@D EAAHNIKH AHMOKPATIA
&% NANEMIZTHMIO KPHTHE

AikTua KaBopi{opeva atrd
N\OVYICUIKO

EvornTa 3.2: SDN Switches: ApXITEKTOVIKN KAl
2XESIOOHOC

—evopwvTag ANKMNTPOTTOUAOC
TuAua EmotAiung YToAoyioTwy

SDN Switches: Architecture
and Design

Xenofontas Dimitropoulos
24/11/2014

Slides prepared by: Markus Happe

Also credits to online material by Raj Jain, Nick Bastin, Rui Miao, Nick McKeown,
Lorenzo de Carli, and the Open Networking Foundation

Sofware-Defined Networking: Switches

Well-defined open API Constructs a logical map
. of the network

Network OS

Open vendor agnostic protocol

: OpenFlow
Simple Packet

Forwarding : .
Hardware %, : Simple Packet

Forwarding

N . Hardware
Simple Packet 3.y

- yd Forwarding
Simple Packet Vg Hardware
Forwarding

Hardware

Simple Packet
Forwarding
Hardware

SDN Switch: Simple Packet Forwarding Hardware

Software [OpenFlow Agent] €aa,,,
Layer e P
OpenFlow
.................... I.:.IE;\;\;.‘I.'gt.)i.e......."""""""""""" Protocol
MAC MAC IP IP TCP TCP :
dst Src Dst sport dport Action gpenFIOW
Hardware ontroller
* * * 56.7.8 * * port 1
Layer
port 1 port 2 port 3 port 4

]
,fi

ﬁj}
i

1.2.3.4

)

SDN Switch: Simple Packet Forwarding Hardware

= Controller
writes forwarding table(s) of the switch

= Switch

forwards packets to controller, if there is no matching flow table entry
needs to forward packets according to flow table(s)

multiple full-duplex Ethernet ports: e.g. 4, 8, 24, 48, etc.
where each port has 1GbE, 10GbE, etc.
- back plane needs to process millions of packets per second

witch process
persecond?

How can an SDN s
millions of packets

Lecture Overview

Part I. Efficient Flow-Action Matching
Part Il: Architecture and Design of SDN Switches

Part Ill: Configuration and Management of SDN Switches

Part IV: Next Generation of SDN Switches

Part I
Efficient Flow-Action Matching
(How to Match Packets to Flow Tables?)

Efficient Flow-Action Matching Types in SDN

= EXxact rules
all (selected) header fields are defined in flow table
iIncoming packet can be matched to a unique exact rule

= Longest prefix rules

select flow rule with longest matching prefix
e.g. 200.124.12.*, 200.124.*.*, 200.*.**
example: IPv4/IPv6 destination address lookup

= Wildcard rules
some header fields contain wildcards (*)
example: access-control list lookup (firewall)

= Multiple rules might match incoming packet
prioritization required to identify matching rule

Exact Flow-Action Matches: Naive Approach

= Flow table stored in memory (e.g. SRAM)
assumption: flow table entries are unsorted
linear search of table entries in memory
stop when match is found (or when reaching final flow table entry)
but: low performance for long tables
we only have few clock cycles for matching

no. header 1 header 2 stats action
11 01 statsO acto
00 10 stats1l actl
01 01 stats2 act?2
N 01 01 statsN actN

Exact Flow-Action Matches: Naive Approach

= Flow table stored in memory (e.g. SRAM)
assumption: flow table entries are unsorted
linear search of table entries in memory
stop when match is found (or when reachingdi
but: low performance for long taplg
we only have few clock cu

flow table entry)

action

stats

statsO acto
stats1l actl
2 01 01 stats2 act?2
N 01 01 statsN actN

Binary Content-Addressable Memory (CAM)

= |dea: parallel search of all memory entries

= Can be used for exact matches (and prefix matches)
e.g. use multiple CAMs used for different 8/16/24-bit prefixes

Advantage: matches packet to flow rule in a single operation
= EXxpensive and power hungry

Search Data

1 0 1 0 SRAM
| | E | > miss addr | act.
HoH H1iH HoH H1H 0 actO
Match-Lines [| [[> mateh ———— 1 actl
H1H HOH H1H HOH
| | z | > miss 2 act3

{1 H HoH H1 H H1}

Search-Lines

Ternary Content-Addressable Memory (TCAM)

= Similar to CAM, but each header bit is encoded in two bits
0->01,1-> 10, don’t care (x) 2 11
support for wildcards and prefixes

= Can be used for all kind of matches
= Very expensive, very power hungry

match lines
flow table P~ match —_ SRAM
i lid | | [[L 0

rule | act. X addr | act.
D r2h A TR .

