oy EAAHNIKH AHMOKPATIA
~4%5 NANEMNIZTHMIO KPHTHZ

Apxeia kal Baoegic AedopEvwy

AlaAegn 17n: Alaxeipion AocoAnyiwyv MEpog 30 -
Quoiki Opydvwon Aedopévwy

Anunteng NAeg¢ouoakng
Tunua EmoTtnung YTroAoyioTwy

Maveroriuio Kpritng, Turua Emorriung YnoAoyiotwv AnpnTpng MAggouoakng

Transaction Management

e Tree Protocols

B [n many instances, the set of items accessed by a transaction can
be viewed naturally as a tree or forest

m E.g, items are nodes in a B-tree; items have different granularities
(relations, tuples, attributes).

m Two different policies may be followed:
1. each node in the tree is locked independently of its descendants
2. alock on an item implies a lock on all of its descendants

m The latter policy saves time by avoiding locking many items
separately

® E.g., when the content of an entire relation needs to be read, the
relation can be locked in one step instead of locking each tuple
Individually

HY 360 - Lecture 17 2

Maveroriuo Kpritng, Turua Emorriung YrnoAoyiotwv AnpnTpng MAggouoakng

Transaction Management

e Tree Protocol #1 (TP1)
e Definition: A transaction obeys the TP1 policy If:

m except for the first item locked, no item can be locked unless the
transaction holds a lock on the item’s parent

® no item Is ever locked twice by a transaction

o A schedule obeys the TP1 policy if every transaction in the schedule
obeys it.

o Example: Consider the following hierarchy of items

/@\
®
& @}
®

HY 360 - Lecture 17 3

TMavernorruio Kpritne, Turnua EmoTriung YnoAoyiorwv

e The following schedule obeys TP1

Transaction Management

AnpnTpng NAeEouoakng

L1(A)

L1(B)

L1(D)

U1(B)

L1(C)

U1(D)

L2(B)

L3(E)

Ls(F)

U1(A)

U1(C)

L2(E)

U2(B)

U2(E)

L3(G)

Us(E)

Us(F)

Us3(G)

m Does it obey 2PL?

HY 360 - Lecture 17

Maveroriuo Kpritng, Turua Emorriung YrnoAoyiotwv AnpnTpng MAggouoakng

Transaction Management

e Note: A transaction that obeys TP1 need not necessarily obey 2PL.

e Theorem: Every legal schedule that obeys the protocol TP1 is
serializable

e Example: The schedule of the previous example is serializable.
m |ts precedence graph is acyclic

HY 360 - Lecture 17 5

Maveroriuo Kpritng, Turua Emorriung YrnoAoyiotwv AnpnTpng MAggouoakng

Transaction Management

e Tree Protocol #2 (TP2)

e Definition: A transaction obeys the TP2 policy if whenever an item is
locked, all its descendants are locked

e Indiscriminate locking under TP2 may result in schedules where two
transactions hold a lock on the same item at the same time.

e Example: in the hierarchy /@\
©
/
’ @} ®

transaction T locks E (therefore F,G). Then T locks B, therefore acquires
conflicting locks on E,F,G.

HY 360 - Lecture 17 6

Maveroriuio Kpritng, Turua Emorriung YnoAoyiotwv AnpnTpng MAggouoakng

Transaction Management

e To avoid conflicts of this sort, the warning protocol may be followed:

B atransaction cannot place a lock on an item unless it first places a
warning on all its ancestors

B awarning on an item X prevents any other transaction from
locking X, but does not prevent them from also placing a warning
on X, or from locking some descendant of X that does not have a
warning

e Definition: A transaction obeys the warning protocol if:
1. It begins by placing a lock or warning at the root

2. It does not place a lock or warning on an item unless it holds a
warning on its parent.

3. It does not remove a lock or warning unless it holds no lock or
warnings on its children

HY 360 - Lecture 17 7

Maveroriuio Kpritng, Turua Emorriung YnoAoyiotwv AnpnTpng MAggouoakng

Transaction Management

4. It obeys 2PL in the sense that all unlock operations follow all
warnings or lock operations

m This protocol acts in conjunction with the assumption that a lock can
be placed on an item only if no other transaction has a lock or warning
on the same item.

m Furthermore, a warning can be placed on an item as long as not other
transaction has a lock on the item.

m Theorem: Legal schedules obeying the warning protocol are
serializable.

