oy EAAHNIKH AHMOKPATIA
~4%5 NANEMNIZTHMIO KPHTHZ

Apxeia kal Baoegic AedopEvwy

AlaAegn 15n: Alaxeipion AocoAnyiwyv
AnunTeNg lNAecouodkng
Tunua EmoTtnung YTToAoyioTwy

MNavemotiuio Kpntng, Tunua Emotiung YroAoyiotwv Anurtpng MAe§ovoakng/Elprivn @ouvrouAdkn

Transaction Processing (Ataxeipton AocoAnywv)

In modern applications databases are
shared by more than one users at the same time
who can query and update them

It is not possible to provide each user with their own copy of the
database

A database management system must ensure that:
concurrent access is provided

each user has a consistent view of the data

HY 360 - Lecture 15

Maverotyuio Kpntng, Tunua Eriotiung YrnoAoylotwv Anuritpng MAe§ouodkne/Elprivn DouvtouAdkn

Transaction Management

The problems encountered in the development of large database
applications led to the development of transaction management
techniques

Creation of inconsistent results (Consistency)
the machine crashes in the middle of the execution process
Errors in concurrent execution (Concurrency)

arbitrary concurrent execution of processes lead to the inconsistent
views of data

Uncertainty as to when changes become permanent:

can we be confident about the results residing in secondary
storage even if processes have completed successfully?

HY 360 - Lecture 15

Transaction Processing (Ataxeipton AocoAnywv)

A transaction is a series of database operations (reads and writes)

that form a single logical entity with respect to the application
being modeled.

Example: a transfer of funds between accounts is considered a
logical entity

A transaction commits when it finishes execution normally
otherwise it aborts

User transactions appear to execute in isolation (ueuovwueva),
although they may execute concurrently

HY 360 - Lecture 15

Inconsistent view of Data (Aouveneila ota Asdopeval)

accounts 1234 Doe John Checking 900.00
5678 Doe John Savings 100.00

Process P1 transfers $S400 from account 1234 to account 5678
Transfer is implemented by
(S1) subtracting $S400 from the balance of account 1234
(S2) adding S400 to the balance of account 5678
Accounts can be found in the following 3 states:

Balance 1234 Balance 5678
Before P1 $S900 $100
After S1 S$500 $100

After S2 $500 $500

HY 360 - Lecture 15

Inconsistent view of Data: Process Interleaving
(Aouvenela ota Asdopeva: NapepPoAeg petaéL Atadkoolwy)

check on the account holder sum:=0
and requires a minimum of ~ubtract 4005 from
S900 as the total balance of the balance of 1234
balance:=500
the accounts to approve the
. . add balance of 1234 to sum
insurance of a credit card UMM esuM+500 o 500
P2 reads the balance values of ~dd balance of 5678 to sum
the two accounts and sum:=500 + 100 = 600
computes their sum reject
P2 and P1 are running add $400 to the
balance of 5678
concurrently

Execution is incorrect since the
‘real’ sum is 10005

HY 360 - Lecture 15

Inconsistent view of Data: Process Interleaving

itis equivalent to serial

executions P1, P2 sum:=0

add balance of 1234 to

This execution is correct sum
sum:=900
both processes see the
correct data subtract 400%
] from the balance
Transaction management of 1234
balance:=500
must ensure that only
. . add balance of 5678 to

correct interleaving of sum

sum:=900+ 100 = 1000

processes takes place
add S400 to the

balance of 5678

Issue approval

HY 360 - Lecture 15

MNavemotiuio Kpntng, Tunua Emotiung YroAoyiotwv Anurtpng MAe§ovoakng/Elprivn @ouvrouAdkn

Transaction Management

Transactions guarantee the following properties:
Atomicity (Atopkotnta)
Consistency (Zuvenela)

Isolation (Mepovwpevn Ektéleon Atadlkaolwv)
Durability (AwapkeLa)

Known as ACID Properties

HY 360 - Lecture 15

Transaction Management: ACID Properties

Atomicity
Transactions are considered atomic when considering their
effect on the database:

all operations that make up the transaction are executed or
none is: the set of operations that make up the transaction is
considered indivisible

result of the transaction is preserved even when crashes
occur:

a database recovery procedure performs a rollback to
bring the database back to its state prior to transaction
execution

HY 360 - Lecture 15

Maveriotiuio Kpntng, Tunua Eriotiung YrnoAoylotwv Anuritpng MAe§ouodkne/Elprivn DouvtouAdkn

Transaction Management: ACID Properties

Consistency

a transaction should preserve a domain-specific consistency
constraint independently of whether it is executed concurrently
with other transactions or in isolation.