101x | actO vy Ly 5y LLY 5 LLY 35 L1 Yl 01 1 00 actO
=10 10 10 X

111x | actl ¢ Jw=) Jwe)] %] ~_match 01 |actl
Y IL Y § LIS § LDy 5 L[5l 10

10xx | act3 1H HoH HxH HxE 10 | act3

xXXxXX | actO f 3 Tl S Tl —F d —=] £ }mamh E—.-l' 11 actO
HXH HXH HAXH HXH

packet header search line drivers

1011 A

source: http://thenetworksherpa.com/tcam-in-the-forwarding-engine

Algorithmic Approach: Hash Table

= Computes table position of rule from packet header
Use hash function to map headers to flow table
= Can be used for exact matches

= But: flow table is much smaller than header space
collision: multiple headers have same hash value
use two independent hash functions to resolve collisions
alternative: use multiple flow tables, check them in parallel

00:06:40:01:5a:64 flow table

00:06:20:02:4d:2d >

00:02:40:02:3¢:5f >

00:06:40:04:27:44

hash

Algorithmic Approach: Trie

= Can be used all match types

= Form trie from prefixes or header fields

= Packets traverse trie in a pipeline (pipeline stage = trie stage)
= Matching requires several operations (= trie depth)

= Trie can be compressed to save resources

example flow table ——

root node stage-0
Rule Field x | Fieldy Q

00~01 00~00 evelt , LI

stage-

R 5 OO~O]_ OO~11 nodes D i b

R3 3 10~10 00~11 ovels 6 o C) stage-2
R4 4 11~11 11~11 nodes 4 I N
R5 5 A

11~11 00~11 l::if Q Q st3gd-3

Summary: Efficient Flow-Action Matching

= Challenge

match millions of packets per second to long flow tables
only few clock cycles for matching

= Content-addressable memory
fastest, but also most expensive solution (power, area)
preferred in ASICs

= Algorithmic approaches
require few clock cycles, less expensive (power, area)
preferred for general-purpose and network processors

= Further approaches
optimized versions of algorithms or CAMs
combination of presented solutions
other solutions?

Part II:
Architecture and Design of SDN Switches

OF Switch Design and Architectures

A) Software Test Switches

B) Commodity Hardware Switches: Merchant Silicon

C) Commodity Hardware Switches: Network Processors

A) Software Test Switches

Open vSwitch: Software Switch

= OpenFlow capable virtual software switch
used with hypervisors to interconnect to virtual machines within a host
and virtual machines between different hosts across networks
open source:
Included in Linux 3.3 per default
written in C / Python

= Features:
iIntegrate well with virtual
machine managers

SUppOftS tunnels, remote
control, NetFlow, sFlow
() Security: VLAN (" Monitoring: Netflow,

default switch in XenServer, == isolation, traffic filtering |~ sFlow, SPAN, RSPAN
Xen Cloud Platform ‘ &, '
Automated Control:

supports Xen, Virtualbox, Qudstequesing @ OpenFlow, OVSDB
Proxmox VE, KVM | andtraffieshaping % mgmt. protocol

http://www.openvswitch.org/

Open vSwitch Internals

\ ovs-ofctl l \ sFlowTrend ‘

ovs-appctl ovsdb-client

save changes

ovs-vswitchd < apply changes e
uplink :
(netlink)- netlink
M kernel-space
—_—>
hlrer? Be’\,iTé’e Openvswitch kernel module

source: de.slideshare.net/rajdeep/openvswitch-deep-live

Open vSwitch

= openvswitch_mod.ko: kernel-space packet processing
In limited time due to hashing
If match: apply set of actions, update counters
If no match: go to user-space and eventually to the controller

= Qovs-vswitchd: user-space packet processing
first packets of a flow are handled here (-actions, counters)
put new exact flow table rules to kernel hash tables
also: linear search in wildcard flow table (= actions, counters)

= Can be installed on some commodity switches
enables OpenFlow, but with poor performance

