyo Epyo v. 3.0

(Attribution — Non Commercial — Non-derivatives)

(@0l

E€atpeitot amo tnv we avw adeta UALKO Tou MepLAABAVETAL OTLC
Sladaveleg ToU HaBAMATOC, KOl UTIOKELTOL 0€ AAAOU TUTIOU AdELla xpnong.
H adela xpriong otnv omoia UTTOKELTOL TO UALKO aUTO avadEPETOL PNTWC.

Xpnupatodotnon

To ap OV ekaAldEUTIKO UALKO €XeL avarmtuxBOel ota mAaiola
ToU ekTtaltdevuTIKOU £pyou tou dLbaokovta.

To €pyo «Avolkta Akadnuaika Madnpota oto Maveniotipio

Kpntne» €xeL xpnuatodotnoetl povo tn avadlapopdwaon tou
eKTIOLOEVUTIKOU UALKOU.

To €pyo uAomoleital oto nmAaiolo tou Emyelpnolokou
Mpoypappatoc «Eknaidevon kot Ala Blov Mabnon» ko
ocuvyxpnuatodoteital amno tnv Evpwmnaikni Evwon (Evpwrmaiko
Kowwviko Tapelo) Kot oo €Bvikou ¢ TOpouc.

EMXEIPHXIAKO MPOIPAMMA
EKl'IAlAEYZH KAI AIA BIOY MAGHZH Ez "A

1

YNOYPTEIO MAIAEIAL & OPHEKEYMATQN, NMOAITIZMOY & ABAHTIZMOY
Evpwmnaikr ‘Evwon EIAIKH YNHPEZXZIA AIAXEIPIXZHZLZ

E K K 5 Tamei
S i T Tn cuyxpnuarodotnon tng EAAadag kat tng Evpwmnaikig Evwong

D. Silberberg

XML
XQuery
635.444

David Silberberg
Lecture 23

XML: Technology &Application
XQuery

Databases

A database system consists of

— A data store
» A place to store the data for inserts, updates, deletes, and queries
« Data must be represented in a manner conducive to enabling
straightforward updates and retrievals

— A data management system
« A system that organizes and manages stored data

« Enables the modification and extraction of the data

— A query access language
» A language with a syntax and semantics that enables dynamic access
to the data
A language that enables modification of the data

D. Silberberg XML.: Technology &Application
XQuery

Database Schematic (Simplified)

Query and Modification
Requests

Data Management
System

l

‘ Data Store |

D. Silberberg

Queries and modification requests retrieve

and update data
— SQL examples
« SELECT statements are queries
« INSERT, UPDATE, and DELETE statements
are modification requests
Data management system
— Manages the structure of the data store
— Manages external query and modification

requests
« Transforms stored data into query results

» Reflects update requests in the data store

Data Store
— Structured representation of the data

XML: Technology &Application 3

XQuery

Relational Database Model

 Simple data structures
— Rows, columns
— Simple data items

e Solid model

— Foundation for consistency
— Normalization eliminates data anomalies
— Database can be maintained with integrity rules

 Set-oriented data manipulation
— Non-procedural
— Relational algebra - set theory (SQL & QUEL)
— Relational calculus - logic (QBE)

D. Silberberg XML.: Technology &Application
XQuery

Definitions and Concepts

» Database models some real life concept and captures
actual data that represents some state of real life

 Relational database is a database modeled by relations

« Relation R defined over n sets D1, D2, ... Dn where Di
represents some domain.

« n-tuple (tuple) isa set <di, dz, ..., dn>where d1 2, D1, d2 2.
Do, ...

D. Silberberg XML: Technology &Application 5
XQuery

Example Relation and Domains

* R s asetof 0 or more n-tuples (not necessarily distinct)
« MFG(manufacturer, state)

— Da is set of all potential manufacturers

— D2 is aset of all 50 states

— d1is any member of D1 (i.e., Proctor & Gamble, McCormick
Spice, etc.)

— d2is any member of D2 (i.e., OH, MD, etc.)

