
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Εισαγωγή στην Επιστήμη και
Τεχνολογία των Υπηρεσιών

Ενότητα 14: JAX-WS

Χρήστος Νικολάου
Τμήμα Επιστήμης Υπολογιστών

Άδειες Χρήσης

• Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative
Commons και ειδικότερα

Αναφορά – Μη εμπορική Χρήση – Όχι Παράγωγο Έργο v. 3.0

(Attribution – Non Commercial – Non-derivatives)

• Εξαιρείται από την ως άνω άδεια υλικό που περιλαμβάνεται στις
διαφάνειες του μαθήματος, και υπόκειται σε άλλου τύπου άδεια χρήσης.
Η άδεια χρήσης στην οποία υπόκειται το υλικό αυτό αναφέρεται ρητώς.

Χρηματοδότηση

• Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια
του εκπαιδευτικού έργου του διδάσκοντα.

• Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο
Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του
εκπαιδευτικού υλικού.

• Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού
Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και
συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό
Κοινωνικό Ταμείο) και από εθνικούς πόρους.

XML

JAX-WS

635.444

David Silberberg

Lecture 25

D. Silberberg XML: Technology & Application

JAX-WS

1

Overview of JAX-WS

• JAX-WS stands for Java API for XML Web Services

–

–

Builds clients and services that communicate using XML

Enables developers to write message oriented and RPC-oriented web services

• Java programming language API for creating web services

–

–

Part of the Java EE platform from Sun Microsystems

Like the other Java EE APIs, JAX-WS uses annotations (introduced in Java SE

5)

Simplifies the development and deployment of web services and clients –

• The Reference Implementation of JAX-WS

–

–

–

Part of project GlassFish – an open source Java EE application server

Called JAX-WS RI (For Reference Implementation)

Production quality implementation

D. Silberberg XML: Technology & Application

JAX-WS
2

JAX-WS Hides the Complexity of SOAP & WSDL

• SOAP is the XML-based protocol used

– Envelope structure, encoding rules, and conventions for representing web
service invocations and responses

Calls and responses are transmitted as SOAP messages via HTTP –

•

•

WSDL is the XML-based model for describing web services

JAX-WS API hides the complexity of SOAP and WSDL

– Server side development

•

•

Specify the web service operations by defining methods in a JAVA interface

Code the classes that implement those methods

– Client side development

•

•

Create a proxy (a local object representing the service)

Invokes methods on the proxy.

–

–

Developer does not generate or parse SOAP messages

JAX-WS runtime system converts the API calls and responses to and from
SOAP

D. Silberberg XML: Technology & Application

JAX-WS
3

Advantage of JAX-WS

•

•

Platform independence provided by Java

Java independence

– JAX-WS clients can access web services not running on a Java

platform

JAX-WS services can be called by non-Java clients –

• Reason for Java independence of JAX-WS

–

–

Uses standards HTTP, SOAP, and the WSDL defined by the W3C

WSDL is an XML format for describing services as

operating on messages.

sets of endpoints

D. Silberberg XML: Technology & Application

JAX-WS
4

JAX-WS Architecture

•

•

The architecture is a simple client/server architecture

JAX-WS enables developers to write clients and services as java classes

and methods

• JAX-WS technology manages communication between a

client.

web service and

D. Silberberg XML: Technology & Application

JAX-WS
5

Service Endpoint Interfaces

• Service

–

–

Java class that imports javax.jws.WebService
@WebService annotation defines the class as a web service endpoint

• Service endpoint implementation (SEI)

–

–

Java class

Defines the services methods that clients can call

• Service endpoint interface

–

–

–

Java Interface

Declares service interfaces that clients can call

Can be specified explicitly

• Must specify endpointInterface elements to the @WebService annotation
– Not required when building a JAX-WS endpoint

• Implementation class implicitly defines an SEI

• The wsgen tool is applied to the endpoint implementation class to generate the
web service artifacts that connect a web service client to the JAX-WS runtime

D. Silberberg XML: Technology & Application

JAX-WS
6

mailto:@WebService
mailto:@WebService
mailto:@WebService

Basic Steps for Creating Client/Server

• Server

–

–

–

–

–

Code the implementation class

Compile the implementation class

Use wsgen to generate the artifacts required to deploy the service

Package the files into a WAR (Web ARchive) file

Deploy the WAR file

• Web service artifacts used to communicate with clients are generated by the
Application Server during deployment