Further Software Switches

Indigo open-source implementation that runs on physical switches
and uses features of the ASICs to run OpenFlow

LINC open-source implementation that runs on Linux, Solaris,
Windows, MacOS and FreeBSD
Pantou turns a commercial wireless router/access point to an

OpenFlow-enabled switch. OpenFlow runs on OpenWRT
supports generic Broadcom and some models of LinkSys and
TP-Link access points with Broadcom and Atheros chipsets

Ofl13softswitch user-space software switch (based on Ericsson TrafficLab 1.1
softswitch)

XORPIlus open-source switching software to drive high-perfromance
ASICs. supports STP/RSTP/MSTP, LCAP, QoS, VLAN,
LLDP, ACL, OSPF/ECMP, RIP, IGMP, IPv6, PIM-SM

Summary Software Test Switches

= Advantages
maximum flexibility: develop novel protocols, routing algorithms, etc.
unlimited flow table size, unlimited number of flow tables
simple implementation effort
simulate entire networks on single computer

= Disadvantages
slow flow matching performance
usually not used as switches in actual networks

= Therefore...

hardware support required to support switches with many ports at
high line rates of 1GbE, 10 GbE, 100 GbE, 1 TbE, etc.

B) Commodity Hardware Switches:
Merchant Silicon

OpenFlow Vendors and Solutions

Model / Series

Arista 7050, 7150, 7300, 7500 1.0
Brocade ICX, VDX 1.3
Brocade MLXe, CER, CES 1.3
Brocade Netlron XMR 1.3
Extreme Networks BlackDiamond 8000/X8, Summit X670 1.0
HP 2029, 3500/3500yl, 3800, 5400z| 1.0, 1.3
IBM Programmable Network Controller, RackSwitches 1.0
G8264, G8264T, G8332, G8052, G8316
Juniper EX, MX 1.0
NEC PF5240, PF5820, PF1000 1.0
NEC ProgrammableFlow Network Controller PF 6800 1.0, 1.3
Pica-8 P-3290, P-3295, P-3780. P-3920 1.4

source: www.tomsitpro.com/articles/pica8-openflow-1.4-sdn-switches,1-1927.html

Full list of switches: https://www.sdncentral.com/comprehensive-list-hardware-switching-routing/

Commodity Hardware Switches

= Widely adopt single switching chip design
= Greatly simplifies switch design and reduces cost
= Switch vendors depend on merchant silicon switch ASICs

CPU for control
plane

All-in-one
switching ASIC

DRAM

Flow Matching on ASIC-based Switches

slow path o, A software

2,77 | 7| fwd table

Thw fwd table |-
fastpath [~ -3
Switch ASIC

= Observation: 10% of flows account for over 80% of traffic [1]
elephants: long-lived, high-bandwidth flows
mice: short-lived, low-bandwith flows

= Elephant flows - HW (TCAM), mice flows = SW (SRAM)

[1] Kandula et al., "The nature of data center traffic: measurements & analysis.", ACM SIGCOMM 2009

27

OpenFlow Switches based on Merchant Silicon

= Run software switch on CPU

e.g. Open vSwitch (OVS) CPU ovs-vswitchd/openflowd
Linux running on merchant silicon S
device drivers _
dpif layer communicates to TCAM dpif
dpif-netdev ‘ dpif-linux l
= Packet match ‘%1

H netdev
not in TCAM: forward packet to CPU ' :
netdev-linux

I g
ofproto communicates with controller netdevisilicon !
and writes new flow rule to TCAM

AsIC |||

hardware queues’;

physical ports e >

Switches based on Merchant Silicon

= Most commodity switches use ASIC from a single vendor
= merchants: Broadcom, Marvell, Fulcrum (Intel), Centec
= advantage: lower production costs

A\

Extreme Summit X770 HP 5930

Nuage 7850 VSG

—

Cumulus Networks
HCL: Agema, Edge-Core, Penguin
Computing, Quanta

ports

Arista 7250X

IBM BNT RackSwitch G8264

Alcatel-Lucent OmniSwitch 6900
- - o

HP 5900AF 48XG

Juniper QFX3500

2013

Merchant Silicon

= Every 18-24 month new generation of merchant silicon
twice as many ports, 50% lower forwarding latency
lowers power consumption, reduces latency |itter, etc.