HY 360 - Lecture 17 8

Maveroriuo Kpritng, Turua Emorriung YrnoAoyiotwv AnpnTpng MAggouoakng

Physical Data Organization

e Databases may be too large to fit in main memory

e The efficiency of operations on databases residing in secondary
storage relies heavily on the availability of good storage organization
technigues

e Performance measures include the time required to perform database
operations such as selections or joins

m E.g, selections should take time proportional to the number of
tuples retrieved rather than the size of the relation

e Storage organization technigues include:
B Heaps
m Hashing
®m Indexed sequential access methods
m B-trees, B*-trees

HY 360 - Lecture 17 9

Maveroriuio Kpritng, Turua Emorriung YnoAoyiotwv AnpnTpng MAggouoakng

The Physical Data Model

Records, Fields and Files

At the conceptual or logical level, a database is a collection of
entities and relationships, or a collection of tables representing
entities and relationships.

At the physical level, a database is a stored collection of records,
each consisting of one or more fields.

Fields contain values of elementary data types (e.g., integer, real)

A record iIs used to physically store each of the basic objects at the
conceptual level

E.g., a tuple of a relation can be stored as a record with each
component of the tuple stored in one field.

Records can be viewed as instances of a record scheme.

HY 360 - Lecture 17 10

Maveroriuo Kpritng, Turua Emorriung YrnoAoyiotwv AnpnTpng MAggouoakng

The Physical Data Model

e A database contains collections of records with the same number of
fields, with corresponding fields having the same name and data type.

e The list of field names and their corresponding data types is called the
format of the record.

e A fileis a collection of records with the same format. For instance, a
file physically represents a relation.

e Two-level storage

®m The physical store where records and files reside can be thought of
as an array of bytes numbered sequentially.

m Files normally reside in secondary storage. In order to perform
operations on data found In file records, records must be moved
from secondary storage to main memory. Once they are moved
operations can be performed very fast compared to the speed of
data transfer between main and secondary storage.

HY 360 - Lecture 17 11

Maveroriuo Kpritng, Turua Emorriung YrnoAoyiotwv AnpnTpng MAggouoakng

The Physical Data Model

e Blocks

®m Secondary storage is partitioned in segments (blocks) of a
substantial number of bytes (2°-212) with several records in a block

m Transfer of data occurs in units of a block.

m The cost of database operations depends on the number of blocks
moved between main memory and secondary storage.

m The efficiency of operations improves when records of a file lie
within the same block or a relatively small number of blocks.

e Cost of DB Access

® The unit cost of db operations is the block access, I.e., the time
required for reading from or writing to a single block.

®m This cost of performing main memory operations is negligible
compared to the cost of block transfer.

HY 360 - Lecture 17 12

Maveroriuio Kpritng, Turua Emorriung YnoAoyiotwv AnpnTpng MAggouoakng

The Physical Data Model

® With the buffering of blocks in main memory we can avoid having
to transfer a block from secondary storage to main memory.

® The time to access a block in secondary storage depends on the
location where the last block access took place.

e Simplifying assumptions:
m There is a fixed probability that a block will need to be transferred.

®m The cost of a block access does not depend on what accesses were
made previously.

m Each block access costs the same.

HY 360 - Lecture 17 13

Maveroriuio Kpritng, Turua Emorriung YnoAoyiotwv AnpnTpng MAggouoakng

The Physical Data Model

e Pointers

®m A pointer to a record r is data sufficient to locate r efficiently.

®m A pointer can be of different types such as, e.g., the absolute
address of the beginning of record r.

m Absolute addresses are often undesirable: we might permit records
to move around within a block or group of blocks. If absolute

addresses are used as pointers and record r is moved, all pointers to
r must be updated.

m A pair (b,k) can be used as a pointer, where b is the block in which
r resides and k is the value of the key for r.

HY 360 - Lecture 17 14

Maveroriuio Kpritng, Turua Emorriung YnoAoyiotwv AnpnTpng MAggouoakng

The Physical Data Model

e Pointers

m To locate a record r given a pair (b,k) it is sufficient to know that:

e All records in block b have the same format as r; therefore none
can agree with r in its key fields.

e The beginnings of all the records in block b can be found.

e Each record in block b can be decoded into its field values given
the beginning of the record.

e Pinned Records

® When records may have pointers to them from unknown locations,
we say that the records are pinned.

m |[f records are unpinned, they can be moved around within a block
or from block to block.

