
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Εισαγωγή στην Επιστήμη και
Τεχνολογία των Υπηρεσιών

Ενότητα 11: XQuery

Χρήστος Νικολάου
Τμήμα Επιστήμης Υπολογιστών

Άδειες Χρήσης

• Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative
Commons και ειδικότερα

Αναφορά – Μη εμπορική Χρήση – Όχι Παράγωγο Έργο v. 3.0

(Attribution – Non Commercial – Non-derivatives)

• Εξαιρείται από την ως άνω άδεια υλικό που περιλαμβάνεται στις
διαφάνειες του μαθήματος, και υπόκειται σε άλλου τύπου άδεια χρήσης.
Η άδεια χρήσης στην οποία υπόκειται το υλικό αυτό αναφέρεται ρητώς.

Χρηματοδότηση
• Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια

του εκπαιδευτικού έργου του διδάσκοντα.

• Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο
Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του
εκπαιδευτικού υλικού.

• Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού
Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και
συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό
Κοινωνικό Ταμείο) και από εθνικούς πόρους.

D. Silberberg XML: Technology &Application
 XQuery

1

 XML

 XQuery

 635.444

David Silberberg

 Lecture 23

D. Silberberg XML: Technology &Application
 XQuery

2

 Databases

• A database system consists of

 – A data store

 • A place to store the data for inserts, updates, deletes, and queries

 • Data must be represented in a manner conducive to enabling

 straightforward updates and retrievals

 – A data management system

 • A system that organizes and manages stored data

 • Enables the modification and extraction of the data

 – A query access language

 • A language with a syntax and semantics that enables dynamic access

 to the data

 • A language that enables modification of the data

D. Silberberg XML: Technology &Application
 XQuery

3

Database Schematic (Simplified)

 • Queries and modification requests retrieve

 and update data

 – SQL examples

 • SELECT statements are queries

 • INSERT, UPDATE, and DELETE statements

 are modification requests

• Data management system

 – Manages the structure of the data store

 – Manages external query and modification

 requests

 • Transforms stored data into query results

 • Reflects update requests in the data store

• Data Store

 – Structured representation of the data

Query and Modification
 Requests

 Data Management

 System

 Data Store

D. Silberberg XML: Technology &Application
 XQuery

4

 Relational Database Model

• Simple data structures

 – Rows, columns

 – Simple data items

• Solid model

 – Foundation for consistency

 – Normalization eliminates data anomalies

 – Database can be maintained with integrity rules

• Set-oriented data manipulation

 – Non-procedural

 – Relational algebra - set theory (SQL & QUEL)

 – Relational calculus - logic (QBE)

D. Silberberg XML: Technology &Application
 XQuery

5

 Definitions and Concepts

• Database models some real life concept and captures

 actual data that represents some state of real life

• Relational database is a database modeled by relations

• Relation R defined over n sets D1, D2, … Dn where Di

 represents some domain.

• n-tuple (tuple) is a set < d1, d2, …, dn> where d1  D1, d2 

 D2, …

D. Silberberg XML: Technology &Application
 XQuery

6

 Example Relation and Domains

• R is a set of 0 or more n-tuples (not necessarily distinct)

• MFG(manufacturer, state)

 – D1 is set of all potential manufacturers

 – D2 is a set of all 50 states

 – d1 is any member of D1 (i.e., Proctor & Gamble, McCormick
 Spice, etc.)

 – d2 is any member of D2 (i.e., OH, MD, etc.)

D. Silberberg XML: Technology &Application
 XQuery

7

 Keys

• key - minimum nonempty subset of relation's attributes

 that uniquely defines each tuple

• Examples:

 – CUST(cust_no, cust_name, cust_address)

 • key is (cust_no)

 – ORDER(cust_no, part_no, quantity)

 • key is (cust_no, part_no)

 – PART: (part_no, part_name, manufacturer, cost)

 • key is (part_no)

 – MFG: (manufacturer, owner)

 • key is (manufacturer)

D. Silberberg XML: Technology &Application
 XQuery

8

 Normalization Addresses Anomalies in

 RDBMS

• Repetition anomaly - state repeated

• Update anomaly - state updated twice

• Insertion anomaly

 – Cannot add new manufacturer until we have part

 – Visa versa

• Deletion anomaly - deleting 'doodad' deletes XYZ from

 DB

D. Silberberg XML: Technology &Application
 XQuery

9

Normalization is Achieved Through

 Decomposition

•

•

•

•

•

Start with universal relation - 1NF

Iterated decomposition -> 2NF & 3NF (really BCNF)

