EAAHNIKH AHMOKPATIA
NMANEMIZTHMIO KPHTHZ

Apxeia kal Baoegic AedopEvwy

AlaAegn 16n: Alaxeipion AocoAnwiwyv MEpog 20 -
2PL

Anunteng NAeg¢ouoakng
Tunua EmoTtnung YTroAoyioTwy

MNavemotiuio Kpntng, Tunua Emotiung YroAoyiotwv Anurtpng MAe§ovoakng/Elprivn @ouvrouAdkn

Locking to ensure serializability

Concurrent access to database items is controlled by strategies
based on locking, timestamping or certification

A lock is an access privilege to a single database item

Lock Manager: manages the locks requested by transactions.
Locks are
obtained by transactions
stored in a lock table
Lock is an entry of the form (item, lock-type, transactionID)
item is the item that the transaction locks
lock-type can be shared or exclusive
transactionlD is the transaction identifier

HY 360 - Lecture 16

Maveriotiuio Kpntng, Tunua Eriotiung YrnoAoylotwv Anuritpng MAe§ouodkne/Elprivn DouvtouAdkn

Locking to Ensure Serializability

Locking can prevent the lost update problem
T, =Lock(A) R,(A) W,(A) Unlock(A) C,
T, =Lock(A) R,(A) W,(A) Unlock(A) C,

Under the locking policy, only serial execution of the transactions is
permitted

HY 360 - Lecture 16

Locking

When a transaction holds an exclusive lock on a database item,
no other transaction can read or write the item

used for writing

When a transaction holds a shared lock, other transactions can
obtain a shared lock on the same item

used for reading

Assumptions
there is a single type of lock and
every transaction must obtain a lock on an item before accessing it.

all items locked by a transaction must be unlocked, otherwise no
other transaction may gain access to them.

a transaction must wait until the lock it requests is released by the
transaction that holds it.

HY 360 - Lecture 16

Transaction Management

Locking can prevent the /ost update problem:

T; = Lock,(A) R1(A) W1(A) Unlock,(A) C;

T, = Lock, (A) R2(A) W1(A) Unlock,(A) C;

Locking enforces a serial execution of the transactions

Locking can also prevent the blind write problem:

T; = Lock,(A) W1(A) Lock, (B) W1(B) Unlock, (A) Unlock, (B) C;

T, = Lock, (A) W2(A) Lock,(B) W,(B) Unlock,(A) Unlock,(B) C;
Then the following schedule is valid:

Lock:(A) W1(A) Lock:(B) W1(B) Unlock:(A) Lock>(A) W>(A)
Unlock;(B) Lock>(B) W»(B) Unlock>(A) Unlock,(B) C; C5

HY 360 - Lecture 16

LiveLock

Undesirable phenomena if locks are granted in an arbitrary
manner

Example:

while T2 is waiting for T1 to release the lock on A, another
transaction T3 that has also requested a lock on A is granted the
lock instead of T2. When T3 releases the lock on A the lock is
granted to T4 etc.

Livelock: The situation where a transaction may wait for ever while
other transactions obtain a lock on a database item

Can be avoided by using a first-come-first-served lock granting
strategy but, even then a deadlock might occur

HY 360 - Lecture 16

Maverotyuio Kpntng, Tunua Eriotiung YrnoAoylotwv Anpntpng MAg§ouvaaxng/Ewprivn @ouvrouAdkn

Deadlock

Occurs when a transaction is waiting to lock an item that is
currently locked by some other transaction

Example: Consider the transactions:
T; = Lock,(A) Lock,(B) Unlock,(A) Unlock,(B) C;
T, =Lock, (B) Lock, (A) Unlock, (B) Unlock, (A) C;
Assume T; is granted a lock on A and T, is granted a lock on B

Then T;requests a lock on B but is forced to wait because 7>
has the lock on B.

Similarly, T, requests a lock on A but is forced to wait because
T1 has the lock on A.

