

Security Policy
Enforcement in SDNs

Xenofontas Dimitropoulos

3/11/2014

Credits: Seungwon Shin, Phil Porras, Vinod Yegneswaran

SDN Security Aspects

• Controller is single point of failure

– DoS attacks?

– Compromised controller?

• Enforce isolation between virtual networks

• Weaknesses in OpenFlow protocol

– E.g. sneak in unauthentic rules

• New opportunities for security policy
enforcement

Agenda

• FortNOX Security Enforcement Kernel

• FRESCO Security Application Development
Environment

• Security Policy Enforcement Methodology

– Well-defined static security policy instantiated for a target topology

– Deployed consistently across the network

– Policy can only be altered by a small set of trusted elements

– Policy modification events are audited and monitored for compliance

Classic Network Perimeter Defense

.

OpenFlow Evasion Scenario

Dynamic Flow Tunneling

• Dynamic control plane (policies) and data plane (flows)
introduces new enforcement challenges

• OpenFlow could benefit from better mechanisms for

• specifying and authenticating policies

• dealing with rewrite rules

• detecting and auditing policy violations

.

OpenFlow Security Policy Enforcement

FortNOX Objectives and Contributions

• Broad Objective

– Provide mechanisms that support the development and
integration of traditional and new security applications
into Software-Defined Networks

• Specific Contributions

– Development of a security enforcement kernel for the NOX
OpenFlow controller

– Role-based authorization

– Rule conflict detection

– Security directive translation

Phillip Porras, Vinod Yegneswaran, Martin Fong, Mabry Tyson, Seungwon Shin, Guofei Gu
“A Security Enforcement Kernel for OpenFlow Networks” HotSDN 2012

Motivating Security Applications

 Tarpits: A Tarpit is an advanced anti-attack countermeasure designed to hold (reverse-DoS) inbound
TCP connections from attackers

Reflector Nets (*): A security app that reprograms the OF network to forward an external entity into a
remote honeynet

Phantom Nets: A technique in which a scanner is mislead into producing a false topology map for the
network being scanned

Emergency Broadcast: When a switch-wide exceptional state is detected, this security app auto-
inserts a high-priority forward rule for all connections originating from network operator owned
addresses, while inserting drop filters to reject detected flooding sources/ports

White holes: A strategy for defeating sophisticated density-aware IP scanning techniques used by
scan-and-infect malware to increase the rate at which viable infection targets are discovered

BotHunter: A method for diagnosing infections in internal network assets using dialog correlation to
discover flow sequences that match coordination centric malware infections

Many More: TRW (*), BotMiner (*), P2P Plotter (*)

Prerequisites for a Secure OpenFlow Platform

Must be resilient to

• Vulnerabilities in OF applications

• Malicious code in 3rd party OF apps

• Complex interaction that arise between OF app interactions

• State inconsistencies due to switch garbage collection or policy coordination across

distributed switches

• Sophisticated OF applications that employ packet modification actions

• Adversaries who might directly target our security services to harm the network

Classic NOX Architecture

Native C
OF Apps

PY OF
Apps

NOX

Python SWIG

Send_OpenFlow_Command()

FortNOX:

A Non-bypassable mediation service that performs inline vetting of the OpenFlow

Application flow rules against the current set of network flow constraints defined

by administrators or OpenFlow Security applications

Least privilege mediation of flow insertions for policy consistency

• The FortNOX controller executes independently, in a separate process space (and ideally from

a separate user account), from that of the OpenFlow applications it services

• NOX C libraries are wrapped using a Proxy App. They must not be run within the FortNOX
process space

• All interactions between the controller and the switch must be mediated by the controller

• ~ 500 lines of C++ extension of the NOX source code

The FortNOX Security Enforcement Kernel

FortNOX extends the controller to recognize 3 standard
authorization roles among flow rule producers

Role-Based Authorization

– OF Operator Role – define authoritative security policy

– OF Security Role - add flow constraints to combat live threat activity

– OF Application Role – legacy OF Apps, may remain security unaware

Authorization roles inform

– rule priority assignments

– conflict resolution when conflicts are detected

FortNOX implements source authentication through the use of
digital signatures

• Rule producers export a public key, which administrators may choose to
install into FortNOX, assigning this key to an authorization role