There are also 4NF and 5NF, which are not covered

5NF  4NF  3NF  2NF  1NF ( is subset)

Seek loss-less decomposition in normalization process

 – Joins reconstruct tables (defined later)

 – Dependency preservation

D. Silberberg XML: Technology &Application
 XQuery

10

 Dependency Structures

• If for each X in R, there is only one Y value: X->Y

 (determines)

• Key determines non-keys

• Example:

 CUST: cust_no -> (cust_name, cust_address)

 PART: part_no -> (part_name, manufacturer, cost)

 ORDER: (cust_no, part_no) -> (quantity)

 MFG: (manufacturer) -> (owner)

D. Silberberg XML: Technology &Application
 XQuery

11

Relational Algebra

• Fundamental operations

–

–

–

–

–

Selection

Projection

Union

Set difference

Cartesian product

• Derived operations

–

–

–

–

–

Intersection

 -join

natural join

semi-join

quotient

• Others

– Outer join

– Transitive closure

D. Silberberg XML: Technology &Application
 XQuery

12

Selection

•

•

F(R)

 – F is formula

 – F is first order logic - won't get into it

 – part_no -> (part-name, manufacturer, cost)

cost = 3(R)

D. Silberberg XML: Technology &Application
 XQuery

13

Selection in SQL

SELECT

FROM

WHERE

*

part

cost = 3

D. Silberberg XML: Technology &Application
 XQuery

14

Projection

•

•

A,B(R)

 – R is relation

 – A, B are columns

part-name, cost(R)

D. Silberberg XML: Technology &Application
 XQuery

15

Projection in SQL

SELECT

FROM

part_name,

cost

part

D. Silberberg XML: Technology &Application
 XQuery

16

-Join

• R FS

 – R and S are relations

 – F is some formula (=, <>, >, <,  ,  , like)

R:

S:

D. Silberberg XML: Technology &Application
 XQuery

17

 -Join in SQL

SELECT part_no, part_name, cost, R.man_no, S.man_no, manufacturer

FROM R, S

WHERE R.man_no < S.man_no

D. Silberberg XML: Technology &Application
 XQuery

18

Natural Join

• R FS

 – R and S are relations

 – F is the formula ‘=‘

SELECT part_no, part_name, cost, R.man_no, S.man_no, manufacturer

FROM R, S

WHERE R.man_no = S.man_no

D. Silberberg XML: Technology &Application
 XQuery

19

Database Schematic for XML

 • Queries and modification requests retrieve

 and update data

 – Query languages have been XPath, XSLT,

 SAX, DOM, JDOM, and JAXP

 – Update languages have been editors, XSLT,

 SAX, DOM, JDOM, and JAXP

• Data management system

 – For the most part, this is XSLT, SAX, DOM,

 JDOM, and JAXP runtime environment

 – None of them really perform data

 management

• Data Store

 – XML document (or set of documents)

Query and Modification
 Requests

 Data Management

 System

 Data Store

D. Silberberg XML: Technology &Application
 XQuery

20

 Problems with Current Methodologies

• We will not address the data management and modification issue
 – There are research and a few commercial systems that are starting to
 address these issues

 – Some commercial systems (e.g., Oracle) puts an XML-ish interface onto
 an RDBMS

• Data Retrieval

 – Until now, every new request for information required writing a new
 program or stylesheet

 • Approach difficult to maintain

 • New requests require new programming logic

 • Relating data through joins is difficult to manage

 – Declarative query syntax

 • Simple and flexible

 • Does not require new programming

 • XML query languages provide declarative access to XML data

D. Silberberg XML: Technology &Application
 XQuery

21

 XML Query Languages

• Many XML Query languages have been proposed

• XQuery is the language recommended by the W3C

–

–

–

–

http://www.w3.org/TR/xquery/

Designed to be a small and easy to implement language

Queries are concise and easily understood

Flexible enough to query broad spectrum of XML source (databases and

 documents)

• XQuery is derived from

–

–

–

–

–

Quilt (influenced by XML query languages Lorel and YATL)

XPath and XQL (path expression syntax for hierarchical documents)

XML-QL (binding variables to create new structures)

SQL (SELECT-FROM-WHERE pattern)

OQL (object-oriented query language that returns structures)

• Plenty of information at: http://www.w3.org/XML/Query

D. Silberberg XML: Technology &Application
 XQuery

22

 XQuery Language

• Functional language - query is represented as an expression (like OQL)

 – Supports several kinds of expressions

 – Structure and appearance of a queries may differ significantly depending

 on the kinds of expressions are used.