HY 360 - Lecture 16

Different solutions for Deadlocks

Solution 1: Require each transaction to request all locks at once.
Either all locks are granted or none.

Solution 2: Assign an arbitrary linear order to the items and
require all transactions to request their locks in that order.

Solution 3: Do nothing to prevent deadlocks: abort one or more
of the deadlocked transactions if a deadlock arises.

HY 360 - Lecture 16

Deadlock Discovery

Deadlocks can be discovered using wait-for graphs:
Given a set of transactions S, a wait-for graph is a directed graph:
vertices correspond to transactions in the set

there exists an edge from T; to T; if T; is waiting to lock an item on
which T;is holding a lock.

Theorem: A set of transactions is deadlocked if and only if there exists
a cycle in the wait-for graph.

Example: The wait-for graph for the transactions contains a cycle
T1 = Lock,(A) Lock, (B) Unlock, (A) Unlock, (B) C;
T, = Lock,(B) Lock, (A) Unlock, (B) Unlock, (A) C:

P>
HY 360 - Lecture 16 @< @

2-Phase Locking (2PL)

2-Phase Locking (2PL): a protocol ensuring serializability of schedules

Definition: A schedule is said to obey the 2-phase locking protocol if
the following rules are obeyed by each transaction in the schedule

When a transaction attempts to read (write) a data item, a read
lock (write lock) must be acquired first

If a transaction T, holds a lock on data item A for operation op,
and some other transaction T, requests the lock to perform a

conflicting operation op, on the same item, the transaction
requesting the lock (T,) is forced to wait until no conflicting lock

on the item exists
(only read locks are non-conflicting)

A transaction cannot request additional locks once it releases any

lock!

HY 360 - Lecture 16 10

Maveriotiuio Kpntng, Tunua Eriotiung YrnoAoylotwv Anuritpng MAe§ouodkne/Elprivn DouvtouAdkn

2-Phase Locking (2PL): Conflicts

two locks by the same transaction never conflict

a transaction with a read lock on a data item can acquire a

write lock on the item as long as no other transaction has a lock
on the data item;

a transaction with a write lock on a data item need not acquire
a read lock on the same item.

2PL permits the early release of locks
Notation:
RL;: transaction T; obtains a read lock
WL;: transaction T; obtains a write lock
RU;: transaction T; releases a read lock
WU;: transaction T; releases a write lock

HY 360 - Lecture 16 11

Maveriotiuio Kpntng, Tunua Eriotiung YrnoAoylotwv Anuritpng MAe§ouodkne/Elprivn DouvtouAdkn

2-Phase Locking (2PL): Example

Does the following schedule obey the 2PL protocol?
S = Ri(A) R2(B) W2(B) R2(A) W2(A) R1(B) C;1 C;
Lock/unlock operations must be added first. The schedule becomes:
S’ =| RLy(A)| Ry(A) RU;(A) RLZ(B] Ro(B)| WL(B) W2(B) WU-(B) RL(A)
Ro(A)|WL(A) \W2(A)|RL1(B) | R1(B) C1 C;

Rule 1 : noitem is accessed without a lock being granted to the
requested transaction

obeyed

HY 360 - Lecture 16

12

Maveriotiuio Kpntng, Tunua Eriotiung YrnoAoylotwv Anuritpng MAe§ouodkne/Elprivn DouvtouAdkn

2-Phase Locking (2PL): Example

Does the following schedule obey the 2PL protocol?
S = Ri1(A) R2(B) W3(B) R2(A) W2(A) R1(B) C1 C>
Lock/unlock operations must be added first. The schedule becomes:

S$ RLi(A) Ri(A) RU(A) RL:(B) Ra(B) WLo(B) W;(B) WUs(B) RLy(A)