• FortNOX accepts FLOW_MOD commands with an extra digital signature

• Legacy OF application rules assigned default roles and lowest priorities

Authenticating Rule Producers

FortNOX incorporates a live rule conflict detection engine

• Rule Conflict: arises when a new candidate rule enables or disables a network flow that is
otherwise inversely prohibited (or allowed) by existing rules

• Alias set rule reduction – a method detecting flow rule conflicts, even when OF set
operations are used

Rule Conflict Analysis

Conflict Resolution

• Derive ARRs per candidate rule

• Compare each ARR against FortNox’s
Aggregate Flow Table

• IF ARR intersects with registered rule
 Then flag candidate rule if ARR
 conflicts

• Possible Resolution
• Based on role-based priority

• EQ - policy
• GR - DEL, ADD
• LT - REJECT

 Candidate Rules

 Match: a  b

 Actions:
 a  a’
 b  c
 forward

ARR : (a,a’)  (b,c) forward

Alias Set Rule Reduction

aliased reduced rule

Rule Conflict Analysis

Security Directive Translation

• Python interface for translating high level mitigation directives
into flow rules

– Seven new OF security directives currently implemented

– block, deny, allow, redirect, quarantine, undo, constrain and info

FortNOX Architecture

Security Apps

Native C
OF Apps PY OF

Apps

FortNOX

Python SWIG
OF IPC Proxy

Separate
Process

Directive Translator IPC Interface

Actuator

Switch Callback tracking

Aggregate Flow Table

Operator Rules

SECURITY Rules

OF App Rules

FT_Send_OpenFlow_Command

Role-based Source Auth

State Table Manager

Conflict Analyzer

OF Mod Commands
Add (conflict enforced)
Modify (conflict enforced)
Delete (priority enforced)

Switch Callback Tracking

.

Performance

• Distributed Policy Synchronization

– FortNOX extends NOX to use barrier messages and switch callbacks to
track flow rule removal

– Distributed policy insertion must be atomically synchronized

– Distributed policy removal must be atomically committed: harder

• Accountability: Audit accountability is a requirement for most sensitive

computing environments. FortNOX produces a security audit trail for

– all flow rule commands with authenticated producer IDs

– detected rule conflicts and resolution outcomes

Other Issues

• FortNOX – A new security enforcement kernel for OF networks
– Role-based Authorization

– Rule-Authentication

– Conflict Detection and Resolution

– Security Directive Translation

• Ongoing Efforts and Future Work
– Prototype implementations for newer controllers (Floodlight, POX)

– Security enforcement in multicontroller environments

– Improving error feedback to OF applications

– Optimizing rule conflict detection

– FRESCO: Modular language environment for composing OF security
applications

Summary and Future Work

Agenda

• FortNOX Security Enforcement Kernel

• FRESCO Security Application Development
environment

Security Functions with SDN

• Security functions can be applications of SDN

– Firewall

– DDoS detection

– Scan detection

– and more...

import logging

from nox.lib.core import *
import nox.lib.openflow as openflow
from nox.lib.packet.ethernet import ethernet
from nox.lib.packet.packet_utils import mac_to_str, mac_to_int

log = logging.getLogger('nox.coreapps.examples.demo')

class demo(Component):
def __init__(self, ctxt):def create_and_enfoce_policy(self, dpid,
policy_type, outport_find, inport, outport, bufid, buf, packet):

if outport_find == 0:
print 'DBG: No Specific Out Port: Flooding’
if policy_type == 'ARP':
print 'DBG: ARP packet’
self.send_openflow(dpid, bufid, buf, openflow.OFPP_FLOOD, inport)
elif policy_type == 'REQ':
attrs = extract_flow(packet)
attrs = {core.IN_PORT:inport,
core.DL_TYPE:ethernet.IP_TYPE,
core.NW_PROTO:ipv4.ipv4.TCP_PROTOCOL
core.NW_SRC:'10.0.0.2'}

OpenFlow switch

OpenFlow controller

Host A Host B

F/W
application

(1) Host A sends packet to Host B
(2) Switch asks a controller form a flow rule
(3) F/W application decides to block the packet
(4) Switch drops this packet

(1)
(2) (3)

(4)

Security Functions with SDN

• However, it is not easy to create security
applications in SDN

• Why?
– lack of convenience

• need to understand many low level things

– lack of information
• E.g., TCP session, network status

• How to address these issues?