 – The various forms of expressions can be nested with full generality

• The input and output of a query are instances of an XPath data model

 – Document is modeled as a tree of nodes

 – Data model is capable of modeling not only an XML document but also a

 well-formed fragment of a document, a sequence of documents, or a

 sequence of document fragments

 – An instance of the data model is an ordered sequence of nodes, each of

 which may contain nested sequences of nodes.

D. Silberberg XML: Technology &Application
 XQuery

23

 XQuery Expressions

• The principal forms of XQuery expressions

–

–

–

–

–

–

–

Path expressions

Element constructors

FLWOR expressions

Expressions involving operators and functions

Conditional expressions

Quantified expressions

Expressions that test or modify datatypes

D. Silberberg XML: Technology &Application
 XQuery

24

 Predefined Namespaces

• Certain namespace prefixes are predeclared by XQuery

• Bound to fixed namespace URIs

 xml = http://www.w3.org/XML/1998/namespace

 xs = http://www.w3.org/2001/XMLSchema

 xsi = http://www.w3.org/2001/XMLSchema-instance

 fn = http://www.w3.org/2005/xpath-functions

 local = http://www.w3.org/2005/xquery-local-functions

D. Silberberg XML: Technology &Application
 XQuery

25

 Path Expressions

• Can begin with an expression that identifies a specific node or

 sequence of nodes in a document.

 – fn:doc(string) returns the root node of a named document.

• Can also begin with "/" or "//" which represents an implicit root node

• The execution environment defines a "context node"

 – Referenced by dot (".") inside the path expression

• Consists of a series of "steps"

 – Each step represents movement through a document along a specified

 "axis"

 – Each step can apply one or more predicates to eliminate nodes that fail to

 satisfy a given condition

 – The result of each step is a sequence of nodes that serves as a starting

 point for the next step

D. Silberberg XML: Technology &Application
 XQuery

26

 Path Expression Queries

• Simple query

 – Retrieve the figure(s) with caption "Tree Frogs" in the second

 chapter of the document named zoo.xml
– fn:doc("zoo.xml")//chapter[2]//figure[caption = "Tree Frogs"]

• Queries may specify a sequence of nodes by a specifying

 its ordinal number in the sequence (as in chapter[2],

 chapter[fn:position() = (1,3 5, 7)], and

 chapter[fn:position() = (2 to 5)])

 – Retrieve all the figures in chapters 2 through 5 of the document

 named "zoo.xml."
– fn:doc("zoo.xml")//chapter[fn:position() = (2 to 5)]//figure

D. Silberberg XML: Technology &Application
 XQuery

27

Path Expressions with Operators

•

•

•

Path expressions can contain operators that are defined over simple datatypes.
 – If operand is a node, contents are extracted and converted to a typed value (e.g.,
 <grade>89</grade> -> 89)

 – If no argument, its implicit argument is the current (context) node

Retrieve the annual salary of a single employee named "Fred"

 fn:doc("emp.xml")//emp[name="Fred"]/salary * 12

Retrieve the annual salaries of employees named "Fred"

 for $a in fn:doc("emp.xml")//emp[name="Fred"]/salary

 return
 <result>
 {$a * 12}

 </result>

D. Silberberg XML: Technology &Application
 XQuery

28

 Element Constructors

• Path expressions search for elements in existing documents

• However, a query often needs to generate new elements

• XQuery expressions allow embedding XML elements that represent

 themselves

 – Called an element constructor

 – Allows literal XML fragments to be "pasted" into queries

• Trivial example:

 – Retrieve (generate) an <emp> element that has an "empid" attribute and
 nested <name> and <job> elements

 <emp empid = "12345">
 <name>John Smith</name>

 <job>Anthropologist</job>

 </emp>

D. Silberberg XML: Technology &Application
 XQuery

29

 Computed Constructors – Simple Case

• Constructors can be created with various keywords: element,
 attribute, document, text, processing-

 instruction, comment

• The following is an alternate way of using computed constructors:

 element emp {
 attribute empid {"12345"}

 element name {"John Smith"}

 element job {"Anthropologist"}

 }

D. Silberberg XML: Technology &Application
 XQuery

30

 Element Constructor with Binding

• Often, contents of elements or attribute values need to be computed by

 some expression

• XQuery expressions to be computed that are inside element

 constructors are enclosed in curly braces (much like XSLT)

• In the following example, we assume that variables $id, $name, and
 $job are bound to strings and nodes elsewhere in the query

• Query - Retrieve (generate) an <emp> element that has an "empid"

 attribute.