= Designed as general networking switches with standard

throughputs and configurable feature sets
176 Gbps supports 48x 1GbE, 4x 10GbE
1.28 Tbps supports 48x 10GbE, 4x 100GbE

= Built with traditional networking in mind
limited flexibitily

General Hardware Processing Pipeline of a Switch

Buffering / Output
processing Queuing processing
)arser: extract header e action: insert packet e action: rewrite header
ields to queue/s ﬁQoS, fields (pipelined)
(pipelined) flow-action unicast, multicast) or

matching drop

Merchant Silicon: Input Processing

128k x 48b 16k x 32b Host 4k Wildcard
store VLAN, dst MAC addr. learning match match

L3 CAM TCAM

VLAN
Processor

1

Packet
Parser

L3 Match /
Learning

L2 Match /
Learning

ACL
Processing

MST Storage

‘ Output Buffering

Merchant Silicon: Input Processing

= Broadcom: OpenFlow Data Plane Abstraction (OF-DPA)

2014: Broadcom released specification for StrataXGS ASICs

OpenFlow data plane abstraction networking software
supports OpenFlow 1.3.1 combined with Indigo 2.0 software switch
tables do not necessary directly correspond to hardware tables

Ingress
Physical Port
Port Flow
Table

VLAN
Flow
Table

Termination
MAC Flow
Table

Unicast
Routing
Flow

Multicast
Routing
Flow

/.
N\

Flow
Table

Synchron

ized ‘

MAC
| Learning |
I Flow |
Table
| I

Table \
Table Table
Bridging

ACL

5| Policy

Flow

Action

set
s—

Apply Actions
- push /pop
- edits
- output

A

Physical
Port

Group Table Entries

L2 Interface

L2 Multicast

L2 Flood

L3 Interface

L3 Unicast

L3 Multicast

L3 ECMP

source: Broadcom OpenFlow Software OF-DPA: OpenFlow 1.3.1 Switch Pipeline Specification and Software

33

Merchant Silicon: Processing Pipeline

Input Buffering / Output
processing Queuing processing
)arser: extract header e action: insert packet e action: rewrite header
ields to queue/s ﬁQoS, fields (pipelined)
(pipelined) flow-action unicast, multicast) or

drop

matching

Merchant Silicon: Buffering/Queuing

= Packets are buffered until they are sent to output ports

= Several different queues: multicast queues, per port queues
gueues can have different quality-of-service features (e.g. bandwidth)

-]

’ﬂ Call- Slgnallmg

* Critical Data . k
-
Bulk Data U .l’

Best Effort

Dual-
Classifier LLQ/CBWFQ FIFO Tx-Ring

source: Cisco Understanding Queuing With Hierarchical Queueing Framework (HQF), June 2012

Merchant Silicon: Processing Pipeline

Input Buffering / Output
processing Queuing processing
)arser: extract header e action: insert packet e action: rewrite header
ields to queue/s ﬁQoS, fields (pipelined)
(pipelined) flow-action unicast, multicast) or

drop

matching

Merchant Silicon: Output Processing

= Field processor makes modification to the headers
as defined by the action set, which is build at input processing

= Less complex than input processing
perform the actions which are selected during input processing

= Various ASICs support various output actions
cheapest ASICs: output packets on any port, no support for rewrites
few ASICs: interleave output and rewrite actions

Shortcomings of Merchant Silicon

= Slow production cycles
usually 18-24 months or more
vendors need to wait until the new merchant silicon is released

= Focus on lower-layer networking services (L2-L3)
meet expectations of large number of different customers

focus on: throughput, port number, latency, power consumption
but not on higher-layer services (L4-L7)

= Furthermore...

small sizes of usefull tables that can implement SDN data planes
usually slow bus speeds between ASIC and CPU/NPU

often: small/slow on-chip CPUs

lack of flexible actions support

Addressing Shortcomings of Merchant Silicon

= Vendors try to compensate shortcomings

= More-advanced commodity switches
high performance multi-core CPU or network processor array
high-bandwith connection between CPU and ASIC (PCle, custom)

= Interesting solution: hybrid hardware switching architecture
hybrid: merchant ASICs and custom vendor ASICs
custom ASIC: focus on higher value network services
merchant ASIC: focus on forwarding and power consumpion

= Example hybrid hardware switch: Cisco Nexus 9000
2 custom ASICs (28nm): VXLAN routing
2 Broadcom Trident Il ASICs (40nm): L2/L3 forwarding

C) Commodity Hardware Switches:
Network Processors

Network Processors (NPUSs)

= Network processors
alternative to merchant silicon (on the fast path)
Integrated circuit, feature set specifically targeted at networking domain
software programmable but with high performance

= |Improved time to market

software-only changes should require less time to develop, test, and
deploy than hardware or mixed hardware/software changes.