HY 360 - Lecture 17 15

Maveroriuio Kpritng, Turua Emorriung YnoAoyiotwv AnpnTpng MAggouoakng

The Physical Data Model

e Pinned Records

® When records are pinned, they cannot be moved if the pointers to
them are absolute addresses. They can only be moved within the
same block if a pair (b,k) Is used as a pointer.

B Records cannot be deleted if they are pinned: if there exists a
pointer p to a record r and r is deleted, then If at some later point in
time a record r’ Is put in the same place as r, pointer p will point to
r’. Pointer p is called a dangling pointer.

m Even in the case where block-key pairs are used, the problem
cannot be avoided: if r’ has the same key as r, we would still have
an unintended reference to a record.

®m To avoid this problem, each record includes a bit (called deleted
bit) which is set to 1 if the record is deleted. If we reach the record
by following a pointer, we will know If it Is deleted or not.

HY 360 - Lecture 17 16

Maveroriuio Kpritng, Turua Emorriung YnoAoyiotwv AnpnTpng MAggouoakng

The Physical Data Model

e Record Organization

m The fields in a record must be arranged in such a way that their
values can be accessed. If all fields have fixed length, then only an
order must be chosen: each field starts at a fixed number of bytes
(offset) from the beginning of the record.

® Once arecord is located, the field can be found by moving forward
a number of bytes equal to the offset for that field

m Additional bytes may be required for each record:

e Some bytes denote the format of the record. For instance if the
record belongs to more than one relation, we may wish to store
a code indicating the relation of each record. Alternatively, we
can store only one type of records in any block and let the block
Indicate the type of its records.

HY 360 - Lecture 17 17

TMavernorruio Kpritne, Turnua EmoTriung YnoAoyiorwv

The Physical Data Model

m Additional bytes may be required for each record:

e One or more bytes may denote the length of the record. If the
record involves only fixed-length fields, then the length is
implicitly derived.

e A byte including a deleted bit and a used/unused bit: the latter is
needed when blocks are divided in areas, each of which holds a
record. This bit indicates If there actually exists a record or if it

IS empty space.
o \Waste space: useless bytes may be added so that the bytes
where the records begin have convenient addresses.

HY 360 - Lecture 17

AnpnTpng NAeEouoakng

18

AnpnTpng NAeEouoakng

info ~

HY 360 - Lecture 17

TMavernorruio Kpritne, Turnua EmoTriung YnoAoyiorwv

The Physical Data Model

e Example: record type: NUMBER

m Fields:
o Number: integer (key field) — always holds a positive integer

e Name: a single byte indicating the first letter of the English

name for the number

e Square: integer — holds the square of the number

m If an integer takes 4 bytes, a total of 9 bytes is required for the
record. In addition, a deleted bit and a used/unused bit is needed.
Waste space is needed if integers are required to be stored in
records whose beginning address is a multiple of 4.

waste

012 34 7 8 11

number | square
‘Rame

19

Maveroriuio Kpritng, Turua Emorriung YnoAoyiotwv AnpnTpng MAggouoakng

The Physical Data Model

e Variable-length records

® Record formatting problems occur when fields are allowed to vary
In length: fields do not begin at the same offset for every record of
a particular format

® Record formatting strategies:

e Attach a count at the beginning of each field. Its value is the
number of bytes the field occupies. Although redundant, the
total length of the entire record is also stored in the beginning of
the record.

e Place, in the beginning of each record, pointers to the beginning
of each variable length field and a pointer to the end of the last
field. All fixed-length fields precede all variable-length fields.

HY 360 - Lecture 17 20

Maveroriuio Kpritng, Turua Emorriung YnoAoyiotwv AnpnTpng MAggouoakng

The Physical Data Model

m Comparison:

e The former strategy uses less space but is less efficient in
locating fields: to locate a variable-length field beyond the first,
we must examine all previous variable-length fields.

e With the latter, fields can be located faster but pointers have to
be stored with the record.

m Example: assume the square of a number is represented as a
character string instead of an integer (variable-length field).