 <emp empid = “{$id}”>

 {$name}

 {$job}

 </emp>

D. Silberberg XML: Technology &Application
 XQuery

31

Constructing Elements and Attributes

•

•

•

Names of elements and attributes may be computed by an expression

For this purpose, XQuery allows the name of an element or attribute to be
XQuery expressions enclosed in curly braces
 – If the name in a start-tag is an expression, the name must be omitted from the
 corresponding end-tag

 – however, when a start-tag contains a constant name, the same name must be
 specified in the matching end-tag

Example (assume $e is bound to some element with numeric content)

 – Retrieve (generate) a new element having the same name and attributes as $e, and
 with numeric content equal to twice the content of $e.

 LET $elt := $e/text()

 RETURN
element {$elt} # replicates the name of $e

{$e/@*} # replicates the attributes of $e

{2 * number($e)} # doubles the content of $e

D. Silberberg XML: Technology &Application
 XQuery

32

 FLWOR Expressions

• A FLWOR (pronounced "flower") expression is

 constructed from FOR, LET, WHERE, ORDER BY, and

 RETURN clauses

 – Must appear in a specific order

 – Binds values to one or more variables and then uses these variables

 to construct a result

FOR/LET
 clauses

WHERE
 clause

RETURN
 clause

 Ordered

list of tuples
 of bound

variables

 Pruned

list of tuples
 of bound

variables

Instance

Of XML
 Query

data model ORDER
 BY

 clause

 Ordered

list of tuples
 of bound

variables

D. Silberberg XML: Technology &Application
 XQuery

33

 FOR Clause

• Used whenever iteration is needed

• Introduces one or more variables, associating each variable with an

 expression

 – FOR-clause might contain a path expression that returns a sequence of

 nodes

• Result of the FOR-clause is a sequence of tuples

 – Each sequence of tuples contains a binding for each of the variables in the

 FOR-clause.

 – The variables are bound to individual values returned by their respective

 expressions.

• Each variable in a FOR-clause can be thought of as iterating over the

 values (sequence of tuples) returned by its respective expression, in

 order.

D. Silberberg XML: Technology &Application
 XQuery

34

 FOR Examples

• Example 1

 – for $b in fn:doc("bib.xml")//book

 – Assigns to $b the sequence of tuples, each of which represents a

 <book> node in the document "bib.xml"

 – The query will iterate over the tuples bound to $b

• Example 2

 – for $b in fn:doc(“bib.xml”)//book,

 $c in $b/author

 – Sets up a double loop over books and authors of books

D. Silberberg XML: Technology &Application
 XQuery

35

 LET Clause

• Used to bind one or more variables to one or more expressions

• LET clause binds each variable to the value of its respective expression

 without iteration
 – Results in a single binding for each variable

 – Unlike FOR clause

• Example of difference between FOR and LET clauses

 – for $b in fn:doc("bib.xml")//book

 • Results in many bindings in an iteration

 • Each binding binds the variable $b to one book in the library

 – let $b := fn:doc("bib.xml")//book

 • Results in a single binding

 • Binds the variable $b to a sequence containing all the books in the library

 – let $b := for … where … return …

 • $b is the set of returned items

D. Silberberg XML: Technology &Application
 XQuery

36

FOR/LET Combination

•

•

•

•

A FLWOR expression may contain several FOR and LET clauses

Expressions used in FOR and LET-clauses may reference variables bound

earlier in the FLWOR expression

Result of the FOR and LET clauses is an ordered sequence of tuples of bound

variables

 – If all FOR-clause expressions are independent, the number of tuples generated is

 the product of the cardinalities of all the FOR clause expressions

 – A FLWOR expression that contains no FOR clauses generates exactly one binding-

 tuple

Order of the tuples generated by the FOR and LET clauses is determined by

the order in which values are returned by the FOR-clause expressions

 – The order in which the variables are bound determines the order of nested iteration

 of the FLWOR expression.