• Client

–

–

Code the client class

Use wsimport to generate and compile the web service artifacts needed to

connect to the service

Compile the client class

Run the client

–

–

D. Silberberg XML: Technology & Application

JAX-WS
7

JAX-WS Service Requirements

• Service class
–

–

Must import either the javax.jws.WebService or javax.jws.WebServiceProvider
May explicitly reference an SEI through the endpointInterface element of the @WebService
annotation

• If no endpointInterface is specified, an SEI is implicitly defined for the server class

–

–

–

–

–

Must not be declared final
Must not be abstract

Must have a default public constructor

Must not define the finalize method

May use the javax.annotation.PostConstruct or javax.annotation.PreDestroy
annotations on its methods for life cycle event callbacks

• Service methods
–

–

Must be public and not be declared static or final
Exposed to clients

•

•

Must be annotated with javax.jws.WebMethod
Must have JAXB-compatible parameters and return types

• Construction and Destruction
– The @PostConstruct method is called by the container before the implementing class begins

responding to web service clients
The @PreDestroy method is called by the container before the endpoint is removed from operation –

D. Silberberg XML: Technology & Application

JAX-WS
8

mailto:@WebService
mailto:@PostConstruct
mailto:@PostConstruct
mailto:@PostConstruct
mailto:@PreDestroy
mailto:@PreDestroy

Coding the Service Endpoint Implementation Class

package helloservice.endpoint;// package name is helloservice

import javax.jws.WebService; // required import

@WebService
public class Hello {

private String message

// required annotation

= new String("Hello, ");

public void Hello() {} // default public constructor

@WebMethod // required annotation
name) { public String sayHello(String

return message + name + ".";
}

}

D. Silberberg XML: Technology & Application

JAX-WS
9

mailto:@WebService
mailto:@WebMethod

Building, Packaging, and Deploying the Service

• Build and package service

–

–

–

From a terminal window, go to the directory where the service is located

Type ant (calls the default target)

Automatically builds and packages the application into an WAR file
(helloservice.war) located in the dist directory

• Deploy service

–

–

From a terminal window, go to the directory where the service is located

Start the Application Server (e.g., Sun GlassFish Enterprise Server – previously known

as Sun Java System Application Server)

Type: ant deploy –

• View WSDL

– Type the URL http://localhost:8080/helloservice/hello?WSDL into

a web browser

All in one command – ant all

Undeploy – ant undeploy

•

•

D. Silberberg XML: Technology & Application

JAX-WS
10

http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello

JAX-WS Client

Client performs the following steps:

javax.xml.ws.WebServiceRef annotation declares a reference to a web service
@WebServiceRef uses the wsdlLocation element to specify the URI of the deployed

service’s WSDL file

•
•

@WebServiceRef(wsdlLocation=
"http://localhost:8080/helloservice/hello?wsdl")

static HelloService service;

• Retrieves a proxy to the service, also known as a port, by invoking getHelloPort on the

service.

Hello port = service.getHelloPort(); // implements SEI define by service

• Invokes the port’s sayHello method with a name parameter

String response = port.sayHello(name);

D. Silberberg XML: Technology & Application

JAX-WS
11

mailto:@WebServiceRef
mailto:@WebServiceRef
mailto:@WebServiceRef
mailto:@WebServiceRef
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello

JAX-WS Client Code

package simpleclient;

import
import

import

javax.xml.ws.WebServiceRef;
helloservice.endpoint.HelloService;

helloservice.endpoint.Hello;

//
//

//

required import
import the HelloService class
import Hello class

public class HelloClient {

@WebServiceRef(wsdlLocation="http://localhost:8080/
helloservice/hello?wsdl")

static HelloService service; // HelloService variable

public static void main(String[]
try {

HelloClient client = new

client.doTest(args);

} catch(Exception e) {

e.printStackTrace();

}

}

args) {

HelloClient();

D. Silberberg XML: Technology & Application

JAX-WS
12

mailto:@WebServiceRef
mailto:@WebServiceRef
http://localhost:8080/
http://localhost:8080/
http://localhost:8080/
http://localhost:8080/
http://localhost:8080/
http://localhost:8080/
http://localhost:8080/
http://localhost:8080/
http://localhost:8080/

JAX-WS Client Code – continued

public void doTest(String[] args) {
try {

System.out.println("Retrieving the port from the service: " +

service);

Hello port = service.getHelloPort(); // get a handle on the service

System.out.println("Invoking the sayHello operation on the port.");

String name;
if (args.length > 0) {

name = args[0];

} else {

name = "No Name";