Reduced development cost

software-only changes should take less effort and expense to develop,
test, and deploy than hardware or mixed hardware/software changes.

= |ncreased time in market

ability to support new features, services and protocols with software-
only upgrades increases the useful life of a system and the amount of
revenue the network the system can generate over its useful lifetime.

Example Network Processor

= EZ Chip: NP-4 100-Gbit Network Processor

= supports three types of lookup tables: direct access tables, hash
tables and tries (stored in DRAM)

= longest prefix match and wildcards are usually supported in tries

= optional: external TCAM CPU or Host
Network Ports CPU
2xSGMIl PCI Express

4x32bit
24xSGMII 666MHz
or 48x1GE DDR3
4SXQSGM" MACs L k
Packet o OOKUP
Network/Fabric Tables
Interfaces
10xXAUI/SPAUI | 10x10GE
channelized MACs TCAM Optional
o ACL
3xInterlaken MACs S
or 40GE icti
ACGE TM Memory Statistics
4x32bit 2x18bit
666MHz 533MHz
DDR3 RLDRAM2-SIO
. i TM (Frame) Statistics
source: EZ Chip NPU-4 Product Brief Memory Counters

EZ Chip: NP-4 Main Functional Blocks

= Task optimized processors (TOPSs)
many high-performance processors, each optimized for a specific task
perform: packet classification, forwarding and modification

= Control CPU

extends flexibility for monitoring, management offload, statistics

= Traffic manager
for ingress/egress paths, frame queuing, supports QoS mechanisms

= QoS CPU

monitor and control NP-4

traffic managers Packet Processing Traffic
& Lookups (TOPs) Management

Input
Interfaces : @ @

Output
Interfaces

Internal Switch

2 £ 2

Control CPU QOS CPU

source: EZ Chip NPU-4 Product Brief

Summary: Architecture and Design of Switches

= Software test switches
most flexible, easy to program, ‘unlimited’ table sizes, low performance

= Merchant silicon + CPU
wide-spread, cheap, fast, inflexible
limited programmability, hardware is fixed
limited flow table size on fast path (TCAM)
long production cycles for silicon

= NPUs + CPU

fast, flexible, more expensive

software programmable (C/C++)

large flow tables possible (tries)

can support new protocols on fast path

but: processors highly optimized for current network protocols
NPU merchant-specific software development kits, APIs, toolflows

Part IlI:
Configuration/Management of OF Switches

How to Configure/Manage OpenFlow Switches?

= OpenFlow protocol

OpenFlow
Controller

used for communciation
between switch(es) and
controller(s)

OpenFlow

- protocol
e.g.: add/modify/remove flow
table entries
access flow table statistics
operates on a timescale of a OpenFlow
flow Switch
see previous lecture about

OpenFlow, controllers, etc.

How to Configure/Manage OpenFlow Switches?

= OpenFlow protocol

used for communciation
between switch(es) and
controller(s)

e.g.: add/modify/remove flow
table entries

access floy

operates o
flow

see previous

OpenFlow, controllers, etc.

OpenFlow

OpenFlow
Switch

|

How to Configure/Manage OpenFlow Switches?

= OpenFlow management and OpenFlow
configuration protocol igurati

OpenFlow

= enables the remote configuration and

management of OF switches
J OF-Config OpenFlow

_ _ _ protocol
= no assumption about configuration

point (service in controller,)

= bootstrapping: switch initiates
connection to controller

controller’s IP address, port, TLS/TCP, ... OpenFlow
Switch

= detect and update the topology
between OF switches

= allocate resources within switches:
ports, queues (enable/disable ports)

= operates on a slow timescale

Physical vs. Logical OpenFlow Switches

b A

|
OpenFlow

OpenFlow OpenFlow

OF-Config OpenFlow OpenFlow

OF Logical Switch OF Logical Switch

OF Resource OF Resource OF Resource OF Resource

= physical switch = one or more logical switches

= OF-Config allows for configuration of multiple logical switches

= resources: ports/queues/tables are partitioned between logical switches
= logical switch assumes to have full control over its assigned resources

How to Configure/Manage OpenFlow Switches?