D. Silberberg XML: Technology &Application
 XQuery

37

WHERE Clause

•

•

•

•

•

•

Bindings generated by the FOR and LET clauses are filtered by optional

WHERE clause

Only tuples for which the condition in the WHERE clause is true are used to

invoke the RETURN clause

The WHERE clause predicates

 – Connected by AND and OR

 – Usually reference bound variables

Variables bound by a FOR clause usually represent individual nodes

 – Typically used in scalar predicates such as $p/color = "Red"

Variables bound by a LET clause usually represent a sequences of nodes

 – Typically used in set-oriented predicates such as avg($p/price) > 100

Order of the binding-tuples generated by the FOR and LET clauses is

preserved

D. Silberberg XML: Technology &Application
 XQuery

38

Comparison Expressions

• Value comparisons – compare single values

–
–

–

–

Comparators: eq, ne, lt, le, gt, ge
$book/author eq "Smith" is true only if the text value is "Smith"

//book[year gt 2005] is true only if <year> is a child of <book> and its value is greater
than 2006
<year>2008</year> eq <year>2008</year> is true since their atomized values are
equal

• General comparisons – compare operands of sequences of any length

–
–

–

–

Comparators: =, !=, <, <=, >, >=
$book/author = "Smith" is true if any subelement's value is "Smith"

(1,2) = (2,3) is true since one or more of the elements overlap

(1,2) = (3,4) is not true because no elements overlap

• Node comparisons – compare node elements by their order or document identity

–
–

–

–

Comparators: is, <<, >>
//book[year eq 1998] is //book[publisher eq "Morgan Kaufmann"] is
true if they refer to the same book node
<year>2008</year> is <year>2008</year> is false since they refer to different
nodes
//book[author eq "Smith"] >> //book[author eq "Jones"] is true if the
book written by Smith occurs later in the document than the book written by Jones
Kaufmann"]

D. Silberberg XML: Technology &Application
 XQuery

39

RETURN Clause

•

•

•

•

Generates the output of the FLWOR expression

 – May be any sequence of nodes or primitive values

The RETURN clause is executed once for each tuple of bindings

 – That is generated by the FOR and LET clauses

 – Satisfies the condition in the WHERE clause

 – Preserves the order of these tuples

Contains an expression that contains

 – Element constructors

 – References to bound variables

 – Nested sub-expressions

Results generated by individual executions of the RETURN clause are

concatenated together

 – Preserves order

 – May contain duplicate nodes

D. Silberberg XML: Technology &Application
 XQuery

40

 Examples

• Example "bib.xml" document

<book-list>

<book>

 <title>…</title>

 <author>…</author>

 <publisher>…</publisher>

 <year>…</year>

 <price>…</price>

</book>

 <book>

 <title>…</title>

 <author>…</author>

 <publisher>…</publisher>

 <year>…</year>

 <price>…</price>

 </book>

 ...

</book-list>

D. Silberberg XML: Technology &Application
 XQuery

41

ORDER BY

•
Make an alphabetic list of publishers. Within each publisher, make a list of books,
each containing a title and a price, in descending order by price

 <publisher_list>
 {for $p in fn:distinct-values(fn:doc("bib.xml")//publisher)

 order by name

 return
 <publisher>

 <name> {$p} </name>

 {for $b in fn:doc("bib.xml")//book[publisher= $p]

 order by price descending

 return

 <book>

 {$b/title}

 {$b/price}

 </book>

 }

 </publisher>

 }

 </publisher_list>

D. Silberberg XML: Technology &Application
 XQuery

42

 Query Examples

• List the titles of books published by Morgan Kaufmann in 1998

for $b in fn:doc("bib.xml")//book

 where $b/publisher = "Morgan Kaufmann"
 and $b/year = "1998"

 return $b/title

• If order is not important, use the unordered function

for $b in fn:unordered(fn:doc("bib.xml")//book)

where $b/publisher = "Morgan Kaufmann"
 and $b/year = "1998"

return $b/title

D. Silberberg XML: Technology &Application
 XQuery

43

 DISTINCT Function

• Distinct function eliminates duplicate values from a set of tuples

 – Two elements are considered to have duplicate values if their names,

 attributes, and normalized content are equal

 – Distinct function retains one node FOR $p IN distinct-

 values(doc("bib.xml")//publisher)