D. Silberberg XML: Technology &Application 6
XQuery

Keys

« key - minimum nonempty subset of relation's attributes
that uniquely defines each tuple

« Examples:
— CUST (cust_no, cust_name, cust_address)
» Kkey is (cust_no)
— ORDER(cust_no, part_no, quantity)
« Kkey is (cust_no, part_no)
— PART: (part_no, part_name, manufacturer, cost)
« Kkey is (part_no)

— MFG: (manufacturer, owner)
» key is (manufacturer)

D. Silberberg XML.: Technology &Application
XQuery

Normalization Addresses Anomalies In
¢

» Repetition anomaly - state repeated
« Update anomaly - state updated twice

* Insertion anomaly
— Cannot add new manufacturer until we have part

— Visa versa
* Deletion anomaly - deleting 'doodad’ deletes XYZ from
DB
part_no part_name cost manufacturer state
1|widgit $3 |Acme Inc. MD
2|thing-a-ma-bob $5 |Acme Inc. MD
3|doodad $4 |XYZ Ent. NJ
D. Silberberg XML.: Technology &Application 8

XQuery

Normalization is Achieved Through
Decomposition

* Start with universal relation - 1NF
* Iterated decomposition -> 2NF & 3NF (really BCNF)

* There are also 4NF and 5NF, which are not covered
« SNF [74NF 1 3NF 1 2NF 7 INF ([T 1s subset)

* Seek loss-less decomposition in normalization process
— Joins reconstruct tables (defined later)
— Dependency preservation

D. Silberberg XML: Technology &Application 9
XQuery

Dependency Structures

 If for each X in R, there is only one Y value: X->Y
(determines)

« Key determines non-keys
« Example:

CUST: cust_no -> (cust_name, cust_address)
PART: part_no -> (part_name, manufacturer, cost)
ORDER: (cust_no, part_no) -> (quantity)

MFG: (manufacturer) -> (owner)

D. Silberberg XML.: Technology &Application
XQuery

10

Relational Algebra

« Fundamental operations Others
— Selection — Quter join
— Projection — Transitive closure

— Union
— Set difference
— Cartesian product

 Derived operations
— Intersection
— wAjain
— natural join
— semi-join
— guotient

D. Silberberg

XML: Technology &Application
XQuery

11

* [KR)
— Fis formula
— Fis first order logic - won't get into it
— part_no -> (part-name, manufacturer, cost)

Selection

. (cost = B(R)

part_no |part_name cost |manufacturer
1|widgit $3 |Acme Inc.
2|thing-a-ma-bob $5 |Acme Inc.
3|doodad $4 [XYZ Ent.

D. Silberberg XML: Technology &Application 12

XQuery

D. Silberberg

Selection in SQL

SELECT *
FROM part
WHERE cost =3

XML: Technology &Application
XQuery

13

Projection

 ZaB(R)
— R isrelation
— A, B are columns

* Zpart-name, cost(R)

part_no |part_name cost |manufacturer
1 |widgit $3 |Acme Inc.
2|thing-a-ma-bob $5 |Acme Inc.
3 |doodad $4 ([XYZ Ent.

D. Silberberg XML.: Technology &Application

XQuery

D. Silberberg

Projection in SQL

SELECT part_name,
cost
FROM part

XML: Technology &Application
XQuery

15

-JoIn

[R[><]FS

— R and S are relations
— Fissome formula (=, <>, >, <, 9, ¢, like)

D.
part no part_name cost man_no
1|widgit $3 1
2 |[thing-a-ma-bob $5 1
3|doodad $4 2
S.
man_no |manufacturer
1|{Acme Inc.
2| XYZ Ent.
D. Silberberg XML.: Technology &Application

XQuery

16

w-Join In SQL

SELECT part_no, part_name, cost, R.man_no, S.man_no, manufacturer
FROM R,S

WHERE R.man_no < S.man_no

part_no part_name cost |R.man_no |S.man_no |manufacturer |
1|widgit $3 1 2|XYZ Ent. |
2|thing-a-ma-bob $5 | 1 2|XYZ Ent.

