University of Crete

Computer Science Department HY436 - Software Defined Networks
Lecturer: Prof. Dr. X. Dimitropoulos Tasks of Assignment 2
TAs: Dimitrios Gkounis, George Nomikos

M. Lakiotakis, G. Vardakis

Assignment 2

Contents

1. What this exercise is about
2. Brief Introduction to Pyretic
3. Initial Steps - Prerequisites
4. Playing with Pyretic

(a) General
(b

)
()
(d)

)

(e) General information sources for Pyretic

Verify Hub behaviour with tcpdump
Verify Learning Switch behaviour with tcpdump

Useful Pyretic policies and expressions

5. Main assignment: transform a physical OpenFlow switch into a working L2-learning
switch, virtual gateway, black-hole redirector and stateful firewall using Pyretic
(a) Overview of the setup

i. Physical setup
ii. Virtual setup

(b) Going through the required functionality step-by-step

(d

(e) Final notes

)

(¢) Summary of tasks
) How to run and test your code
)

1. What this exercise is about

In this exercise you will use the Pyretic framework [1, 3, 6] in order to virtualize a single physical
OpenFlow switch (emulated by mininet [2]). The use case is the following. We have two IP
subnets connected over an OpenFlow switch: an internal network with some end-hosts (PCs)
and one HTTP server, and the “Internet”. This switch should virtually act as the following set
of components:

e [2-learning switch for each of the two networks, respectively
e [P gateway for connecting the two networks, since they are different subnets

e stateful firewall for protecting the internal network from the outside. The firewall’s state
is based for simplicity only on IP address pairs (srcip, dstip) and allows only established
connections that are active within some time duration.

e traffic checker and black-hole redirector. The switch should check flows that stem from
the Internet and target the server’s service, and in case the packet per second (pps) rate
of the flows directed to the server exceeds a threshold rate, we consider this as an attempt
to DoS the server and we redirect the flow to a black-hole host, which just absorbs the
excess traffic. The concept is that this host can be used later on (out of the scope of this
exercise) to also examine the incoming flows that the redirector forwards to it.

Your tasks are to:
1. implement the virtual fabric of the switch,
2. implement the black-hole checker and redirector component,
3. implement the whitelist for the firewall (but not the firewall itself), and
4. compose the network policies of the components in order to yield a fully working setup

All other modules (firewall, gateway forwarder, L2-learning switch) are provided to you.

The main assignment is described on page 7. Do not worry about the details at this point, since
more information about the setup will be gradually explained as you go trough the exercise.
Attention: The assignment is accompanied by a zip file containing the code you
will need to complete the exercise.

2. Brief Introduction to Pyretic

Pyretic is a programmer-friendly, domain-specific language embedded in Python. Pyretic pro-
vides a runtime system that enables programmers to specify network policies at a high level of
abstraction, compose them together in a variety of ways, and execute them on abstract network
topologies. This time, you will not have to deal with low-level flow rule installation details like
in the first exercise, but you will operate on a higher level of abstraction: you will have to
think in terms of modular programming and network policy expression. As a learning curve,
you will be taken through the steps of writing and running network applications i.e., hub and
layer-2 MAC learning on Pyretic and testing them using Mininet. You will observe that you
can easily write such simple applications and that complex network functionality (as described
in the assignment on page 7) can be decomposed into simple modules to ease development and
reasoning about this functionality. Currently, new runtime systems are being developed, which
provide richer abstractions and tools to express your network applications — Pyretic is one such
example offering a high-level northbound SDN API to the programmer/network operator; an
implementation of the specification abstraction that you learned about in the lecture.

3. Initial Steps - Prerequisites
Before proceeding with the exercise, you are required to go through the following stages:

1. Visit and check out the official pyretic website:
http://frenetic-lang.org/pyretic/. ATTENTION: The exact names of the
Pyretic policies and expressions that we use in the exercise are described later
in section 4d. Please use the local versions for the final programming, since
you may find inconsistencies with the official website due to version changes.

2. Fire up your mininet VM and log-in using “mininet” as username and password. At
this point, you should already have the VM up and running from exercise
1. If not, please repeat the introductory steps of exercise 1. The VM should
already have two network interfaces (1 NAT ethl and 1 host-only ethO interface, besides
the loopback one), as the OpenFlow tutorial VM. Make sure that these two interfaces are
up, with appropriate IPs assigned to them. If they are down or no IPs are assigned, use
the dhclient tool with sudo rights in order to fix this issue. The NAT interface allows you
to connect to the Internet and download the required packages for the exercise, while the
host-only one allows you to access the VM from your host system via SSH. Now leave the
native console running, and open one SSH session with the VM’s host-facing IP. Please
enable X11 forwarding while doing so (-X flag in linux, and parameterization in putty in
Windows, where an X11 server like XMing should also be running). In general, the process
is very similar to what you did for the VM setup in exercise 1.