• List each publisher and the average price of its books

 for $p in fn:distinct-values(fn:doc("bib.xml")//publisher)

 let $a := fn:avg(fn:doc("bib.xml")//book[publisher = $p]/price)

 return

 <publisher>
 <name> {$p} </name>

 <avgprice> {$a} </avgprice>

 </publisher>

D. Silberberg XML: Technology &Application
 XQuery

44

 Aggregate Functions

• List the publishers who have published more than

 100 books

<big_publishers>

 {

 for $p in fn:distinct-values(fn:doc("bib.xml")//publisher)

 let $b := fn:doc("bib.xml")//book[publisher = $p]

 where count($b) > 100

 return $p

 }

</big_publishers>

• SQL does not allow count() in the WHERE clause

D. Silberberg XML: Technology &Application
 XQuery

45

 Structural Transformation Using Embedded

 FLWOR Expressions

• Invert the structure of the input document so that, instead of each book

 element containing a sequence of authors, each distinct author element

 contains a sequence of book-titles

 <author_list>

 {

 for $a in fn:distinct-values(fn:doc("bib.xml")//author)

 return
 <author>

 <name> {$a} </name>

 {

 for $b in fn:doc("bib.xml")//book[author = $a]

 return $b/title

 }

 </author>

 }

 </author_list>

D. Silberberg XML: Technology &Application
 XQuery

46

 LET Simplifies Query Expressions

• For each book whose price is greater than the average price, return the

 title of the book and the amount by which the book's price exceeds the

 average price.
 <result>

 {

 let $a := fn:avg(fn:doc("bib.xml")//book/price)

 for $b in fn:doc("bib.xml")//book

 where $b/price > $a

 return
 <expensive_book>

 {$b/title}

 <price_difference>

 {$b/price - $a}

 </price_difference>

 </expensive_book>

 }

 </result>

D. Silberberg XML: Technology &Application
 XQuery

47

Complex Transformations

•

•

Computed element names and attribute names are used to perform structural

transformations

Construct a new element having the same name as the element bound to $e.

Transform all the attributes of $e into subelements, and all the subelements of

$e into attributes

 element {name($e)}
 {

 for $c in $e/*

 return attribute {name($c)} {string($c)}

 }

 {

 for $a in $e/@*

 return
 element {name($a)} {string($a)}

 }

D. Silberberg XML: Technology &Application
 XQuery

48

for $h in //holding
order by title

return
 <holding>

 {$h/title,

 if ($h/@type = "Journal")
 then $h/editor
 else $h/author
 }

 </holding>

 Conditional Expressions

• Make a list of holdings, ordered by title. For journals,
 include the editor, and for all other holdings, include the
 author.
 Comma is used to concatenate

expressions within a single

sequence expression

D. Silberberg XML: Technology &Application
 XQuery

49

 Alternate Conditional Expression

• Make a list of holdings, ordered by title. For journals,
 include the editor, and for all other holdings, include the
 author.

 for $h in //holding
 order by title
 return

 <holding>

 {$h/title}

 {if ($h/@type = "Journal")
 then $h/editor
 else $h/author
 }

 </holding>

D. Silberberg XML: Technology &Application
 XQuery

50

Quantified Expressions (SOME)

•

•

SOME Expression

 – Generates multiple bindings for a variable, using values returned by the expression

 in the IN clause

 – For each of these bindings, the expression in the SATISFIES expression is

 executed

 – If at least one execution of the SATISFIES expression returns the Boolean value

 True, then the result is True

 – Otherwise the result is False

 – If the expression in the IN clause does not return any nodes, the result is False.

Find titles of books in which both sailing and windsurfing are mentioned in the

same paragraph
 for $b in //book

 where some $p in $b//para satisfies

 (contains($p, "sailing") and

 contains($p, "windsurfing"))

 return $b/title

D. Silberberg XML: Technology &Application
 XQuery

51

Quantified Expressions (EVERY)

•

•

•

EVERY Expression

 – Generates multiple bindings for a variable, using values returned by the expression

 in the IN clause

 – For each of these bindings, the expression in the SATISFIES expression is

 executed

 – If every execution of the SATISFIES expression returns the Boolean value True,

 then the result is True

 – Otherwise the result is False

 – If the expression in the IN clause does not return any nodes, the result is True.