D. Silberberg XML.: Technology &Application 17

XQuery

Natural JoiIn

[R[><]FS

— R and S are relations
— Fis the formula ‘=¢

SELECT part_no, part_name, cost, R.man_no, S.man_no, manufacturer

FROM R,S
WHERE R.man_no = S.man_no

part_no part_name cost |R.man_no S.man_no manufacturer
1|widgit $3 1 1|Acme Inc.
2 thing-a-ma-bob $5 1] 1 Acme Inc.
3|doodad $4 2] 2 XYZ Ent.

D. Silberberg XML: Technology &Application 18

XQuery

Database Schematic for XML

Query and Modification
Requests

Data Management
System

l

‘ Data Store |

D. Silberberg

Queries and modification requests retrieve

and update data

— Query languages have been XPath, XSLT,
SAX, DOM, JDOM, and JAXP

— Update languages have been editors, XSLT,
SAX, DOM, JDOM, and JAXP

Data management system
— For the most part, this is XSLT, SAX, DOM,
JDOM, and JAXP runtime environment
— None of them really perform data
management

Data Store
— XML document (or set of documents)

XML: Technology &Application 19

XQuery

Problems with Current Methodologies

« We will not address the data management and modification issue
— There are research and a few commercial systems that are starting to
address these issues

— Some commercial systems (e.g., Oracle) puts an XML-ish interface onto
an RDBMS

« Data Retrieval
— Until now, every new request for information required writing a new
program or stylesheet

» Approach difficult to maintain
« New requests require new programming logic
 Relating data through joins is difficult to manage

— Declarative query syntax
« Simple and flexible
« Does not require new programming
« XML query languages provide declarative access to XML data

D. Silberberg XML.: Technology &Application
XQuery

20

XML Query Languages

« Many XML Query languages have been proposed
« XQuery is the language recommended by the W3C

— http://lwww.w3.0rg/TR/xquery/
— Designed to be a small and easy to implement language
— Queries are concise and easily understood
— Flexible enough to query broad spectrum of XML source (databases and
documents)
« XQuery is derived from

— Quilt (influenced by XML query languages Lorel and YATL)

— XPath and XQL (path expression syntax for hierarchical documents)
— XML-QL (binding variables to create new structures)

— SQL (SELECT-FROM-WHERE pattern)

— OQL (object-oriented query language that returns structures)

« Plenty of information at: http://www.w3.0rg/XML/Query

D. Silberberg XML: Technology &Application 21
XQuery

XQuery Language

Functional language - query is represented as an expression (like OQL)

— Supports several kinds of expressions
— Structure and appearance of a queries may differ significantly depending

on the kinds of expressions are used.
— The various forms of expressions can be nested with full generality

« The input and output of a query are instances of an XPath data model

— Document is modeled as a tree of nodes
— Data model is capable of modeling not only an XML document but also a
well-formed fragment of a document, a sequence of documents, or a

sequence of document fragments
— An instance of the data model is an ordered sequence of nodes, each of

which may contain nested sequences of nodes.

D. Silberberg XML: Technology &Application 22

XQuery

XQuery Expressions

 The principal forms of XQuery expressions

— Path expressions

— Element constructors

— FLWOR expressions

— EXxpressions involving operators and functions
— Conditional expressions

— Quantified expressions

— Expressions that test or modify datatypes

D. Silberberg XML.: Technology &Application
XQuery

Predefined Namespaces

 Certain namespace prefixes are predeclared by XQuery
« Bound to fixed namespace URIs

xml = http://www.w3.0rg/XML/1998/namespace

Xs = http://www.w3.0rg/2001/XMLSchema

xsi = http://www.w3.0rg/2001/XMLSchema-instance
fn = http://www.w3.0rg/2005/xpath-functions

local = http://www.w3.0rg/2005/xquery-local-functions

D. Silberberg XML: Technology &Application 24
XQuery

Path Expressions

Can begin with an expression that identifies a specific node or

sequence of nodes in a document.
— fn:doc (string) returns the root node of a named document.