3. After establishing the SSH, X11-enabled connection with the pyretic VM, by default you
should be now in the home folder. Now run the script “ex2_install_pyretic.sh” that
is included with the exercise assignment, after placing it in your home folder:

bash -x -e ex2_install_pyretic.sh

In case something fails while running the script, please check the instructions on:
https://github.com/frenetic-lang/pyretic/blob/deprecated/INSTALL.md. After the
installation, please logout of your current session(s) and login again in order to make the
new environment variables effective.

4. Since this exercise will require some server functionality (apache2 listening at port 80 for
HTTP) to be present at the emulated virtual hosts, please carefully follow the necessary
next steps:

e upload the source.list file from .zip (provided with the assignment)
in your home mininet folder.

e execute in your mininet command line:
sudo mv sources.list /etc/apt/sources.list

e Make sure that the script is the fresh one and that it is under root
rights: 1ls -1t /etc/apt/sources.list
You will see sth like:
-rw-r--r-- 1 root root 3379 Oct 22 08:29 /etc/apt/sources.list
(make sure that the date is fresh)

e cexecute: sudo apt-get update

e execute: sudo apt-get install -y apache2

5. At this point, the environment required for the exercise should be ready. As explained
before, by now you should have already logged out of all your sessions with the VM and

re-established them so that the environment variables are updated. ATTENTION: You
will not need to go through these steps again when you restart or reboot the
VM. At the next sections, you will learn step-by-step how to use Pyretic for building
modular SDN applications in order to prepare for delving into the main assignment. You
are advised to go through each step carefully in order to build up your knowledge on
Pyretic and modular SDN programming.

4. Playing with Pyretic

(a) General

Pyretic is a new language and system that enables modular programming by:

e Defining composition operators and a library of policies for forwarding and querying traffic.
Pyretic’s parallel composition operator allows multiple policies to operate on the same set
of packets, while its sequential composition operator allows one policy to process packets
after another.

e Enabling each policy to operate on an abstract topology that implicitly constrains what
the module can see and do.

e Providing a rich abstract packet model that allows programmers to extend packets with
virtual fields that may be used to associate packets with high-level meta-data.

For more details on Pyretic, please see:

http://www.frenetic-lang.org/pyretic/.

We will be using the Pyretic runtime system, so please make sure that the default controller
or the POX controller are not running in the background. Also, make sure that the port 6633
used to communicate with OpenFlow switches by the runtime is not bounded, by killing any
corresponding controller process running on this port:

sudo fuser -k 6633/tcp

This will kill any existing process, using this port. You should also run “sudo mn -¢” and restart
Mininet to make sure that everything is clean and that you are using the faster kernel switch.
From your Mininet SSH session window:

mininet> exit
sudo mn -c
sudo mn --topo single,3 --mac --switch ovsk --controller remote

The Pyretic runtime should already be installed and configured after the initial steps (the
installation script has already been provided).

(b) Verify Hub behavior with tcpdump
Run the basic hub example:
pyretic.py -v high pyretic.modules.hub

This tells Pyretic to enable verbose logging and to start the hub component.

TIP: start pyretic first for quicker connection with mininet: You start the controller, and then
start Mininet to immediately connect. Wait until the application indicates that the OpenFlow
switch has connected.

Now verify that hosts can ping each other, and that all hosts see the exact same traffic - the
behavior of a hub. To do this, we’ll create xterms for each host and view the traffic in each.
In case you have any problems with xterms, you can always sniff the interfaces with wireshark.
You can run wireshark as follows:

sudo wireshark &
In the Mininet SSH session window, start up three xterms:
mininet> xterm hl h2 h3

Beforehand, make sure that X11 forwarding is enabled in your client. Arrange each xterm so
that they’re all on the screen at once. Adjust the size of the terminals if needed. In the xterms
for h2 and h3, run tcpdump, a utility to print the packets seen by a host:

tcpdump -n -i h2-ethO

and respectively:

tcpdump -n -i h3-ethO

In the xterm for hl, send a ping:
ping -c1 10.0.0.2

The ping packets are now going up to the controller, which then floods them out all interfaces
except the sending one. You should see identical ARP and ICMP packets corresponding to the
ping in both xterms running tcpdump. This is how a hub works; it sends all packets to every
port on the network. Now, see what happens when a non-existent host doesn’t reply. From hl
xterm:

ping -c1 10.0.0.5

You should see three unanswered ARP requests in the tcpdump xterms. When program-
ming/testing, you can interpret three consecutive unanswered ARP requests as an indicator
that you might be accidentally dropping packets. You can close the xterms now.
If you look at the hub code (in “~/pyretic/pyretic/modules/hub.py”), you can see the reduction
in the amount of code needed to implement hub in Pyretic as compared to POX.

