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Overview of JAX-WS

« JAX-WS stands for Java APl for XML Web Services

— Builds clients and services that communicate using XML

— Enables developers to write message oriented and RPC-oriented web services
« Java programming language API for creating web services

— Part of the Java EE platform from Sun Microsystems
— Like the other Java EE APIs, JAX-WS uses annotations (introduced in Java SE
5)
— Simplifies the development and deployment of web services and clients
» The Reference Implementation of JAX-WS
— Part of project GlassFish — an open source Java EE application server

— Called JAX-WS RI (For Reference Implementation)
— Production quality implementation e, iy
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JAX-WS Hides the Complexity of SOAP & WSDL

« SOAP is the XML-based protocol used

— Envelope structure, encoding rules, and conventions for representing web
service invocations and responses

— Calls and responses are transmitted as SOAP messages via HTTP

« WSDL is the XML-based model for describing web services
« JAX-WS API hides the complexity of SOAP and WSDL

— Server side development
« Specify the web service operations by defining methods in a JAVA interface
« Code the classes that implement those methods
— Client side development
 Create a proxy (a local object representing the service)
* Invokes methods on the proxy.
— Developer does not generate or parse SOAP messages

— JAX-WS runtime system converts the API calls and responses to and from
SOAP
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Advantage of JAX-WS

 Platform independence provided by Java

 Java independence

— JAX-WS clients can access web services not running on a Java
platform

— JAX-WS services can be called by non-Java clients

« Reason for Java independence of JAX-WS
— Uses standards HTTP, SOAP, and the WSDL defined by the W3C

— WSDL is an XML format for describing services as sets of endpoints
operating on messages.
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JAX-WS Architecture

« The architecture is a simple client/server architecture

* JAX-WS enables developers to write clients and services as java classes
and methods

« JAX-WS technology manages communication between a web service and
client.
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Service Endpoint Interfaces

« Service
— Javaclass that imports javax. jws.WebService
- @WebService annotation defines the class as a web service endpoint

« Service endpoint implementation (SEI)
— Javaclass
— Defines the services methods that clients can call

« Service endpoint interface
— Java Interface
— Declares service interfaces that clients can call
— Can be specified explicitly
» Must specify endpointinterface elements to the @WebService annotation
— Not required when building a JAX-WS endpoint
« Implementation class implicitly defines an SEI
« The wsgen tool is applied to the endpoint implementation class to generate the
web service artifacts that connect a web service client to the JAX-WS runtime
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Basic Steps for Creating Client/Server

 Server

Code the implementation class

Compile the implementation class

Use wsgen to generate the artifacts required to deploy the service
Package the files into a WAR (Web ARchive) file

Deploy the WAR file

« \Web service artifacts used to communicate with clients are generated by the
Application Server during deployment

« Client

Code the client class

Use wsimport to generate and compile the web service artifacts needed to
connect to the service

Compile the client class
Run the client
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JAX-WS Service Requirements

« Service class

Must import either the javax. jws.WebService Or javax.jws.WebServiceProvider

May explicitly reference an SEI through the endpointinterface element of the @wWebService
annotation

« If no endpointinterface is specified, an SEI is implicitly defined for the server class
Must not be declared final
Must not be abstract
Must have a default public constructor
Must not define the finalize method

May use the javax.annotation.PostConstructor javax.annotation.PreDestroy
annotations on its methods for life cycle event callbacks

« Service methods

Must be public and not be declared static or final

Exposed to clients
« Must be annotated with javax.jws.WebMethod

* Must have JAXB-compatible parameters and return types

e Construction and Destruction

The @PostConstruct method is called by the container before the implementing class begins

responding to web service clients
The @PreDestroy method is called by the container before the endpoint is removed from operation
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Coding the Service Endpoint Implementation Class

package helloservice.endpoint;// package name is helloservice

import javax.jws.WebService; // required import

@WebService // required annotation
public class Hello {
private String message = new String("Hello, ");

public void Hello() {} // default public constructor

@WebMethod // required annotation
public String sayHello (String name) {

return message + name + ".";

4

}
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Building, Packaging, and Deploying the Service

« Build and package service

— From a terminal window, go to the directory where the service is located
— Type ant (calls the default target)

— Automatically builds and packages the application into an WAR file
(helloservice.war) located in the dist directory

Deploy service
— From a terminal window, go to the directory where the service is located

— Start the Application Server (e.g., Sun GlassFish Enterprise Server — previously known
as Sun Java System Application Server)
— Type: ant deploy

View WSDL

— Typethe URLhttp://localhost:8080/helloservice/hello?WSDL into
a web browser

All in one command —ant all
Undeploy — ant undeploy
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JAX-WS Client

Client performs the following steps:

« Javax.xml.ws.WebServiceRef annotation declares a reference to a web service

* (@WebServiceRef Usesthe wsdlLocation element to specify the URI of the deployed
service’s WSDL file

@WebServiceRef (wsdlLocation=
"http://localhost:8080/helloservice/hello?wsdl")

static HelloService service;

* Retrieves a proxy to the service, also known as a port, by invoking getHelloPort onthe
service.