Can also begin with "/" or "//[" which represents an implicit root node

The execution environment defines a "context node"
— Referenced by dot (".") inside the path expression

Consists of a series of "steps"
— Each step represents movement through a document along a specified
"axis"
— Each step can apply one or more predicates to eliminate nodes that fail to
satisfy a given condition
— The result of each step is a sequence of nodes that serves as a starting
point for the next step

. Silberberg XML: Technology &Application 25
XQuery

Path Expression Queries

« Simple query

— Retrieve the figure(s) with caption "Tree Frogs" in the second
chapter of the document named zoo.xml

- fn:doc("zoo.xml") //chapter[2]//figure[caption = "Tree Frogs"]
 Queries may specify a sequence of nodes by a specifying
Its ordinal number in the sequence (as in chapter[2],
chapter[fn:position() = (1,3 5, 7)], and
chapter[fn:position() = (2 to 5)])
— Retrieve all the figures in chapters 2 through 5 of the document

named "zoo.xml."
— fn:doc("zoo.xml")//chapter[fn:position() = (2 to 5)]1//figure

D. Silberberg XML: Technology &Application 26
XQuery

Path Expressions with Operators

Path expressions can contain operators that are defined over simple datatypes.
— If operand is a node, contents are extracted and converted to a typed value (e.g.,
<grade>89</grade> -> 89)
— If no argument, its implicit argument is the current (context) node

* Retrieve the annual salary of a single employee named "Fred"
fn:doc ("emp.xml") //emp[name="Fred"]/salary * 12

« Retrieve the annual salaries of employees named "Fred"

for $a in fn:doc("emp.xml")//emp [name="Fred"]/salary

return
<result>

{Sa * 12}
</result>

D. Silberberg XML: Technology &Application 27
XQuery

Element Constructors

 Path expressions search for elements in existing documents
« However, a query often needs to generate new elements

« XQuery expressions allow embedding XML elements that represent

themselves
— Called an element constructor

— Allows literal XML fragments to be "pasted™ into queries

« Trivial example:

— Retrieve (generate) an <emp> element that has an "empid" attribute and
nested <name> and <job> elements

<emp empid = "12345">
<name>John Smith</name>
<job>Anthropologist</job>
</emp>

D. Silberberg XML.: Technology &Application
XQuery

28

Computed Constructors — Simple Case

« Constructors can be created with various keywords: element,
attribute, document, text, processing-
instruction, comment

« The following is an alternate way of using computed constructors:

element emp ({
attribute empid {"12345"}
element name {"John Smith"}

element job {"Anthropologist"}
}

D. Silberberg XML.: Technology &Application
XQuery

29

Element Constructor with Binding

« Often, contents of elements or attribute values need to be computed by
some expression

« XQuery expressions to be computed that are inside element
constructors are enclosed in curly braces (much like XSLT)

 In the following example, we assume that variables $id, $name, and
$job are bound to strings and nodes elsewhere in the query

* Query - Retrieve (generate) an <emp> element that has an "empid"
attribute.

<emp empid = “{$id}”">

{Sname}
{Sjob}
</emp>
D. Silberberg XML.: Technology &Application 30

XQuery

Constructing Elements and Attributes

Names of elements and attributes may be computed by an expression
For this purpose, XQuery allows the name of an element or attribute to be
XQuery expressions enclosed in curly braces

— If the name in a start-tag is an expression, the name must be omitted from the
corresponding end-tag

— however, when a start-tag contains a constant name, the same name must be
specified in the matching end-tag

Example (assume $e is bound to some element with numeric content)

— Retrieve (generate) a new element having the same name and attributes as $e, and
with numeric content equal to twice the content of $e.