= OF notification framework OpenFlow

= event triggered messages:
report link failures, etc.

OF-Config OpenFlow

= publish/subscribe model protocol

switch = publisher

controller and configuration points can
subscribe to selected events

" examples OpenFlow

attribute value change, communication Switch
alarm, QoS alarm, processing error
alarm, state change, etc.

OF-Config 1.2: Further Functionalites

= Monitoring
monitor physical network of physical switches
monitor logical network of logical switches

= Configuration

configuration of queues and ports
ability to remotely change some aspects of ports (up/down)

configuration of certificates for securce communication between
logical switches and controllers

configuration of a set of specific tunnel types (VXLAN, etc.)
= Versioning

negotiation of which OF-Config versions are supported

support for OpenFlow versions 1.0 - 1.3.1

Summary: Configuration/Management of Switches

= Configuration points
Initialize switches using OF _Config protocol
establish connections between switch and controllers

= Physical vs. logical switches
one physical switch can instantiate several logical switches
physical resources partitioned between logical switches

Part IV: Next Generation of SDN Switches

Next Generation of SDN Switches

= Protocol-independent packet forwarding
Huawei’'s approach
towards OpenFlow 2.0

= |ndustrial trends
open hardware switch developed for Facebook
Intel dreams to replace ASICs/NPUs by CPUs

Protocol-Independent Forwarding

= OpenFlow 1.x Limitations
OpenFlow protocol is limited to fixed set of protocols
version 1.4 already contains 41 different header fields
adding user-defined protocols requires significant effort
OpenFlow constraints development of new protocols
switch cannot express its capabilities to the controller

= Solution: protocol-independet packet forwarding
Huawei’s protocol-oblivious forwarding (POF)
towards OpenFlow 2.0

Huawel Protocol-Oblivious Forwarding (POF)

= Generic instructions for

_) Current OpenFlow POF
paCket fleld parSIng and M h ~40 matching header {offset, length} covers
. Match fields defined yet still any frame based
handllng many uncovered formats
protocols/headers
Table search keys are _ POEAT SET FIELD
defined as {offset, length} ACHION OFPAT_COPY_TTL_OUT POFAT_ADD_FIELD
tuples SRR eI POFAT_DELETE_FIELD
OFPAT_SET_MPLS_TTL
: . -5 = - POFAT_MOD_FIELD
Instructions/Actions OFPAT DEC_MPLS_TTL T
access packet data or OFPAT_PUSH_VLAN |
metadata using OFPAT_POP_VLAN
{offset, length} tuples OFPAT_PUSH_MPLS

i OFPAT_POP_MPLS
Include other math, logic, OFPAT SET NW TTL

move, branching, and R
jump instructions OFPAT PUSH_PBB
OFPAT_POP_PBB

and on and on and on ...

= Proposed in 2013

source: Huawei

Huawel Protocol-Oblivious Forwarding

[Novel Applications J

&Services A
Protocol Specific Programmin
Application 9 9 Application API
) Languages
I ' 0
Protocol Agnostic Compiler S
Tables/Instructions h ’ =
s =
Flow Instruction Set o)
Controller N J =
. T
OpenFlow+ Hardware L Driver z
_ Abstraction Layer I 2
* Programmable o
' '(;'ef,vrvnolrzked - Flexible =
P » Generic S
Flow POF - Standard «
- _ - Low level

Tables Instructions o ation '-6”
- Runtime & Remote set—) 3
reprogrammable ®
/ s » Table driven & ,?,
protocol blind n

POF Data Path IFian - Flow instruction set V

‘ performance

source: Huawei

Towards OpenFlow 2.0

“We believe that future generations of OpenFlow should allow the

controller to tell the switch how to operate, rather than be constrained by a
fixed switch design” [1]

= Protocol independence
switches should not be tied to any specific network protocols

= Target independence

programmers should describe how switches are to process packets
In a way that can be compiled down to any target switch that fits our
abstract forwarding model

= Reconfigurability in the field

programmers should be able to change the way switches process
packets once they are deployed in a network

[1] McKeown, Rexford, et al. "P4: Programming Protocol-Independent Packet Processors”
ACM SIGCOMM 2014

Programming Protocol-independet Processors

T

SDN Control Plane

Populal‘ing:“"E

Configuration: : :
Installing and :
P4 Program . :
querying ruIes§ Classic
Compiler OpenFlow

.