A count for the length of this field and the total length of the record
must be used according to the first strategy.

HY 360 - Lecture 17 21

Maveroriuo Kpritng, Turua Emorriung YrnoAoyiotwv AnpnTpng MAggouoakng

The Physical Data Model

waste
012 34 7 8 11
12 |t 13 3] 169 Record for number 13
info/na\ne
waste
012 34 7 8 9
10| |t 2 1| 4
-/ \“ Record for number 2
info’ name

The value of byte 0 is always 9 more than the value of byte 8. Hence, either
one can be dispensed with (but not both).

If there were additional fields following the square of the number, then byte
8 would have to be read before that field could be found.

HY 360 - Lecture 17 22

Maveroriuio Kpritng, Turua Emorriung YnoAoyiotwv AnpnTpng MAggouoakng

The Physical Data Model

e Block formats
® Records within blocks need to be located efficiently as well.

m Just as records require additional space for formatting information,
so do blocks of records. E.g., blocks often have pointers in fixed
positions to link blocks in lists of blocks.

m The formatting of blocks must take into account the alignment
requirements of record fields.

e E.g., if Integers within the records are required to start at an
address divisible by 4, then we require that the offsets of
Integers within the records be divisible by 4 and that records
begin at some offset that is also divisible by 4. Normally blocks
begin at an address that is a multiple of a power of 2.

HY 360 - Lecture 17 23

TMavernorruio Kpritng, Turua EmoTriung YnoAoyiorwy

The Physical Data Model

m If a block contains fixed-length records, then the block has to be
partitioned in as many areas, each holding one record, as will fit in

a block.

m Space must be reserved for special fields in a known place in each
block.

m Example: Assume blocks of length 64. We wish to store records of
fixed length representing numbers.

waste

0123 4 7 8 11

number | square
‘Rame

info ~

HY 360 - Lecture 17

AnpnTpng NAeEouoakng

24

Maveroriuio Kpritng, Turua Emorriung YnoAoyiotwv AnpnTpng MAggouoakng

The Physical Data Model

m Moreover, blocks must have a pointer of 4 bytes to be used as a link to
another block.

0 1112 23 24 35 36 47 48 59 60 64

Rec1| Rec2| Rec3|Rec4 |Rec5 link

m Every record contains a used/unused bit. To find an empty area in which
to insert a record, we must visit each record area in turn.

m Alternatively, all used/unused bits can be grouped in one or more bytes
at the beginning of the block.

m For the block shown above, only byte 0 is needed for storing the
used/unused bits. Then the block can only contain 4 records because of
the alignment requirements. (record length cannot be reduced below 12.
Records stored in positions, 4-15,16-27,28-39,40-51. Bytes 60-63 for
link. Bytes 52-59 are waste space.)

HY 360 - Lecture 17

25

Maveroriuio Kpritng, Turua Emorriung YnoAoyiotwv AnpnTpng MAggouoakng

The Physical Data Model

e Blocks with variable length records
®m [ocating variable-length records:

o Assume that the first record starts at byte 0. The length of the
record is found there. The beginning of the second record is at
the next multiple of 4 (after the number indicating the length of
the first record). The third record is found at the next multiple of
4 following the second record, etc.

m Alternatively, a directory can be placed at the beginning of the
block, consisting of an array of pointers to the records in the block.
These pointers are actually offsets from the beginning of the block
to the location where the particular record begins.

HY 360 - Lecture 17 26

Maveroriuio Kpritng, Turua Emorriung YnoAoyiotwv AnpnTpng MAggouoakng

The Physical Data Model

e Directory Representation

1. Precede the directory by a byte denoting the number of pointers in
the directory

2. Use a fixed number of fields at the beginning of the block for
pointers to records. If there are fewer records in the block than
fields for pointers, these fields will contain 0.