Isolation (serializability)

serial schedule: when transactions are executed one after the
other

any schedule of interleaved execution of transactions is
equivalent to some serial schedule

Durability
After a transaction commits, it is guaranteed to be recoverable
transactions are durable to crashes

HY 360 - Lecture 15 10

Transaction Management (ACID Properties)

Atomicity and durability are trivially satisfied by any transaction
that performs only read operations

Notation:
Transactions: 7, T,, ... T,
R;(X): transaction T, reads database item X

R.(X,u): transaction T, reads database item X, u is the value read
W, (X): transaction T, writes database item X

W.(X,u): transaction T, writes database item X, u is the value written
C; : transaction T, commits

A: transaction T; aborts

HY 360 - Lecture 15 11

Transaction Management (ACID Properties)

A schedule or history is an interleaved sequence of operations.
Transactions: T,, T,
Schedule : R,(A) W,(A) R,(A) R,(B) R,(B) W,(B) C, C,

A schedule is the result of the translation of processes - specified in
some high level language - into a series of primitive operations

The scheduler component of the transaction processing component
of a DBMS ensures that only “correct” schedules are executed

HY 360 - Lecture 15 12

Transaction Management (ACID Properties)

Given a set of transaction specifications, the scheduler component
produces a schedule that is equivalent to some serial execution of

the transaction

If no such schedule is possible, the transaction manager aborts or
delays some of the transactions

The scheduler also detects deadlocks

Situations in which none of the transactions participating in the
schedule can proceed unless one of them is aborted

HY 360 - Lecture 15

13

Example: Scheduling

Schedule S =R, (A) W,(A) R,(A) R,(B) R,(B) W,(B) C, C,

considers transactions T, T,

is not equivalent to any serial execution of the two transactions.
Interpretation of the schedule

T, = R1(A)/ R1(B)/ Wz(B)/ C;

T,=R,(A), W,(A), R2(B),W,(B), C,

HY 360 - Lecture 15

14

Maverotyuio Kpntng, Tunua Eriotiung YrnoAoylotwv Anpntpng MAg§ouvaaxng/Ewprivn @ouvrouAdkn

Example: Scheduling

Schedule S = R, (A) W,(A) R,(A) R,(B) R,(B) W,(B) C, C,
I, = Rl(A); Rl(B); C;
T2 = R2 (A)/ WZ(A)/ WZ(B)/ C2

Sis correct only if it is equivalent to one of the serial schedules T,, T,or
T, T,

Case 1: serial schedule S"=T, T,

S: T, reads A after T, has modified it.

S’ : the values of A and B read by T, have not been modified by T,
Case 2: serial schedule S"=T,, T,

S: T1 reads B before T, writes it.

S’: T, modifies the values of A and B, then T, reads it.

HY 360 - Lecture 15 15

Interleaving of DB Operations

Interleaving of database operations can yield large performance gains
While some transaction is performing I/O, another transaction can
use the CPU

System throughput (artodoon)
the number of transactions that can finish execution in a given period of
time) increases whereas response time remains constant

Throughput
N Response

Time

Number of users Number of users

Interleaved Execution
Serial Execution
16

HY 360 - Lecture 15

Serial vs Concurrent Execution (Example)

Transaction Manager services database transactions

Each transaction uses both CPU and I/O Resources
T: (cpu operation) R/() (cou operation) W,() C,
The system has a single CPU with a 5ms interval and a single disk.
Each |/O operation requires 50ms of wait time.

Serial Execution: Resource usage

HY 360 - Lecture 15 17

Mavemotiuio Kpntng, Tunua Emiotiung YmoAoyiotwv Anuritpng MAsouodkng/Ewprivn @ouvtouAdkn

Serial vs Concurrent Execution (Example)

Serial Execution
a transaction needs 110ms
throughput is 1 transaction per 110ms (9.09 transactions per second)
CPU is underutilized: active 9.09% of the time

HY 360 - Lecture 15 18

Serial vs Concurrent Execution (Example)

Interleaved Execution

A e = = =

throughput has increased

throughput will increase with the number of transactions processes
executed concurrently

additional improvements: more than one |/O devices are used

HY 360 - Lecture 15 19

Mavemotiuio Kpntng, Tunua Emiotiung YmoAoyiotwv Anuritpng MAsouodkng/Ewprivn @ouvtouAdkn

Testing Serializability

Criteria to determine given a set of transactions S if

interleaved schedules for S are equivalent to some serial
execution for the transactions in S

Conflicting database operations when they
belong to different transactions
refer to the same data item

at least one of them is a write operation

HY 360 - Lecture 15

20

Mavemotiuio Kpntng, Tunua Emiotiung YmoAoyiotwv Anuritpng MAsouodkng/Ewprivn @ouvtouAdkn

Properties of Schedules

Two schedules are called equivalent if for any initial state of the
database, they result to the same database state.