(c) Verify Learning Switch behaviour with tcpdump

This time, lets verify that hosts can ping each other when the controller is behaving like a layer-2
learning switch. Kill the Pyretic runtime by pressing Ctrl-C in the window running the program.
Now, run the switch example:

pyretic.py -v high pyretic.modules.mac_learner

Like before, we’ll create xterms for each host and view the traffic in each (or use Wireshark as
an alternative choice). In the Mininet SSH session window, start up three xterms:

mininet> xterm hl h2 h3

Arrange each xterm so that they’re all on the screen at once. Adjust the size of the terminals if
needed. In the xterms for h2 and h3, run tcpdump, a utility to print the packets seen by a host:

tcpdump -n -i h2-ethO

and respectively:

tcpdump -n -i h3-ethO

In the xterm for hl, send a ping:
ping -c1 10.0.0.2

Here, the switch examines each packet and learns the source-port mapping. Thereafter, the
source MAC address will be associated with the port. If the destination of the packet is already
associated with some port, the packet will be sent to the given port, else it will be flooded on all
ports of the switch. You can close the xterms now. Have a look at the pyretic learning switch
code (in “~/pyretic/pyretic/modules/mac_learner.py”), which is pretty self-explanatory. Also
check the directory “~/pyretic/pyretic/examples/*” for further experimentation.

(d) Useful Pyretic policies and expressions

Here are some useful pyretic policies and expressions (this is the main reference for Pyretic
policies and expressions that are used for this exercise):

match(f=v): filters only those packets whose header field f’s value matches v

"A: negates a predicate

A & B: logical intersection of predicates A and B

A | B: logical union of predicates A and B

fwd(a): forward packet out port a

flood(): send all packets to all ports on a network minimum spanning tree,
except for the input port

drop: produces the empty set (no packet is output)

passthrough: produces the input packet (identity function)

A >> B: A’s output becomes B’s input (sequential composition)

A + B: A’s output and B’s output are combined in parallel (e.g., run a

monitoring module in parallel with a routing module, without the need
for sequential composition)
if_(p,A,B): if packet filtered by p, then use A, otherwise use B

ATTENTION: Use the:

)4

operator for parallel composition of policies, and the:
K

operator for the union of matches.

(e) General information sources for Pyretic

These are the most useful information sources about Pyretic:
e Official webpage [1]
e Paper [6]
e Github repository [4] (reminder: we will work on the “deprecated” branch for this exercise)
e Wiki documentation [3]

Please also check the corresponding lecture material on Pyretic. Keep in mind that the
policies and expressions presented in section 4d of the exercise apply to your pro-
gramming tasks.

5. Main assignment: transform a physical OpenFlow switch into
a working L2-learning switch, virtual gateway, blackhole redirec-
tor and stateful firewall using Pyretic

(a) Overview of the Setup

In all the following schematics, the full interconnection details are included (including ports,
e.g., P_.1, P2, and so on). Please pay attention to the interconnection between the
components to avoid running into bugs when coding.

i. Physical setup
The physical setup of this exercise is depicted in Fig. 1.

"INTERNET" (HOST 4)
10.1.2.0/24
DEFAULT GW:10.1.2.1

[}

Black-hole host (HOST 5)
IP: ---
MAC: 00:00:00:00:00:05

P5 P_4
s1 Physical OpenFlow Switch
c0 Controller OpenFlow
127.0.0.1:6633 | [INTERFACE

(Pyretic)

PC (HOST 1) PC (HOST 2) — |
! IP:10.1.1.2 IP: 10.1.1.3 :
i MAC: 00:00:00:00:00:01 MAC: 00:00:00:00:00:02 ‘ ‘ ‘ |
| INTERNAL NETWORK HTTP SERVER (HOST 3) |
i 10.1.1.0/24 IP: 10.1.1.4 |
+ DEFAULT GW: 10.1.1.1 MAC: 00:00:00:00:00:03 J

Figure 1: Physical setup of assignment 2

We have two networks:

e “10.1.1.0/24” is the internal network, which includes 2 end-hosts (PCs) and 1 HTTP server
(listening http-port 80). These are all emulated as mininet hosts.

e “10.1.2.0/24” is the “Internet”, emulated by one mininet host (using interface aliases).
For testing please use the IP of the primary interface which is “10.1.2.2”.