LET Selt := Se/text ()
RETURN
element {Selt} # replicates the name of Se
{Se/@*} # replicates the attributes of Se
{2 * number ($e) } # doubles the content of Se
D. Silberberg XML.: Technology &Application 31

XQuery

FLWOR EXxpressions

 AFLWOR (pronounced "flower") expression is
constructed from EOR, LET, WHERE, ORDER BY, and
RETURN clauses

— Must appear in a specific order

— Binds values to one or more variables and then uses these variables
to construct a result

\4

Ordered Pruned
list of tuples list of tuples
of bound of bound
variables variables
FOR/LET | WHERE
clauses | clause
D. Silberberg

ORDER
BY

clause

Ordered
list of tuples
of bound
variables

XML: Technology &Application
XQuery

,|RETURN

clause

Instance
Of XML

Query
data model

[
Lt

32

FOR Clause

Used whenever Iiteration is needed

Introduces one or more variables, associating each variable with an
expression
— FOR-clause might contain a path expression that returns a sequence of
nodes

Result of the FOR-clause is a sequence of tuples
— Each sequence of tuples contains a binding for each of the variables in the
FOR-clause.
— The variables are bound to individual values returned by their respective
expressions.

Each variable in a FOR-clause can be thought of as iterating over the
values (sequence of tuples) returned by its respective expression, in
order.

D. Silberberg XML.: Technology &Application 33

XQuery

FOR Examples

« Example 1
— for $b in fn:doc ("bib.xml")//book

— Assigns to $b the sequence of tuples, each of which represents a
<book> node in the document "bib.xml"

— The query will iterate over the tuples bound to $b
« Example 2

— for $b in fn:doc (“bib.xml”) //book,
Sc in Sb/author

— Sets up a double loop over books and authors of books

D. Silberberg XML.: Technology &Application 34
XQuery

LET Clause

« Used to bind one or more variables to one or more expressions

« LET clause binds each variable to the value of its respective expression
without iteration
— Results in a single binding for each variable
— Unlike FOR clause

« Example of difference between FOR and LET clauses
— for $b in fn:doc ("bib.xml") //book
* Results in many bindings in an iteration
« Each binding binds the variable $b to one book in the library
— let $b := fn:doc ("bib.xml") //book
» Results in a single binding
 Binds the variable $b to a sequence containing all the books in the library
— let $b := for .. where .. return ..
 $b is the set of returned items

D. Silberberg XML.: Technology &Application 35
XQuery

D

FOR/LET Combination

A FLWOR expression may contain several FOR and LET clauses
Expressions used in FOR and LET-clauses may reference variables bound
earlier in the FLWOR expression

Result of the FOR and LET clauses is an ordered sequence of tuples of bound
variables

— If all FOR-clause expressions are independent, the number of tuples generated is
the product of the cardinalities of all the FOR clause expressions

— AFLWOR expression that contains no FOR clauses generates exactly one binding-
tuple
Order of the tuples generated by the FOR and LET clauses is determined by
the order in which values are returned by the FOR-clause expressions

— The order in which the variables are bound determines the order of nested iteration
of the FLWOR expression.

. Silberberg XML: Technology &Application 36

XQuery

WHERE Clause

* Bindings generated by the FOR and LET clauses are filtered by optional
WHERE clause
« Only tuples for which the condition in the WHERE clause is true are used to
invoke the RETURN clause
. The WHERE clause predicates
— Connected by AND and OR
— Usually reference bound variables
« Variables bound by a FOR clause usually represent individual nodes
— Typically used in scalar predicates such as $p/color = "Red"
« Variables bound by a LET clause usually represent a sequences of nodes
— Typically used in set-oriented predicates such as avg($p/price) > 100
« Order of the binding-tuples generated by the FOR and LET clauses is
preserved

D. Silberberg XML.: Technology &Application 37
XQuery

Comparison Expressions

« Value comparisons — compare single values

Comparators: eq, ne, It, le, gt, ge

Sbook/author eqg "Smith" is true only if the text value is "Smith"

//book[year gt 2005] is true only if <year> is a child of <book> and its value is greater
than 2006

<yef|31r>2008</year> eq <year>2008</year> is true since their atomized values are
equa

« General comparisons — compare operands of sequences of any length

Comparators: =, I=, <, <=, >, >=

Sbook/author = "Smith" is true if any subelement's value is "Smith"
(1,2) = (2,3) istrue since one or more of the elements overlap