Parser & Table Rule
Configuration J Translator

I

Target Switch

Protocol-Independent Packet Processor

{ A
' I
| | Parse Control |~ Table Action |
1
I | Graph Program Config Set |
[rarers mveperelerepare T, o —=— —
4
, Forwarding . Forwarding
| rules ! rules
1 L T 1 .:.
A 4 : :
! I
! i
| P v ‘i’ B & 0]
A U U
N R F T
P —» . Match —» Match —»
U Action F Action P
N E E U
R Ingress Pipeline R Egress Pipeline T
Packet Mods + i e der
Egress Selection

new: programmable parser: support for novel protocols

unlike Huawei POF: not focussed on network processors

multiple match-action stages: in parallel, in series (OF 1.0 - in series)
actions are built from a set of primitives supported by the switch.

Intel Ethernet Switch FM 6000 Series (1/2)

= Protocol-independent, hybrid commodity switch by Intel
traditional processing pipeline + OpenFlow processing pipeline

= |nput processing: FlexPipe processing architecture
programmable parser

124.127
2 16 B Successive header
- 1 words
: == Delayed in time as the
R packet arrives
0.3 E
| |
u 1 | qe— || g
| LKy Tcam ||f] % Tcam || LKl TCcAM r% TCAM (K] mcam
W L ¥ .y wal
Ingress
gres ~ ; ~
Number Action Action Action Action Action
l RAM RAM RAM RAM ¢ & RAM
— LY sate HULLU swe HJLY swte LU state b L Stale
| J
Initial Flags Flags Flags Flags / ,J Flags
State | 998 '(| Output
elc. Adder Adder Adder Adder | | Adder F;lg'
| -
[T 3 Muxing [TT ™ Muxing [T7 ™% Muxing ([™™ Muxing J . Wf
V 1 v
Stage 3 Stage 31

[§
Stage 0 Stage 1 Stage 2

Intel Ethernet Switch FM 6000 Series (2/2)

= Qutput processing:. frame forwading unit
= used for generic pattern matching

Generic Pattern Match

\

Build up aninstruction of actions
for future processing, up to one
action per stage in a single pass

available as keys to second set.

Output of first 12 slices
2™ order iterative matching.

Facebook: WEDGE Switch

= Open Compute Project

Similar to Google
Facebook develops
own switches for
their data centers

Wedge Hardware
Design

— Chassis

— Open Compute “Group Hug”

Zuckerberg: «Saved 1
Billion Dollars»

— 40Gb switching ASIC

Sixteen 40Gb network ports

Linux-based controller
«FBOSS»

Dual power supplies

Fans

many partners:
Broadcom, Intel, Big
Switch Network, etc

Simple enclosure

modular hardware
Broadcom Trident 2 ASIC
Intel Microserver

Intel: Replace Merchant Silicon & NPUs with CPUs

= |ntel is very interested to move to data centers and

enterprise computing sector
Intel bought network silicon vendor Fulcrum in 2011

= |ntel Data Plane Development Kit for Open vSwitch
goal: accelerate packet processing on Intel CPUs (instead of NPUS)
Chrystal forest platform: 160 million packets/s on multi-core CPU

= Target group Workioad 2010 2012 Future

data centers switches e —.

l@w

top of the rack switches
service providers (e.g. Verizon)

Control Xeon

Packet Proprietary

= Repeated history? — — | D
3 oprieta roprieta ——
Intel used x86 PC chips to . s Xeon

tackle Sun’s/IBM’s servers 4:1 Workload Consolidation

todai: Broadcom, etc.

Summary: Next Generation of SDN Switches

Software-defined networking trends
more flexibility, stronger separation between control and data plane
forwarding hardware should no longer hinder protocol development
OpenFlow 2.0: protocol-indepent packet forwarding

= Large service providers (Google, Facebook)
produce their own networking equipment
standard solutions from switch vendors no longer fit

Shift towards NPUs and high-performance CPUs

programmability becomes more important than pure forwarding
performance

WIll history repeat itself?
Can Intel break the dominance of Broadcom?