The IP of the default gateway for each network “10.1.X.0/24” is “10.1.X.1”, where X=1,2.
These two networks are connected via a physical OpenFlow switch, controlled by the Pyretic
controller framework. The switch is also connected to a black-hole host, where it redirects flows
from the Internet to the server (i.e. HI'TP), in case these flows are suspicious of potential DoS

7

against the server services. Therefore, we want the OpenFlow switch to have the following roles
simultaneously:

e [2-learning switch for each of the two networks
e IP gateway for connecting the two networks (since they are different subnets)

e stateful firewall for protecting the internal network from the outside. The firewall’s state is
based for simplicity only on IP address pairs (srcip, dstip). It allows the internal hosts and
server to communicate with the Internet freely, but it allows connections from the Internet
to the internal network only if they have been established from the inside, and for a short
period of time (e.g., 3 seconds). As an exception, the Internet can communicate directly
with the server, even without established connections from the inside. To elaborate:

— internal hosts can ping the Internet. The Internet can ping them back only as long
the connection has been initiated by the internal host and is ongoing (i.e., not idle
for a specific period of time).

— server can ping the Internet and the Internet can ping the server without restriction.

e DoS checker and black-hole redirector. The switch should check flows that stem from
the Internet and target the HTTP server’s services (port 80), and in case the rate of a
3-tuple (srcip, dstip, dsrport) TCP flow directed to the server exceeds a threshold rate, we
consider this as an attempt to DoS the server and we redirect the flow to a black-hole host,
which just absorbs the excess traffic and can be used to further examine the suspicious
flows. The rate is measured in packets-per-second (pps).

ii. Virtual setup

Previously we described the required behavior of the physical OpenFlow switch. You can see
that this behavior is relatively complex to reason about, if we consider the switch as a single
component with multiple roles simultaneously. Now, let’s break this physical component into
multiple virtual components in the context of the modular approach of Pyretic. The result is a
little more complex virtual setup, composed of much simpler components (instead of a physical
setup composed of one very complex component). Each virtual device is tagged with a virtual
identifier (1000, 1001,etc.). You can use Pyretic to “lift” traffic from the ingress physical network
to a virtual switch fabric, apply the fabric policy you want (i.e., process the traffic) and then
send it on its way by “lowering” it again to the egress physical network. The full setup of this
exercise (combining the physical and virtual picture) is depicted in Fig. 2. You will notice that
the virtual splitting of a physical switch into multiple sub-componentsis is the inverse example
of the “Big Switch”. There you abstracted away multiple physical switches into one single
virtual switch, here you virtualize a single physical switch with multiple virtual components.
The underlying virtualization principles that are used are similar.

—

Black-hole host (HOST 5)

MAC: 00:00:00:00:00:05

IP: -

"INTERNET" (HOST 4)
10.1.2.0/24
DEFAULT GW: 10.1.2.1

c0 Controller
127.0.0.1:6633
(Pyretic)

P_5 P4
s1 Physical OpenFlow Switch
OpenFlow
INTERFACE

10.1.1.0/24

PC (HOST 1) PC (HOST 2)
IP:10.1.1.2
MAC: 00:00:00:00:00:01

IP:10.1.1.3
MAC: 00:00:00:00:00:02

INTERNAL NETWORK

DEFAULT GW: 10.1.1.1

PHYSICAL LINK

VIRTUAL LINK (BETWEEN VIRTUAL COMPONENTS)

<« — — > VIRTUAL-TO-PHYSICAL PORT MAPPING

Virtual

Switch 2

(1004)
P2

MAC Learning

P_1

Virtual
Firewall
(Stateful)

P_2 (1003)

P_1

P2
Blackhole

A |P_3 Redirector

(1002)
P 1

T

P_2
Virtual
Gateway
(1001)

P_1

P_1

MAC Learning

Switch 1
(1000)

HTTP SERVER (HOST 3)

MAC: 00:00:00:00:00:03

[}

IP:10.1.1.4

Figure 2: Full setup of assignment 2 (physical and virtual)

(b) Going through the required functionality step-by-step

Please perform the following steps:

1.

Place the “ex2_mininet_physical network.py” script, provided with the assignment, in your
home folder. Study the script carefully. No changes are required in this script. Run
it with:

sudo python ex2_mininet_physical_network.py

What is the purpose of this script?

