‘é&s)&“é EAAHNIKH AHMOKPATIA
k\)w NANEMIZTHMIO KPHTHz2

Elcaywyn otnv Emotnun Ko
Texvoloyia Twv YNpeoLwv

Evétnta 14: JAX-WS

Xpnoto¢ NikoAdou
TuApa Emotipng YrnoAoyiotwyv

ENIXEIPHEIAKO MPOIPAMMA
EKMMAIAEYZH KAI A 5 z nA
npdypopya yia v ovinén

Me ™ ovyxpnpatodotnon tng EAAGdag kat tng Evpwnaiki¢ Evwong



Adelec Xpnonc

To opov ekmaldeUTIKO UALKO UTtOKELTAL 0TV adela xpriong Creative
Commons kal el6KOTEPQ

Avapopa — Mn sunopikn Xprnon — Oxt Mapaywyo Epyo v. 3.0

(Attribution — Non Commercial — Non-derivatives )

(@0l

E€atpeitot amo tnv we avw adeta UALKO Tou MepLAABAVETAL OTLC
Sladaveleg ToU HaBAMATOC, KOl UTIOKELTOL 0€ AAAOU TUTIOU AdELla xpnong.
H adela xpriong otnv omoia UTTOKELTOL TO UALKO aUTO avadEPETOL PNTWC.



Xpnupatodotnon

To ap OV ekaAldEUTIKO UALKO €XeL avarmtuxBOel ota mAaiola
ToU ekTtaltdevuTIKOU £pyou tou dLbaokovta.

To €pyo «Avolkta Akadnuaika Madnpota oto Maveniotipio

Kpntne» €xeL xpnuatodotnoetl povo tn avadlapopdwaon tou
eKTIOLOEVUTIKOU UALKOU.

To €pyo uAomoleital oto nmAaiolo tou Emyelpnolokou
Mpoypappatoc «Eknaidevon kot Ala Blov Mabnon» ko
ocuvyxpnuatodoteital amno tnv Evpwmnaikni Evwon (Evpwrmaiko
Kowwviko Tapelo) Kot oo €Bvikou ¢ TOpouc.

EMXEIPHXIAKO MPOIPAMMA
EKl'IAlAEYZH KAI AIA BIOY MAGHZH Ez "A

1

YNOYPTEIO MAIAEIAL & OPHEKEYMATQN, NMOAITIZMOY & ABAHTIZMOY
Evpwmnaikr ‘Evwon EIAIKH YNHPEZXZIA AIAXEIPIXZHZLZ

E K K 5 Tamei
S i T Tn cuyxpnuarodotnon tng EAAadag kat tng Evpwmnaikig Evwong



D. Silberberg

XML
JAX-WS

035.444

David Silberberg
Lecture 25

XML: Technology & Application
JAX-WS



Overview of JAX-WS

« JAX-WS stands for Java APl for XML Web Services

— Builds clients and services that communicate using XML

— Enables developers to write message oriented and RPC-oriented web services
« Java programming language API for creating web services

— Part of the Java EE platform from Sun Microsystems
— Like the other Java EE APIs, JAX-WS uses annotations (introduced in Java SE
5)
— Simplifies the development and deployment of web services and clients
» The Reference Implementation of JAX-WS
— Part of project GlassFish — an open source Java EE application server

— Called JAX-WS RI (For Reference Implementation)
— Production quality implementation e, iy

D. Silberberg XML.: Technology & Application 2
JAX-WS



JAX-WS Hides the Complexity of SOAP & WSDL

« SOAP is the XML-based protocol used

— Envelope structure, encoding rules, and conventions for representing web
service invocations and responses

— Calls and responses are transmitted as SOAP messages via HTTP

« WSDL is the XML-based model for describing web services
« JAX-WS API hides the complexity of SOAP and WSDL

— Server side development
« Specify the web service operations by defining methods in a JAVA interface
« Code the classes that implement those methods
— Client side development
 Create a proxy (a local object representing the service)
* Invokes methods on the proxy.
— Developer does not generate or parse SOAP messages

— JAX-WS runtime system converts the API calls and responses to and from
SOAP

D. Silberberg XML: Technology & Application
JAX-WS



Advantage of JAX-WS

 Platform independence provided by Java

 Java independence

— JAX-WS clients can access web services not running on a Java
platform

— JAX-WS services can be called by non-Java clients

« Reason for Java independence of JAX-WS
— Uses standards HTTP, SOAP, and the WSDL defined by the W3C

— WSDL is an XML format for describing services as sets of endpoints
operating on messages.