Two schedules are equivalent if all pairs of conflicting operations occur in
the same order

A schedule is called serializable if it can be shown to be equivalent to
some serial execution of its transactions

Only serializable schedules are acceptable

T1 = Rl(A)/ Rl(B)/ Wl(A)/ C1

T,=W,(A), R,(A), C,
S = W,(A)Ry(A) Ry(B) Ry(A) W, (A)
Is S serializable?

Yes, it is equivalent to T, T,

HY 360 - Lecture 15

21

Testing Schedule Serializability

Notation: op,(X) << op;(X) means that operation op; of some
transaction T; on item X, precedes operation op; of some
transaction T; on item X in schedule S

Cases:
If op,(X)<<s; op; (X) then op(X)<<s, op;(X) where S2 is a serial
schedule equivalent to S1
If op;(X)<<s; op;(X) and op;(Y) <<s; op;(Y), then 51 is not
serializable.
If it were, then, in the equivalent serial schedule S2, transaction
T; should both precede and follow transaction T

HY 360 - Lecture 15 22

Testing Serializability: The lost update problem

The case in which two users want to update the same item in a
database.

Suppose transaction T, reads item A first : R,(A)
Assume transaction T, reads item A: R,(A)

T, writes immediately its value to A, before T, performs the
update: W,(A)

T, writes its value to A: W,(A)
Hence any changes made by T,, are lost.

HY 360 - Lecture 15

23

Testing Serializability: The lost update problem

Schedule: S1 =R,(A) R,(A) W,(A) W,(A) C, C,
Conflicting Operations:

Ry(A), W,(A)

Ry(A), Wy(A)
Assume there is a serial schedule S2 equivalent to S1.
S1:R,(A) << ¢; W,(A) =2S2: R,(A) << o, W,(A)

T1 must precede T2
S1: R,(A) << o W,(A) =>S2:R,(A) << s, W,(A)

T2 must precede T1
The schedule is non-serializable

HY 360 - Lecture 15

24

Testing Serializability: The blind write problem

Occurs when a transaction writes a value before reading it
Schedule: S1 = W,(A) W,(A) W,(B) W,(B) C, C,
Conflicting Operations:

W, (A) W,(A)

W,(B) W,(B)
Assume there is a serial schedule S2 equivalent to S1.
S1: W,(A) << o; W,(A) =2S2: W, (A) << o, W,(A)

T1 must precede T2
S1: W,(B)<< ¢, W,(B)=>»S2:W,(B) <<, W,(B)

T2 must precede T1
The schedule is non-serializable

HY 360 - Lecture 15

25

Testing Serializability: Precedence Graphs

Given a schedule S, a precedence graph graph PG(S) for Sis a
directed graph whose

vertices correspond to the transactions T in the schedule and

set of edges consists of an edge T1 — T2 whenever there exist two
conflicting operations op, op;in S and op;<< s op;

Example:

S1=R,(A) R,(A) W,(A) W,(A) C, C, T

PG(S1) T1 T2

PG(S2) \/

Schedule S2 = W,(A) W,(A) W,(B) W,(8) C, C,

HY 360 - Lecture 15 26

Serializability

Theorem: A schedule S is serializable if and only if the precedence graph
PG(S) contains no cycle

Lemma 1: In any finite directed acyclic graph G, there is always a vertex u
with no incoming edges

Proof:

Case 1: If PG(S) has no cycles, S is serializable

Assume that there are m transactions 7, T,, ... T,, in S. We need to

find a reordering T;;, T;,, ... T ;,, of the transactions in order to
construct an equivalent serial schedule

By Lemma 1, in the precedence graph PG(S) there will be some
vertex T, with no incoming edges. Let T,; be T,.

HY 360 - Lecture 15

27

Serializability

HY 360 - Lecture 15

Since T, has no incoming edges in PG(S), there is no pair of
conflicting operations of T, and some other transaction T; such that
the operation of T; should precede that of T, Hence in the
equivalent serial schedule, T, should be the first to be executed.