I Hello port = service.getHelloPort(); // implements SEI define by service

* Invokes the port’s sayHel1lo method with a name parameter

I String response = port.sayHello (name);
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JAX-WS Client Code

package simpleclient;

import javax.xml.ws.WebServiceRef; // required import
import helloservice.endpoint.HelloService; // import the HelloService class
import helloservice.endpoint.Hello; // import Hello class

public class HelloClient {

@WebServiceRef (wsdlLocation="http://localhost:8080/
helloservice/hello?wsdl")

static HelloService service; // HelloService variable
public static void main(String[] args) {
try A

HelloClient client = new HelloClient();
client.doTest (args) ;

} catch (Exception e) {
e.printStackTrace() ;
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JAX-WS Client Code — continued

public void doTest (String[] args) {

try {
System.out.println ("Retrieving the port from the service: " +
service);
Hello port = service.getHelloPort() ; // get a handle on the service
System.out.println("Invoking the sayHello operation on the port.");

String name;
if (args.length > 0) {

name = args[0];
} else {
name = "No Name";

String response = port.sayHello(name); // call the service

System.out.println (response);
} catch (Exception e) {
e.printStackTrace () ;
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Building and Running the Client

Make sure that helloservice Is deployed

From a terminal window, go to the directory containing the client code
Type: ant

— Calls the default target

— Builds and packages the application into a JAR file — in this case
simpleclient. jar

— Places it into the dist directory
To run the client, type: ant run

JAX-WS uses JAXB to map Java programming language types to and
from XML definitions
— Insulates developers from the mappings

— However, not every class in the Java language can be used as a method
parameter or return type in JAX-WS (limited by JAXB)
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Web Services — Bigger Picture

« Since 2005, Sun has worked closely with Microsoft to ensure
interoperability of web services enterprise technologies

— Security
— Reliable messaging
— Atomic transactions

« Metro, part of GlassFish, Is a one-stop web services shop

— Web Services portion is known as WSIT (Web Service Interoperability
Technologies)

— Implementation of a number of open web services specifications to support
enterprise features

« WSIT augments JAX-WS capabilities
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WSIT Architecture

Core XML
( XML )
Optimization [M] Reliability
[ soar ] / (XML infoset ) \ ((WS-ReliableMessaging )
( MTOM ) (XML Schema ) [ ws-Coordination )
[ ws-Addressing | [ WS-AtomicTransactions ]

Security
( Ws-Security Policy
[ ws-security |
[ wsTust |
|Ws-SecureConversation |

Bootstrapping
( WSDL )|

[ ws-Policy )
(Ws-MetadataExchange
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Bootstrapping and Configuration

e Consists of

— Using a URL to access a web service
— Retrieving its WSDL file

— Using the WSDL file to create a web service client that can access and
consume a web service

Client
Application
r— [
Get URL :
GetURL | |« > wﬁ;ggr‘yﬂe ]
S i
. MetadataExchange Request
wﬂmﬁ;rt P WSDL (Includes Policy)
RRR—— :
 — Aocgssw?nbdscm}:gume the Web Service
Web Service okt
Ciient | ¢ >
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Bootstrapping and Configuration Steps

» Client acquires the URL for a web service that it wants to access
— Many ways to acquire the URL
— Perhaps look up the URL in a Web Services registry

« Client uses the URL and the wsimport tool to send a WS-
MetadataExchange Request to access the web service and retrieve
the WSDL file

— WSDL file contains a description of the web service endpoint

— Includes WS-Policy assertions that describe the security, reliability,
transactional, etc., capabilities and requirements of the service

 Client uses the WSDL file to create the web service client
« Client accesses the web service
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Message Optimization Technology

« When large binary objects (such as documents, images, music files, etc.)
are encoded into XML format for inclusion in SOAP messages, even larger
files are produced

* When a web service processes and transmits these large files over the
network, the performance of the web service application and the network
are negatively affected

— Performance may degrade to a point that it is no longer useful

— Network gets bogged down with more traffic than the allotted bandwidth can
handle

« Message Optimization encodes the binary objects to optimize
— SOAP application processing time
— Bandwidth required to transmit the SOAP message over the network
— Recommended if binary encoded XML documents are larger than 1KB
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Reliable Messaging

Quality of Service (QoS) technology reliable web services

— Reliability is measured by a system’s ability to deliver messages from point A to point B

— Purpose is to ensure the delivery of application messages to web service endpoints
Ensures that messages in a given message sequence are delivered once and,
optionally, in the correct order

— Recovers when messages are lost or out of sequence

— Lost messages are retransmitted

— Out of sequence messages are retransmitted in order

Reliable Messaging used when
— Communication failures result in the network being unavailable or connections being
dropped
— Application messages are being lost in transit
— Application messages are arriving at their destination out of order and ordered delivery is
a requirement
Uses more memory (especially if the ordered delivery option is enabled) since
messages must be stored (even after they are sent) until receipt is acknowledged
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Security Technology

« WS-Security provides interoperable message content integrity and confidentiality

— Even when messages pass through intermediary nodes before reaching their destination
endpoint

— WS-Security is in addition to existing transport-level security such as TSL (or its
predecessor SSL)

« Enhances security by implementing WS-Secure Conversation

— Enables client and server to establish a shared security context when a multiple-message-
exchange sequence is initiated

— Subsequent messages use derived session keys that increase the overall security while
reducing the security processing overhead for each message

« Two additional features to improve security

— Web Services Trust: Clients use SOAP messages to request security tokens that establish
trusted communications

— Web Services Security Policy: Services use security assertions that represent preferences
and requirements for web service endpoints
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