D. Silberberg XML.: Technology & Application 4
JAX-WS



JAX-WS Architecture

« The architecture is a simple client/server architecture

* JAX-WS enables developers to write clients and services as java classes
and methods

« JAX-WS technology manages communication between a web service and
client.

il
I Client Service

[.JM:-WS fu ntime] 4_[ SOAP mess,age}_; [.JA)(-WS u ntime]

N - e

D. Silberberg XML: Technology & Application
JAX-WS



Service Endpoint Interfaces

« Service
— Javaclass that imports javax. jws.WebService
- @WebService annotation defines the class as a web service endpoint

« Service endpoint implementation (SEI)
— Javaclass
— Defines the services methods that clients can call

« Service endpoint interface
— Java Interface
— Declares service interfaces that clients can call
— Can be specified explicitly
» Must specify endpointinterface elements to the @WebService annotation
— Not required when building a JAX-WS endpoint
« Implementation class implicitly defines an SEI
« The wsgen tool is applied to the endpoint implementation class to generate the
web service artifacts that connect a web service client to the JAX-WS runtime

D. Silberberg XML: Technology & Application
JAX-WS


mailto:@WebService
mailto:@WebService
mailto:@WebService

Basic Steps for Creating Client/Server

 Server

Code the implementation class

Compile the implementation class

Use wsgen to generate the artifacts required to deploy the service
Package the files into a WAR (Web ARchive) file

Deploy the WAR file

« \Web service artifacts used to communicate with clients are generated by the
Application Server during deployment

« Client

Code the client class

Use wsimport to generate and compile the web service artifacts needed to
connect to the service

Compile the client class
Run the client

D. Silberberg XML.: Technology & Application 7

JAX-WS



JAX-WS Service Requirements

« Service class

Must import either the javax. jws.WebService Or javax.jws.WebServiceProvider

May explicitly reference an SEI through the endpointinterface element of the @wWebService
annotation

« If no endpointinterface is specified, an SEI is implicitly defined for the server class
Must not be declared final
Must not be abstract
Must have a default public constructor
Must not define the finalize method

May use the javax.annotation.PostConstructor javax.annotation.PreDestroy
annotations on its methods for life cycle event callbacks

« Service methods

Must be public and not be declared static or final

Exposed to clients
« Must be annotated with javax.jws.WebMethod

* Must have JAXB-compatible parameters and return types

e Construction and Destruction

The @PostConstruct method is called by the container before the implementing class begins

responding to web service clients
The @PreDestroy method is called by the container before the endpoint is removed from operation

D. Silberberg XML: Technology & Application

JAX-WS


mailto:@WebService
mailto:@PostConstruct
mailto:@PostConstruct
mailto:@PostConstruct
mailto:@PreDestroy
mailto:@PreDestroy

Coding the Service Endpoint Implementation Class

package helloservice.endpoint;// package name is helloservice

import javax.jws.WebService; // required import

@WebService // required annotation
public class Hello {
private String message = new String("Hello, ");

public void Hello() {} // default public constructor

@WebMethod // required annotation
public String sayHello (String name) {

return message + name + ".";

4

}

D. Silberberg XML: Technology & Application
JAX-WS


mailto:@WebService
mailto:@WebMethod

Building, Packaging, and Deploying the Service

« Build and package service

— From a terminal window, go to the directory where the service is located
— Type ant (calls the default target)

— Automatically builds and packages the application into an WAR file
(helloservice.war) located in the dist directory

Deploy service
— From a terminal window, go to the directory where the service is located