TEAOC EvoTnTacg

EHIREIFHEAELD TIPOT HAMMA

e K s Boy e = EETTA

T 2007-2013
- - = T
INYEMO0 MALOAT & OPSZEEYHETNN, NOSMEMDY & ADARTIENDY KD R o
1 'Evwacm El&IKH YINHFELIA AIAXEIFIEHL

ooce

THIGD TAMDID

i s W i Tig b
RO ")
e E s 1 aupanparoBitnan mc EkkSog o e Bupmatuc Bewomg

Xpnuarodotnon

To TTOPOV EKTTAIDEUTIKO UAIKO EXEI QVOTITUXBEI OTO TTAQICIC TOU
EKTTAIDEUTIKOU £pyou ToU DIBATKOVTA.

To épyo «AvoIKTa AKadnuaikd Madnuara oto MavemoTtiuio KpATne»
EXEl XPNMOTODOTACE!I WOVO TN OVOdIdUOPPLICH TOU EKTTAIOEUTIKOU UAIKOU .

To Epyo UAOTTOIEITOI OTO TTAQICIO TOU EmiXEIpnolakou [NpoypduNaTOC
«ExtTaideuon kal Ala Biou Mdaenaon» kKdl cuyXpnuarodoTeiTdl atTo TRV

Eupwttdikn Evwon (EupwtTaiko Koivwviko TauEeio) Kal 1o €BvIKOUC
TTOPOUC.

EMIXEIPHEIAKO MPOTPAMMA EZ"A
EKMAIAEYEH KAl AIA BIOY MAGHIH e’
o
ey dugn demy wowvia gne pviane | 2007-2013
=] | Jvepan emoimil
YMNOYPTEID NAIAEIAEL KAl BPHEKEYMATON ePpnaso HHMONIKD TAMEID
Eupwnaikr Evwan EIAIKH YNHPEEZIA AIAXEIFIEZHE
Bupemaiits Ko *Tauria Mz *r gy prj paredornon T EAvaSac kal e Eupmaikne Ewaang

2NUEIWMAT

IMCIWHMU ULUCIVOVITTIVIG

* To Trapov UAIKO SIaTiBeTal JE TOUS Opoug TN adeiag xpnong Creative Commons
Avaopopd, Mn Eptropikn Xpnon, Oxi MNapdywyo Epyo 4.0 [1] { HeTayevESTERN,
AigBvng ‘Exkdoon. ECaipouvTal TQ QUTOTEAN EPYQA TRITLWV TT.X. QUTOYPAPIEC,
SIaypAMLATA K.ATT., TA OTTOIC EUTTEQIEXOVTAI GE AUTSO KAl T OTTOIA avaQEQOVTAl LAl JE
TOUG OPOUC XPATNE TOUG OTO «2nMeiwpa XpRong Epywv TpiTwy».

oS0

[1] hitp://creativecommons.org/licenses/by-nc-nd/4.0/

. Qf; Mn Eutropikn opiletal n xprnon:
mou dev mepthapP avel auEco [EUUETO OKOVOULKO O eAoc armd TV Xprjon ToU Epyou, Yid To
Slovopsa ToU Epyou Kol gdelobdoyo

— mou dzv mepthapuf dvel owovoplikn cuvalhayn we mpodnoBzon via T xpnon A npoaPacn oto gpyo
— Tmou dev Mpoonopifsl oto dlavopea Tou gpyou Kat ade0d0y0 EUIECSO OLKOVOULKD OdEhoc (L),
Sradnuicew) amd v mpolokn tou pyou o SlablkTuakd Tomo

* O DIKQIoUXOC MTTORE! VO TTUPEXE! OTOV QDEIODOX0 CEXWPITTN AdEIX VA XPNCIMOTTOIE TO
EPYO VIT EUTTOPIKA XPACN, £QOCOV auTO Tou {nTnoei.

2NUEIWpa Ava@opac

Copyright MavetmioTAuio KpriTng, ZevoQuvTac ANUNTEPOTTOUAOS. «AiKTUO
KaBopilopeva atrd AoyioHiko. EvotnTa 3.2: SDN Switches: ApXITEKTOVIKA
Kol Zxediaopog». ‘Exdoon: 1.0. HpdkAgio/PéBupvo 2015. AlaBéoiuo aTrd Tn
OIKTUAKR OleuBuvaon: http://www.csd.uoc.gr/~hy436/