3. Use a variable number of fields for pointers to records, with the
last such field containing O.

m Example: Suppose we want to store variable-length records of the
following format:

HY 360 - Lecture 17 27

Maveroriuo Kpritng, Turua Emorriung YrnoAoyiotwv AnpnTpng MAggouoakng

The Physical Data Model

waste waste
012 34 7 8 11 012 34 7 8 9

12 t 13 31169 10 t 2 1| 4

info / na\‘ne info / na\11e

Block format: waste

0 4 8 12 16 o 40 60

16 | 28 | 40 | 0 | Record 2 Record 13 | Record 100 Link

HY 360 - Lecture 17 28

TéEAog EvoTnTag

® @ @ - E_T'A'AEYXH KAI AIA BIOY MAGHEH == EZ nA
TioP . E=] Joviroma ra un ariis

ATON. NOAITIEMO'

Evpwriaikr Evwon El KH Y PEZIA A X ILH
Evpwnaixé Kovuwvixo Tapeio

Me T ouyxpnpatosétnon e EAMGSac kai e Evpwnaikig Evwong

XpnuatodoTnon

*To TTaPOV EKTTAIOEUTIKO UAIKO £XEI avaTTTUXOEI OTa TTAQICIO TOU EKTTAIOEUTIKOU
Epyou Tou OI0ACKOVTA.

*To £pyo «AvoikTad AKkadnuaika Madnuarta oto MavemmotAuio KpATNG» EXE
XPNMATOOOTACEI JOVO TN avadIauOpPwaon TOU EKTTAIOEUTIKOU UAIKOU.

*To €pyo uAoTtrolgiTal 0TO TTACiOI0 TOU ETTiXeipnaiakou NpoypauuaTog

«EkTTaideuon kai Ala Biou MaBnon» kail cuyxpnuarodoTeital atrd Tnv Eupwtraikn
‘Evwon (EupwTraiké Koivwviké Tapegio) kar atrd €éBvikoug TTépouc.

EMIXEIPHEIAKO NMPOrPAMMA
EKI'IAIAEYZH KAI AIA BIOY MAGHZH EZI-IA

1

YNOYPTEIO NMAIAEIALX KAl BPHIKEYMATAQON

Me tn ouyxpnuatrodotnon tng EAAadag kat tng Evpwmnaikrg Evwong

2NUEIWHAT

2NMEIWHO 0OEI000TNONG

*To TTapov UAIKO diaTiBeTal e Toug 6poug TNG adelag xpriong Creative Commons Ava@opd
Anuioupyou - Mn EuTtropikr) Xprjon - I'Iapépom(Alavopr'] 4.0 Aigbveg [1] r'] METAYEVEOTEPN,
Aigbvnc EK500‘I’] E&oupouvml TQ GUTOTE)\I’] Epya Tplva .X. PWTOYPAPIEC, 6|aypappam
K.A.TT., T OTTOIQ EPTTEPIEXOVTAI O€ AUTO KAl T OTToia ava@EpovTal Hadi U Toug OPOUG XPrnong
TOUG OTO «2nueiwpa Xprnong Epywv Tpitwwv».

@080

[1] http://creativecommons.org/licenses/by-nc-sa/4.0/

*()0¢ Mn EpTtropikn opileTal n xpron:
—rmou &gV MePNAUBAVEL AUETO 1] EUECO OLKOVOULKO ODEAOC QO TNV XPrON TOU £pYOU, YLa TO SLAVOUEX TOU £pYOU
Kat adelodoxo

—rmou &ev MepNAUBAVEL OLKOVOLLKT) cuVaAAayr w¢ tpolmoBeon yla Tt xprion rn npocBaocn oto €pyo

—1tou Sev npooTmopilel 0To SLavopEa Tou €pyou Kol adelodOX0 ELLUETO OLKOVOULKO 0deAOG (m.x. Stadnuioelg) amo
TNV npoPoAn tou €pyou o€ SLaSIKTUOKO TOTIO

*O dIKAIOUXOC UTTOPEI va TTAPEXEI OTOV AOEIOOOXO CEXWPIOTH AdEIQ VA XPNOIUOTTOIEI TO £pYO
yia EUTTOPIKA XPron, Epooov autd Tou (NTNOE.

2NUEIWNO Ava@opag

Copyright MNavemoTtApio KpAtng, AnunTteng MNMAe¢oucdkng. «Apxeia kol Baoeig
Agdopévwy. AIAAEEN 2n: Movtédo OvroTATwyV-2ZuoxeTioswvy. 'Exkdoon: 1.0.
HpakAgio/P€Bupvo 2014. AiaBéaipo atrd tn dikTuakr) dieubuvon:
http://www.csd.uoc.gr/~hy360/