— Start the Application Server (e.g., Sun GlassFish Enterprise Server — previously known
as Sun Java System Application Server)
— Type: ant deploy

View WSDL

— Typethe URLhttp://localhost:8080/helloservice/hello?WSDL into
a web browser

All in one command —ant all
Undeploy — ant undeploy

D. Silberberg XML.: Technology & Application 10
JAX-WS


http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello

JAX-WS Client

Client performs the following steps:

« Javax.xml.ws.WebServiceRef annotation declares a reference to a web service

* (@WebServiceRef Usesthe wsdlLocation element to specify the URI of the deployed
service’s WSDL file

@WebServiceRef (wsdlLocation=
"http://localhost:8080/helloservice/hello?wsdl")

static HelloService service;

* Retrieves a proxy to the service, also known as a port, by invoking getHelloPort onthe
service.

I Hello port = service.getHelloPort(); // implements SEI define by service

* Invokes the port’s sayHel1lo method with a name parameter

I String response = port.sayHello (name);

D. Silberberg XML: Technology & Application
JAX-WS


mailto:@WebServiceRef
mailto:@WebServiceRef
mailto:@WebServiceRef
mailto:@WebServiceRef
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello
http://localhost:8080/helloservice/hello

JAX-WS Client Code

package simpleclient;

import javax.xml.ws.WebServiceRef; // required import
import helloservice.endpoint.HelloService; // import the HelloService class
import helloservice.endpoint.Hello; // import Hello class

public class HelloClient {

@WebServiceRef (wsdlLocation="http://localhost:8080/
helloservice/hello?wsdl")

static HelloService service; // HelloService variable
public static void main(String[] args) {
try A

HelloClient client = new HelloClient();
client.doTest (args) ;

} catch (Exception e) {
e.printStackTrace() ;

D. Silberberg XML.: Technology & Application 12
JAX-WS


mailto:@WebServiceRef
mailto:@WebServiceRef
http://localhost:8080/
http://localhost:8080/
http://localhost:8080/
http://localhost:8080/
http://localhost:8080/
http://localhost:8080/
http://localhost:8080/
http://localhost:8080/
http://localhost:8080/

JAX-WS Client Code — continued

public void doTest (String[] args) {

try {
System.out.println ("Retrieving the port from the service: " +
service);
Hello port = service.getHelloPort() ; // get a handle on the service
System.out.println("Invoking the sayHello operation on the port.");

String name;
if (args.length > 0) {

name = args[0];
} else {
name = "No Name";

String response = port.sayHello(name); // call the service

System.out.println (response);
} catch (Exception e) {
e.printStackTrace () ;

D. Silberberg XML.: Technology & Application 13
JAX-WS



Building and Running the Client

Make sure that helloservice Is deployed

From a terminal window, go to the directory containing the client code
Type: ant

— Calls the default target

— Builds and packages the application into a JAR file — in this case
simpleclient. jar

— Places it into the dist directory
To run the client, type: ant run

JAX-WS uses JAXB to map Java programming language types to and
from XML definitions
— Insulates developers from the mappings

— However, not every class in the Java language can be used as a method
parameter or return type in JAX-WS (limited by JAXB)

D. Silberberg XML: Technology & Application

JAX-WS



Web Services — Bigger Picture

« Since 2005, Sun has worked closely with Microsoft to ensure
interoperability of web services enterprise technologies

— Security
— Reliable messaging
— Atomic transactions

« Metro, part of GlassFish, Is a one-stop web services shop

— Web Services portion is known as WSIT (Web Service Interoperability
Technologies)

— Implementation of a number of open web services specifications to support
enterprise features

« WSIT augments JAX-WS capabilities

D. Silberberg XML.: Technology & Application 15
JAX-WS



WSIT Architecture

Core XML
( XML )
Optimization [M] Reliability
[ soar ] / (XML infoset ) \ ((WS-ReliableMessaging )
( MTOM ) (XML Schema ) [ ws-Coordination )
[ ws-Addressing | [ WS-AtomicTransactions ]

Security
( Ws-Security Policy
[ ws-security |
[ wsTust |
|Ws-SecureConversation |