FRESCO

• It is a framework to
– Provide development environment for security applications
– Manage resources for security applications
– Deploy security policies

• With this framework, we can

– Create and compose our own network security functions easily
– Deploy network security functions easily and dynamically

• Finally, FRESCO can help security people focus on devising

security applications

Seungwon Shin, Phil Porras, Vinod Yegneswaran, Martin Fong, Guofei Gu, and Mabry Tyson
“FRESCO: Modular Composable Security Services for Software-Defined Networks” NDSS 2013

Architecture

• Component

– Application layer

• Development env. (DE)

• Resource controller (RC)

– Kernel layer

• Security enforcement
kernel

• FortNOX
– paper in HotSDN 2012

Development
environment

Resource
controller

OpenFlow
application

OpenFlow
application

NOX

Application layer

Kernel layer (FortNOX)
(controller)

OpenFlow switch OpenFlow switch OpenFlow switch

Development Environment

• FRESCO Module

– Basic operation unit

• FRESCO DB

– Simple database

• (key,value) pairs

• FRESCO script

– Define interfaces

– Connect multiple modules

event

input parameter

function ….

action

output

Module

key

value

key

value

key

value

Module 1 Module 2

FRESCO DB

FRESCO
RC

Development Environment:
Fresco Script

Fresco Script: Drop HTTP traffic

Operational Scenario

Module 2 Module 3 Module 1 Module 4

Instance 1 Instance 2

FRESCO Security Kernel Enforcement Controller

OpenFlow
switch

OpenFlow
switch

OpenFlow
switch

OpenFlow
switch

Administrator FRESCO Script

FRESOCO DB

Event

Execution

Table

Monitoring

DE RC

Implementation

• NOX (open source OpenFlow controller) based

– Development environment

• NOX based Python application

– Resource controller

• NOX based Python application

– Security enforcement kernel

• Modify NOX (C++)

Example: Reflector Net

Bot Minner

Evaluation

Source code length comparison

Algorithm

Implementation

Standard OpenFlow FRESCO

TRW-CB 1,060 741 66

Rate Limit 991 814 69

Results for Standard and OpenFlow are obtained in the following paper,
S. A. Mehdi, J. Khalid, and S. A. Khayam.
Revisiting Traffic Anomaly Detection Using Software Defined Networking, In Proceedings of Recent Advances in Intrusion Detection, 2011.

Flow rule setup time

NOX Simple Flow
Tracker

Simple Scan
Detector

Threshold Scan
Detector

BotMiner P2P Plotter
Detector

Time (ms) 0.823 1.374 2.461 7.196 15.461 11.775

Please refer to our paper for the explanation of each test case

Summary and Future Work

• FRESCO
– Create security applications easily

– Deploy security applications easily

– Focus on creating security applications

• Future work
– Port FRESCO to other controllers for open source

release
• E.g., POX or Floodlight

– Create more modules (now 16 basic modules)

• www.openflowsec.org

• Technical reports and publications

• DEMO videos

– Demo 1: Constraints Enforcement [high res .mov or Youtube!]

– Demo 2: Reflector Nets [high res .mov or Youtube!]

– Demo 3: Automated Quarantine [high res .mov or Youtube!]

• FortNOX beta, single switch (multi-switch will follow)

Demonstrations

//localhost/Users/porras/Desktop/OF_June_2012/Demo1_SecurityConstraints.mov
http://youtu.be/ySSCCPPt51U
//localhost/Users/porras/Desktop/OF_June_2012/Demo2_ReflectorNets.mov
http://www.youtube.com/watch?v=WaVt1nGRj7s
//localhost/Users/porras/Desktop/OF_June_2012/Demo3_Quarantine.mov
http://www.openflowsec.org/Demo3_Quarantine.mov
http://youtu.be/vf6jAGesVNY