RofA) |WLo(A| WaA) RLy(B) Ru(B)CiC

Rule 2 : no two conflicting operations have a lock on the same
item at the same time

obeyed

HY 360 - Lecture 16 13

Navenotiuio Kpntng, Tunua Emotiung YroAoyiotwv

Anuntpnc MAséovoakng/Ewprivn @ouvrouAakn

2-Phase Locking (2PL): Example

Does the following schedule obey the 2PL protocol?
S = Ri1(A) R2(B) W2(B) R>(A) W>(A) R1(B) C1 C;
Lock/unlock operations must be added first. The schedule becomes:

= RLi(A) Ri(A) RU1(A) RL

»(B) R2(B) WLy(B) Wy(B) W

W‘[z(A)

W2(A) RLi(B) R

1(B) C1 G

J2(B) Rl]z(A) R2(A)

Rule 3: A transaction cannot request additional locks once it

releases any lock!
Violated!

HY 360 - Lecture 16

14

Maverotyuio Kpntng, Tunua Eriotiung YrnoAoylotwv Anpntpng MAg§ouvaaxng/Ewprivn @ouvrouAdkn

2-Phase Locking (2PL): Example

Applying the 2PL discipline to the schedule
S =Ri(A) R2(B) W>(B) R2(A) W2(A) R1(B) C1 C>
yields the following interleaved execution (all locks released at commit)

T: |RLi(A) | Ri(A)

1> RL;(B) | R2(B) | WLx(B) | W(B) |RLy(A) |R2(A) | WL2(A)
v

T1 RL:(B) wait abort restart | C,

T, | wait WZ(A) Cz

HY 360 - Lecture 16 15

Navenotiuio Kpntng, Tunua Emotniung YroAoyiotwv

2-Phase Locking (2PL): Example

Anuntpng MAséovoakng/Eiprivn @ouvtouAdkn

Theorem: A schedule that follows 2PL is always serializable.

Example:

The schedule S’= R;(A) R>(A) W1(A) W5(A) C; C; is forced to
execute as follows by a transaction scheduler that uses 2PL:

HY 360 - Lecture 16

T1 |RL;:(A) Ri(A) WL1(A) wait abort
T2 RL>(A) | Rx(A) WL, (A) | wait

T1 restart | C;

T2 | W>x(A) c2

16

Transaction Management

Example: Consider the following transactions
T,: W1(U) R1(Y) W1 (U) Cq
T,: Ra(X) W2(U) Wir(Y) Wr(W) C,
T3: W3(W) R3(X) W3(U) W3(Z) C3

s it possible to add lock/unlock steps to these transactions so
that every legal schedule is serializable?

Answer: yes by adding add lock/unlock steps using 2PL

HY 360 - Lecture 16

17

Transaction Management

1. Tl" Wl(U) Rl(Y) Wl(U) C:
2. TZ: Rz(X) Wz(U) Wz(Y) Wz(W) Cz
3. T3 Ws(W) Rs(X) Ws(U) Ws(Z) Cs

Tl

T, RLy(X) WLy (U) | wait

T3 WLs(W) RL3(X) WLs(U) WLs(2) Ws(W)
:- ___ ,
| T WL4(U)
> T, wait wait wait wait wait WL(Y)

T3 WUs(W) R3(X) RU;(X) Ws(U) WU;(U)

HY 360 - Lecture 16

18

Transaction Management

1. Tl" Wl(U) Rl(Y) Wl(U) C:
2. TZ: Rz(X) Wz(U) Wz(Y) Wz(W) Cz
3. T3 Ws(W) Rs(X) Ws(U) Ws(Z) Cs

T, wait wait wait wait wait RL:(Y) | wait
-==3 T, WL (W) | Rx(X) W,(U) WU,(U) Ws(Y) - -F - -
I3 W3(Z) E
e !
i T; WL;(U) | wait W;(U) Ri(Y) | W;(U)
)
T, WH(W) | WUAW) | C;
T3 WU3(Z) Cs
|
[WU1(U) RUA(Y) WU1(2) C;
-->[7,
T3

HY 360 - Lecture 16

19

TéEAog EvoTnTag

® @ @ - E_T'A'AEYXH KAI AIA BIOY MAGHEH == EZ nA
TioP . E=] Joviroma ra un ariis

ATON. NOAITIEMO'

Evpwriaikr Evwon El KH Y PEZIA A X ILH
Evpwnaixé Kovuwvixo Tapeio

Me T ouyxpnpatosétnon e EAMGSac kai e Evpwnaikig Evwong

XpnuatodoTnon

*To TTaPOV EKTTAIOEUTIKO UAIKO £XEI avaTTTUXOEI OTa TTAQICIO TOU EKTTAIOEUTIKOU
Epyou Tou OI0ACKOVTA.