}

String response = port.sayHello(name); // call the service

System.out.println(response);
} catch(Exception e) {

e.printStackTrace();

}

}
}

D. Silberberg XML: Technology & Application

JAX-WS
13

Building and Running the Client

•

•

•

Make sure that helloservice is deployed
From a terminal window, go to the directory containing the client code

Type: ant

–

–

Calls the default target

Builds and packages the application into a JAR file – in this case
simpleclient.jar

Places it into the dist directory

run the client, type: ant run

–

To •

• JAX-WS uses JAXB to map Java programming language types to and

from XML definitions

–

–

Insulates developers from the mappings

However, not every class in the Java language can be used as a method

parameter or return type in JAX-WS (limited by JAXB)

D. Silberberg XML: Technology & Application

JAX-WS
14

Web Services – Bigger Picture

• Since 2005, Sun has worked closely with Microsoft to ensure

interoperability of web services enterprise technologies

–

–

–

Security

Reliable messaging

Atomic transactions

• Metro, part of GlassFish, is a one-stop web services shop

– Web Services portion is known as WSIT (Web Service Interoperability

Technologies)

Implementation of a number of open web services specifications to support

enterprise features

–

• WSIT augments JAX-WS capabilities

D. Silberberg XML: Technology & Application

JAX-WS
15

WSIT Architecture

D. Silberberg XML: Technology & Application

JAX-WS
16

Bootstrapping and Configuration

• Consists of

–

–

–

Using a URL to access a web service

Retrieving its WSDL file

Using the WSDL file to create a web service client that can access and

consume a web service

D. Silberberg XML: Technology & Application

JAX-WS
17

Bootstrapping and Configuration Steps

• Client acquires the URL for a web service that it wants to access

–

–

Many ways to acquire the URL

Perhaps look up the URL in a Web Services registry

• Client uses the URL and the wsimport tool to send a WS-
MetadataExchange Request to access the web service and retrieve
the WSDL file

–

–

WSDL file contains a description of the web service endpoint

Includes WS-Policy assertions that describe the security, reliability,

transactional, etc., capabilities and requirements of the service

•

•

Client uses the WSDL file to create the web service client

Client accesses the web service

D. Silberberg XML: Technology & Application

JAX-WS
18

Message Optimization Technology

• When large binary objects (such as documents, images, music files, etc.)

are encoded into XML format for inclusion in SOAP messages, even larger

files are produced

When a web service processes and transmits these large files over the

network, the performance of the web service application and the network

are negatively affected

•

–

–

Performance may degrade to a point that it is no longer useful

Network gets bogged down with more traffic than the allotted bandwidth can

handle

• Message Optimization encodes the binary objects to optimize

–

–

–

SOAP application processing time

Bandwidth required to transmit the SOAP message over the network

Recommended if binary encoded XML documents are larger than 1KB

D. Silberberg XML: Technology & Application

JAX-WS
19

Reliable Messaging

• Quality of Service (QoS) technology reliable web services

–

–

Reliability is measured by a system’s ability to deliver messages from point A to point B

Purpose is to ensure the delivery of application messages to web service endpoints

• Ensures that messages in a given message sequence are delivered once and,
optionally, in the correct order

–

–

–

Recovers when messages are lost or out of sequence

Lost messages are retransmitted

Out of sequence messages are retransmitted in order

• Reliable Messaging used when

– Communication failures result in the network being unavailable or connections being
dropped

Application messages are being lost in transit

Application messages are arriving at their destination out of order and ordered delivery is
a requirement

–

–

• Uses more memory (especially if the ordered delivery option is enabled) since
messages must be stored (even after they are sent) until receipt is acknowledged

D. Silberberg XML: Technology & Application

JAX-WS
20

Security Technology

• WS-Security provides interoperable message content integrity and confidentiality

– Even when messages pass through intermediary nodes before reaching their destination

endpoint

WS-Security is in addition to existing transport-level security such as TSL (or its

predecessor SSL)

–

• Enhances security by implementing WS-Secure Conversation

– Enables client and server to establish a shared security context when a multiple-message-

exchange sequence is initiated

Subsequent messages use derived session keys that increase the overall security while

reducing the security processing overhead for each message

–

• Two additional features to improve security

– Web Services Trust: Clients use SOAP messages to request security tokens that establish

trusted communications

Web Services Security Policy: Services use security assertions that represent preferences

and requirements for web service endpoints

–

D. Silberberg XML: Technology & Application

JAX-WS
21

Τέλος Ενότητας