(1,2) = (3,4) isnot true because no elements overlap

* Node comparisons — compare node elements by their order or document identity

Comparators: is, <<, >>

//book[year eq 1998] is //book[publisher eq "Morgan Kaufmann"] is
true if they refer to the same book node

<year>2008</year> is <year>2008</year> is false since they refer to different
nodes

//book[author eq "Smith"] >> //book[author eqg "Jones"] is true if the

book written by Smith occurs later in the document than the book written by Jones
Kaufmann"]

D. Silberberg XML.: Technology &Application 38

XQuery

D

RETURN Clause

Generates the output of the FLWOR expression
— May be any sequence of nodes or primitive values
The RETURN clause is executed once for each tuple of bindings
— That is generated by the FOR and LET clauses
— Satisfies the condition in the WHERE clause
— Preserves the order of these tuples
Contains an expression that contains
— Element constructors
— References to bound variables
— Nested sub-expressions
Results generated by individual executions of the RETURN clause are

concatenated together
— Preserves order

— May contain duplicate nodes

. Silberberg XML.: Technology &Application

XQuery

39

Examples

« Example "bib.xml" document

<book-list>
<book>
<title>...</title>
<author>...</author>
<publisher>...</publisher>

<year>...</year>

<book>
<title>...</title>

<author>...</author>
<publisher>...</publisher>

<year>...</year>

<price>...</price> <price>...</price>

</book> </book>
</book-list>
D. Silberberg XML.: Technology &Application

XQuery

40

ORDER BY

Make an alphabetic list of publishers. Within each publisher, make a list of books,
each containing a title and a price, in descending order by price

<publisher list>
{for Sp in fn:distinct-values (fn:doc ("bib.xml")//publisher)
order by name
return
<publisher>
<name> {Sp} </name>
{for $b in fn:doc ("bib.xml")//book[publisher= $p]
order by price descending
return
<book>
{Sb/title}
{Sb/price}
</book>
}
</publisher>

}
</publisher list>

D. Silberberg XML: Technology &Application 41
XQuery

Query Examples

 List the titles of books published by Morgan Kaufmann in 1998

for $b in fn:doc ("bib.xml") //book

where S$Sb/publisher = "Morgan Kaufmann"
and $b/year = "1998"
return S$b/title

 If order is not important, use the unordered function

for Sb in fn:unordered (fn:doc ("bib.xml") //book)

where Sb/publisher = "Morgan Kaufmann"
and S$b/year = "1998"
return Sb/title

D. Silberberg XML.: Technology &Application
XQuery

42

DISTINCT Function

 Distinct function eliminates duplicate values from a set of tuples
— Two elements are considered to have duplicate values if their names,
attributes, and normalized content are equal

— Distinct function retains one node FOR $p IN distinct-
values(doc("bib.xml")//publisher)

« List each publisher and the average price of its books

for $p in fn:distinct-values (fn:doc ("bib.xml")//publisher)

let $a := fn:avg(fn:doc ("bib.xml")//book|[publisher = S$Sp]/price)
return
<publisher>
<name> {Sp} </name>
<avgprice> {$a} </avgprice>
</publisher>

D. Silberberg XML.: Technology &Application
XQuery

43

Aggregate Functions

o List the publishers who have published more than
100 books

<big publishers>

{
for Sp in fn:distinct-values (fn:doc ("bib.xml")//publisher)

let $b := fn:doc ("bib.xml")//book[publisher = $p]
where count (Sb) > 100
return $p

}
</big publishers>

* SQL does not allow count() in the WHERE clause

D. Silberberg XML: Technology &Application 44
XQuery

Structural Transformation Using Embedded

——OR EXaressions

 Invert the structure of the input document so that, instead of each book
element containing a sequence of authors, each distinct author element
contains a sequence of book-titles

<author list>
{
for Sa in fn:distinct-values (fn:doc ("bib.xml")//author)
return
<author>
<name> {$a} </name>
{
for Sb in fn:doc ("bib.xml")//book[author = Sa]
return Sb/title
}
</author>