Find titles of books in which sailing is mentioned in every paragraph
 for $b IN //book

 where every $p in $b//para satisfies

 contains($p, "sailing")

 return $b/title

This query also returns books that contain no paragraphs

D. Silberberg XML: Technology &Application
 XQuery

52

 Core Functions

• XQuery provides a core library of built-in functions

 – Example: fn:root() - returns the root node of a named document

 – All the functions of the XPath core function library

 – Aggregation functions – fn:avg(), fn:sum(), fn:count(), fn:max(),

 and fn:min()

 – fn:distinct-values() function eliminates duplicate nodes from a

 sequence,

 – fn:empty() function returns True if and only if its argument is an

 empty sequence

D. Silberberg XML: Technology &Application
 XQuery

53

 User Defined Functions

• XQuery allows users to define functions of their own

• Function definition specifies

–

–

–

–

Name of the function

Names and datatypes of the parameters

Datatype of the result

Datatypes are specified by their qualified names

• A function definition also provides an expression (called the "function

 body") that defines how the result of the function is computed from its

 parameters

• When called, function arguments must be valid instances of the

 declared parameter types

• The function results must be a valid instance of the declared result type

D. Silberberg XML: Technology &Application
 XQuery

54

 Example Function

• Find the maximum depth of the document named
 "partlist.xml"

declare function local:depth($e as node()) as
 xs:integer
{
 (: A node with no children has depth 1 :)
 (: Otherwise, add 1 to max depth of children :)

 if (fn:empty($e/*))
 then 1
 else fn:max(for $c in $e/* return
 local:depth($c)) + 1
};

local:depth(fn:doc("partlist.xml"))

D. Silberberg XML: Technology &Application
 XQuery

55

 Another Example

• Prepare a summary of employees that are located in

 Denver.

declare function local:summary($emps as element(employee)*)
 as element(dept)*
{

 for $d in fn:distinct-values($emps/deptno)

 let $e := $emps[deptno = $d]

 return

 <dept>

 <deptno>{$d}</deptno>

 <headcount> {fn:count($e)} </headcount>

 <payroll> {fn:sum($e/salary)} </payroll>

 </dept>

};

local:summary(fn:doc("acme_corp.xml")//employee[location = "Denver"])

D. Silberberg XML: Technology &Application
 XQuery

56

 Joins

• Combine data from multiple sources into a single result

• Example documents

 – Document "parts.xml" contains many <part> elements

 • Each <part> element contains <partno> and <description>

 subelements

 – Document "suppliers.xml" contains many <supplier> elements

 • Each <supplier> element contains <suppno> and <suppname>

 subelements

 – Document "catalog.xml"

 • Contains information about the relationships between suppliers and

 parts

 • Contains many <item> elements, each of which in turn contains

 <partno>, <suppno>, and <price> subelements

D. Silberberg XML: Technology &Application
 XQuery

57

Inner Join Example

•
Generate a "descriptive catalog" derived from the catalog document, but containing part
descriptions instead of part numbers and supplier names instead of supplier numbers.
Order the new catalog alphabetically by part description and secondarily by supplier
name.
 <descriptive-catalog>
 {
 for $i in fn:doc("catalog.xml")//item,
 $p in fn:doc("parts.xml")//part[partno = $i/partno],
 $s in fn:doc("suppliers.xml")//supplier[suppno =
 $i/suppno]

 order by description, suppname
 return

 <item>

 {

 $p/description,

 $s/suppname,

 $i/price

 }

 </item>

 }
 </descriptive-catalog>

D. Silberberg XML: Technology &Application
 XQuery

58

 Outer Join

• Return names of all the suppliers in alphabetic order, including those
 that supply no parts; inside each supplier element, list the descriptions
 of all the parts it supplies, in alphabetic order.
 for $s in fn:doc("suppliers.xml")//supplier
 order by suppname
 return

 <supplier>

 {

 $s/suppname,

 for $i in fn:doc("catalog.xml")//item
 [suppno = $s/suppno],
 $p in fn:doc("parts.xml")//part
 [partno = $i/pno]
 order by .
 return $p/description
 }

 </supplier>

D. Silberberg XML: Technology &Application
 XQuery

59

 Future of XQuery

• With the emergence of XML

 – Distinctions among various forms of information, such as documents and

 databases, are quickly disappearing

 – XQuery is designed to support queries against a broad spectrum of

 information sources

 – The versatility of XQuery will help XML to realize its potential as a

 universal medium for data interchange.

• Future versions of XQuery may include:

–

–

–

–

Data definition facilities for persistent views

Function overloading and polymorphic functions

Facilities for updating XML data

An extensibility mechanism whereby function libraries can be created,

containing functions implemented in various programming languages

Τέλος Ενότητας