Bootstrapping
( WSDL )|

[ ws-Policy )
(Ws-MetadataExchange

D. Silberberg XML.: Technology & Application 16
JAX-WS



Bootstrapping and Configuration

e Consists of

— Using a URL to access a web service
— Retrieving its WSDL file

— Using the WSDL file to create a web service client that can access and
consume a web service

Client
Application
r— [
Get URL :
GetURL | |« > wﬁ;ggr‘yﬂe ]
S i
. MetadataExchange Request
wﬂmﬁ;rt P WSDL (Includes Policy)
RRR—— :
 — Aocgssw?nbdscm}:gume the Web Service
Web Service okt
Ciient | ¢ >
D. Silberberg XML: Technology & Application

JAX-WS



Bootstrapping and Configuration Steps

» Client acquires the URL for a web service that it wants to access
— Many ways to acquire the URL
— Perhaps look up the URL in a Web Services registry

« Client uses the URL and the wsimport tool to send a WS-
MetadataExchange Request to access the web service and retrieve
the WSDL file

— WSDL file contains a description of the web service endpoint

— Includes WS-Policy assertions that describe the security, reliability,
transactional, etc., capabilities and requirements of the service

 Client uses the WSDL file to create the web service client
« Client accesses the web service

D. Silberberg XML.: Technology & Application 18
JAX-WS



Message Optimization Technology

« When large binary objects (such as documents, images, music files, etc.)
are encoded into XML format for inclusion in SOAP messages, even larger
files are produced

* When a web service processes and transmits these large files over the
network, the performance of the web service application and the network
are negatively affected

— Performance may degrade to a point that it is no longer useful

— Network gets bogged down with more traffic than the allotted bandwidth can
handle

« Message Optimization encodes the binary objects to optimize
— SOAP application processing time
— Bandwidth required to transmit the SOAP message over the network
— Recommended if binary encoded XML documents are larger than 1KB

D. Silberberg XML.: Technology & Application 19
JAX-WS



Reliable Messaging

Quality of Service (QoS) technology reliable web services

— Reliability is measured by a system’s ability to deliver messages from point A to point B

— Purpose is to ensure the delivery of application messages to web service endpoints
Ensures that messages in a given message sequence are delivered once and,
optionally, in the correct order

— Recovers when messages are lost or out of sequence

— Lost messages are retransmitted

— Out of sequence messages are retransmitted in order

Reliable Messaging used when
— Communication failures result in the network being unavailable or connections being
dropped
— Application messages are being lost in transit
— Application messages are arriving at their destination out of order and ordered delivery is
a requirement
Uses more memory (especially if the ordered delivery option is enabled) since
messages must be stored (even after they are sent) until receipt is acknowledged

D. Silberberg XML.: Technology & Application 20

JAX-WS



Security Technology

« WS-Security provides interoperable message content integrity and confidentiality

— Even when messages pass through intermediary nodes before reaching their destination
endpoint

— WS-Security is in addition to existing transport-level security such as TSL (or its
predecessor SSL)

« Enhances security by implementing WS-Secure Conversation

— Enables client and server to establish a shared security context when a multiple-message-
exchange sequence is initiated

— Subsequent messages use derived session keys that increase the overall security while
reducing the security processing overhead for each message

« Two additional features to improve security

— Web Services Trust: Clients use SOAP messages to request security tokens that establish
trusted communications

— Web Services Security Policy: Services use security assertions that represent preferences
and requirements for web service endpoints

D. Silberberg XML.: Technology & Application 21
JAX-WS



TéAoc Evotntoc

EMIXEIPHEIAKO NPOTPAMMA
EKAIAEYZH KAI AIA BIOY MAGHSH == EXMA

YNOYPTEIO NAIAEIAL & BPHEKEYMATON, NOAITIZMOY & ABAHTIEMOY
Eupwriaikr Evwon EIAIKH YNHPEZXZIA AIAXEIPIZHE

Eupuwnaik Kowwvik Tapeio

Me T ouyxpnuatodétnon g EAAGdag kat tn¢ Evpwmaikric Evwong