}
</author list>

D. Silberberg XML: Technology &Application 45
XQuery

LET Simplifies Query Expressions

« For each book whose price is greater than the average price, return the
title of the book and the amount by which the book's price exceeds the

average price.
<result>

{
let $a := fn:avg(fn:doc ("bib.xml")//book/price)
for $b in fn:doc ("bib.xml")//book
where S$b/price > Sa
return
<expensive book>
{Sb/title}
<price difference>
{Sb/price - $a}
</price difference>
</expensive book>
}

</result>

D. Silberberg XML: Technology &Application 46
XQuery

Complex Transformations

Computed element names and attribute names are used to perform structural
transformations

Construct a new element having the same name as the element bound to $e.
Transform all the attributes of $e into subelements, and all the subelements of
$e into attributes

element {name (Se)}

{
for $c in Se/*
return attribute {name ($c)} {string(Sc)}

for $a 1in S$Se/@%*
return
element {name($a)} {string($a)}

D. Silberberg XML: Technology &Application 47
XQuery

Conditional Expressions

« Make a list of holdings, ordered by title. For journals,
Include the editor, and for all other holdings, include the

author.
Comma is used to concatenate

expressions within a single

for sh in //hOldlng sequence EXDFESSiOI’]

order by title

return
<holding>
{Sh/title,
if ($h/Qtype = "Journal™)
then Sh/editor
else Sh/author

}
</holding>

D. Silberberg XML: Technology &Application 48
XQuery

Alternate Conditional Expression

» Make a list of holdings, ordered by title. For journals,
Include the editor, and for all other holdings, include the
author.

for Sh in //holding

order by title

return

<holding>

{Sh/title}
{if (Sh/Q@type = "Journal")
then Sh/editor
else Sh/author

}
</holding>

D. Silberberg XML.: Technology &Application
XQuery

49

Quantified Expressions (SOME)

SOME Expression

— Generates multiple bindings for a variable, using values returned by the expression
in the IN clause

— For each of these bindings, the expression in the SATISFIES expression is
executed

— If at least one execution of the SATISFIES expression returns the Boolean value
True, then the result is True

— Otherwise the result is False
— If the expression in the IN clause does not return any nodes, the result is False.
Find titles of books in which both sailing and windsurfing are mentioned in the
same paragraph
for $b in //book
where some $p in Sb//para satisfies
(contains ($Sp, "sailing") and
contains ($p, "windsurfing"))
return Sb/title

D. Silberberg XML.: Technology &Application 50

XQuery

Quantified Expressions (EVERY)

« EVERY Expression

— Generates multiple bindings for a variable, using values returned by the expression
in the IN clause

— For each of these bindings, the expression in the SATISFIES expression is
executed

— If every execution of the SATISFIES expression returns the Boolean value True,
then the result is True

— Otherwise the result is False
— If the expression in the IN clause does not return any nodes, the result is True.

« Find titles of books in which sailing is mentioned in every paragraph
for Sb IN //book
where every $p in $b//para satisfies
contains ($p, "sailing")
return Sb/title

. This query also returns books that contain no paragraphs

D. Silberberg XML.: Technology &Application 51
XQuery

Core Functions

« XQuery provides a core library of built-in functions
— Example: fn:root() - returns the root node of a named document
— All the functions of the XPath core function library

— Aggregation functions — fn:avg(), fn:sum(), fn:count(), fn:max(),
and fn:min()

— fn:distinct-values() function eliminates duplicate nodes from a
sequence,

— fn:empty() function returns True if and only if its argument is an
empty sequence

D. Silberberg XML.: Technology &Application
XQuery

User Defined Functions

« XQuery allows users to define functions of their own
« Function definition specifies

— Name of the function

— Names and datatypes of the parameters

— Datatype of the result

— Datatypes are specified by their qualified names

« A function definition also provides an expression (called the "function
body") that defines how the result of the function is computed from its
parameters

« When called, function arguments must be valid instances of the
declared parameter types