Remove T, from PG(S) along with all its incident edges. The
resulting graph is still acyclic. Hence we can find a vertex T, that
has no incoming edges. Let T, be T,.Then T, should follow T, in the
serial schedule.

Continue this process until the precedence graph contains one
vertex. The corresponding transaction is the last one in the serial
schedule.

Case (2): If S is serializable, then PG(S) is acyclic.

Let PG(S) containacycle: T1 << T2 << T3 ... << Tk << T1
(contradiction)

28

TéEAog EvoTnTag

® @ @ - E_T'A'AEYXH KAI AIA BIOY MAGHEH == EZ nA
TioP . E=] Joviroma ra un ariis

ATON. NOAITIEMO'

Evpwriaikr Evwon El KH Y PEZIA A X ILH
Evpwnaixé Kovuwvixo Tapeio

Me T ouyxpnpatosétnon e EAMGSac kai e Evpwnaikig Evwong

XpnuatodoTnon

*To TTaPOV EKTTAIOEUTIKO UAIKO £XEI avaTTTUXOEI OTa TTAQICIO TOU EKTTAIOEUTIKOU
Epyou Tou OI0ACKOVTA.

*To £pyo «AvoikTad AKkadnuaika Madnuarta oto MavemmotAuio KpATNG» EXE
XPNMATOOOTACEI JOVO TN avadIauOpPwaon TOU EKTTAIOEUTIKOU UAIKOU.

*To €pyo uAoTtrolgiTal 0TO TTACiOI0 TOU ETTiXeipnaiakou NpoypauuaTog

«EkTTaideuon kai Ala Biou MaBnon» kail cuyxpnuarodoTeital atrd Tnv Eupwtraikn
‘Evwon (EupwTraiké Koivwviké Tapegio) kar atrd €éBvikoug TTépouc.

EMIXEIPHEIAKO NMPOrPAMMA
EKI'IAIAEYZH KAI AIA BIOY MAGHZH EZI-IA

1

YNOYPTEIO NMAIAEIALX KAl BPHIKEYMATAQON

Me tn ouyxpnuatrodotnon tng EAAadag kat tng Evpwmnaikrg Evwong

2NUEIWHAT

2NMEIWHO 0OEI000TNONG

*To TTapov UAIKO diaTiBeTal e Toug 6poug TNG adelag xpriong Creative Commons Ava@opd
Anuioupyou - Mn EuTtropikr) Xprjon - I'Iapépom(Alavopr'] 4.0 Aigbveg [1] r'] METAYEVEOTEPN,
Aigbvnc EK500‘I’] E&oupouvml TQ GUTOTE)\I’] Epya Tplva .X. PWTOYPAPIEC, 6|aypappam
K.A.TT., T OTTOIQ EPTTEPIEXOVTAI O€ AUTO KAl T OTToia ava@EpovTal Hadi U Toug OPOUG XPrnong
TOUG OTO «2nueiwpa Xprnong Epywv Tpitwwv».

@080

[1] http://creativecommons.org/licenses/by-nc-sa/4.0/

*()0¢ Mn EpTtropikn opileTal n xpron:
—rmou &gV MePNAUBAVEL AUETO 1] EUECO OLKOVOULKO ODEAOC QO TNV XPrON TOU £pYOU, YLa TO SLAVOUEX TOU £pYOU
Kat adelodoxo

—rmou &ev MepNAUBAVEL OLKOVOLLKT) cuVaAAayr w¢ tpolmoBeon yla Tt xprion rn npocBaocn oto €pyo

—1tou Sev npooTmopilel 0To SLavopEa Tou €pyou Kol adelodOX0 ELLUETO OLKOVOULKO 0deAOG (m.x. Stadnuioelg) amo
TNV npoPoAn tou €pyou o€ SLaSIKTUOKO TOTIO

*O dIKAIOUXOC UTTOPEI va TTAPEXEI OTOV AOEIOOOXO CEXWPIOTH AdEIQ VA XPNOIUOTTOIEI TO £pYO
yia EUTTOPIKA XPron, Epooov autd Tou (NTNOE.

2NUEIWNO Ava@opag

Copyright MNavemoTtApio KpAtng, AnunTteng MNMAe¢oucdkng. «Apxeia kol Baoeig
Agdopévwyv. AIAAeENn 15n: Alaxeipion AocoAnyiwv». ‘Ekdoon: 1.0.
HpakAgio/P€Bupvo 2014. AiaBéaipo atrd tn dikTuakr) dieubuvon:
http://www.csd.uoc.gr/~hy360/