*To £pyo «AvoikTad AKkadnuaika Madnuarta oto MavemmotAuio KpATNG» EXE
XPNMATOOOTACEI JOVO TN avadIauOpPwaon TOU EKTTAIOEUTIKOU UAIKOU.

*To €pyo uAoTtrolgiTal 0TO TTACiOI0 TOU ETTiXeipnaiakou NpoypauuaTog

«EkTTaideuon kai Ala Biou MaBnon» kail cuyxpnuarodoTeital atrd Tnv Eupwtraikn
‘Evwon (EupwTraiké Koivwviké Tapegio) kar atrd €éBvikoug TTépouc.

EMIXEIPHEIAKO NMPOrPAMMA
EKI'IAIAEYZH KAI AIA BIOY MAGHZH EZI-IA

1

YNOYPTEIO NMAIAEIALX KAl BPHIKEYMATAQON

Me tn ouyxpnuatrodotnon tng EAAadag kat tng Evpwmnaikrg Evwong

2NUEIWHAT

2NMEIWHO 0OEI000TNONG

*To TTapov UAIKO diaTiBeTal e Toug 6poug TNG adelag xpriong Creative Commons Ava@opd
Anuioupyou - Mn EuTtropikr) Xprjon - I'Iapépom(Alavopr'] 4.0 Aigbveg [1] r'] METAYEVEOTEPN,
Aigbvnc EK500‘I’] E&oupouvml TQ GUTOTE)\I’] Epya Tplva .X. PWTOYPAPIEC, 6|aypappam
K.A.TT., T OTTOIQ EPTTEPIEXOVTAI O€ AUTO KAl T OTToia ava@EpovTal Hadi U Toug OPOUG XPrnong
TOUG OTO «2nueiwpa Xprnong Epywv Tpitwwv».

@080

[1] http://creativecommons.org/licenses/by-nc-sa/4.0/

*()0¢ Mn EpTtropikn opileTal n xpron:
—rmou &gV MePNAUBAVEL AUETO 1] EUECO OLKOVOULKO ODEAOC QO TNV XPrON TOU £pYOU, YLa TO SLAVOUEX TOU £pYOU
Kat adelodoxo

—rmou &ev MepNAUBAVEL OLKOVOLLKT) cuVaAAayr w¢ tpolmoBeon yla Tt xprion rn npocBaocn oto €pyo

—1tou Sev npooTmopilel 0To SLavopEa Tou €pyou Kol adelodOX0 ELLUETO OLKOVOULKO 0deAOG (m.x. Stadnuioelg) amo
TNV npoPoAn tou €pyou o€ SLaSIKTUOKO TOTIO

*O dIKAIOUXOC UTTOPEI va TTAPEXEI OTOV AOEIOOOXO CEXWPIOTH AdEIQ VA XPNOIUOTTOIEI TO £pYO
yia EUTTOPIKA XPron, Epooov autd Tou (NTNOE.

2NUEIWNO Ava@opag

Copyright MNavemoTtApio KpAtng, AnunTteng MNMAe¢oucdkng. «Apxeia kol Baoeig
Agdopévwy. AIAAeENn 16n: Alaxeipion AocoAnwiwv MéEpog 20 - 2PL».
‘Ekdoon: 1.0. HpdakAelo/P€Buuvo 2014. AiaBEoiuo atrd 1n dikTtuakn dieubuvon:
http://www.csd.uoc.gr/~hy360/