« The function results must be a valid instance of the declared result type

D. Silberberg XML.: Technology &Application 53
XQuery

Example Function

* FiInd the maximum depth of the document named
"partlist.xml"

declare function local:depth($Se as node()) as
Xs:integer

{
(: A node with no children has depth 1 :)
(: Otherwise, add 1 to max depth of children :)

if (fn:empty(Se/*))

then 1

else fn:max(for Sc in Se/* return
local:depth(Sc)) + 1

b
local:depth(fn:doc ("partlist.xml"))

D. Silberberg XML.: Technology &Application 54
XQuery

Another Example

» Prepare a summary of employees that are located in
Denver.

declare function local:summary ($emps as element (employee) *)
as element (dept) *
{
for $d in fn:distinct-values (Semps/deptno)
let Se := Semps[deptno = $d]
return
<dept>
<deptno>{$d}</deptno>
<headcount> {fn:count ($e)} </headcount>
<payroll> {fn:sum($e/salary)} </payroll>
</dept>
I

local:summary (fn:doc ("acme corp.xml")//employee[location = "Denver"])

D. Silberberg XML.: Technology &Application 55
XQuery

Joins

« Combine data from multiple sources into a single result

« Example documents

— Document "parts.xml" contains many <part> elements
« Each <part> element contains <partno> and <description>
subelements

— Document "suppliers.xml" contains many <supplier> elements
» Each <supplier> element contains <suppno> and <suppname>
subelements

— Document "catalog.xml"
« Contains information about the relationships between suppliers and
parts
« Contains many <item> elements, each of which in turn contains
<partno>, <suppno>, and <price> subelements

D. Silberberg XML.: Technology &Application
XQuery

56

Inner Join Example

Generate a "descriptive catalog" derived from the catalog document, but containing part
descriptions instead of part numbers and supplier names instead of supplier numbers.
Order the new catalog alphabetically by part description and secondarily by supplier
name.

<descriptive-catalog>
{
for $i in fn:doc("catalog.xml")//item,
Sp in fn:doc ("parts.xml")//part[partno = $i/partno],
$s in fn:doc ("suppliers.xml")//supplier[suppno =
$i/suppno]
order by description, suppname
return
<item>
{
Sp/description,
$s/suppname,
$i/price
}
</item>

}

</descriptive-catalog>

D. Silberberg XML.: Technology &Application 57
XQuery

Outer Join

« Return names of all the suppliers in alphabetic order, including those
that supply no parts; inside each supplier element, list the descriptions
of all the parts it supplies, in alphabetic order.

for $s in fn:doc("suppliers.xml")//supplier
order by suppname

return
<supplier>
{
$s/suppname,
for $i in fn:doc("catalog.xml")//item
[suppno = S$s/suppnol,
Sp in fn:doc ("parts.xml")//part
[partno = $i/pno]
order by
return Sp/description
}
</supplier>
D. Silberberg XML.: Technology &Application 58

XQuery

Future of XQuery

« With the emergence of XML
— Distinctions among various forms of information, such as documents and
databases, are quickly disappearing
— XQuery is designed to support queries against a broad spectrum of
information sources
— The versatility of XQuery will help XML to realize its potential as a
universal medium for data interchange.

« Future versions of XQuery may include:
— Data definition facilities for persistent views
— Function overloading and polymorphic functions
— Facilities for updating XML data
— An extensibility mechanism whereby function libraries can be created,
containing functions implemented in various programming languages

D. Silberberg XML.: Technology &Application
XQuery

59

TéAoc Evotntoc

EMIXEIPHEIAKO NPOTPAMMA
EKAIAEYZH KAI AIA BIOY MAGHSH == EXMA

YNOYPTEIO NAIAEIAL & BPHEKEYMATON, NOAITIZMOY & ABAHTIEMOY
Eupwriaikr Evwon EIAIKH YNHPEZXZIA AIAXEIPIZHE

Eupuwnaik Kowwvik Tapeio

Me T ouyxpnuatodétnon g EAAGdag kat tn¢ Evpwmaikric Evwong