Hint: What did you do in exercise 1 in order to emulate physical networks?

. Place the “ex2_split_gateway.py” script, provided with the assignment, under the

“~ [pyretic/pyretic/vdef” folder. Study the script carefully, but do not run anything yet.
Your first task is to fill in the missing parts of this script. See the commented
parts marked with “ATTENTION”. What is the purpose of the script?

Hint: check the “split_gateway.py” script under the same folder, which comes pre-bundled
with pyretic. This “split_gateway.py” script was created in order to support the use-case
presented in the paper.

Place the following scripts, which are provided with the assignment, under the
“~ /pyretic/pyretic/examples” folder:

o “ex2_dumb_forwarding.py”

o “ex2_firewall.py”

e “ex2_blackhole_check_red.py”

e “ex2_pyretic_main.py”

. Now study the scripts:

o “ex2_dumb_forwarding.py”

o “ex2 firewall.py”

What is their functionality? No changes are required in these scripts.

. Now study the scripts:

e “ex2 pyretic_main.py”

e ‘“ex2_blackhole_check_red.py”

As you see, these scripts are not complete and they require you to fill in parts of the code.
See the commented parts marked with “ATTENTION”. Changes are required
in both of these scripts. See later point 7 for clarifications.

The “ex2_pyretic_main.py” script is the main script that bundles everything together and
transforms the physical switch ito a multi-module entity that performs all the required
functionality. This script is the one you should run as:

pyretic.py pyretic.examples.ex2_pyretic_main
Your second task is to fill in the missing parts of this script and verify its
proper functionality. See the commented parts marked with “ATTENTION".

Actually, you need to define the policies that need to be followed when traffic
reaches each virtual component and combine these policies appropriately to

10

yield a working setup. Before testing the outcome of this script, please have the physical
mininet network running, as shown previously (script “ex2_mininet_physical_network.py”).

Hint: In the beginning, use just the dumb_forwarding policy for the blackhole redirector
and/or the firewall. At this time, you can also verify that the virtual wiring you did with
your ex2_split_gateway.py script is working as expected. At a second step, when you want
to test the redirection and the firewall, change the policy appropriately, one module at a
time.

7. The “ex2_blackhole_check red.py” script implements the virtual module that redirects sus-

picious flows from the Internet to the black-hole host, according to the initial description
of the setup. This module monitors the rate of new T'CP flows coming from the Internet
with format (srcIP, dstIP, dstPort) and if they exceed a certain threshold (in packets per
sec - pps), it sends the traffic to a black-hole host for inspection instead of the normal
path (to the gateway). All other traffic that does not satisfy the requirements for this
redirection will pass directly though the virtual gateway.
Your third task is to fill in the missing parts of this script and verify its proper
functionality. See the commented parts marked with “ATTENTION”. Actu-
ally, the basic skeleton of the task is there, but you need to implement the
missing functionality.

Hint: Wireshark is a useful tool to verify which packets reach which interface, if they reach
it at all. Telnet and ping are useful for creating traffic towards a host. Also, feel free to
play with the threshold of detection: the one used in the current exercise is 5 pps.
Try smaller or larger thresholds and verify the results.

General hints: Study all the provided scripts and the modules that are imported in the lines
8-14 of “ex2_pyretic_main.py” carefully before starting to play with the code. Scripts that are
pre-bundled with pyretic placed under the “~ /pyretic/pyretic/examples” folder will also help you
get an idea of what the main script and the redirector should do. Use tools like wireshark, ping
and telnet in order to test and debug your code. Comments on the provided code and debug
messages will also help you understand better what you should do and how you should do it.
(c) Summary of Tasks
You tasks are the following:

1. Complete the code in “ex2_split_gateway.py” (switch virtualization script)

2. Complete the code in “ex2_pyretic_main.py” (main pyretic script).

3. Complete the code in “ex2_blackhole_check red.py” (blackhole checker and redirector mod-

ule script).

(d) How to run and test your code

You can verify that everything runs ok as follows.
First emulate the physical network (using the SSH session with mininet VM):

sudo python ex2_mininet_physical_network.py

Then run your pyretic code (using a different SSH session with mininet VM, while the previous
one is alive):

pyretic.py pyretic.examples.ex2_pyretic_main

11

Afterwards, the described functionality should be up and running, if you have done everything
correctly (please test before submitting). In case you want to ping/send traffic to the “Inter-
net”, please use the IP 10.1.2.2 as explained beforehand. Generally, use IP addresses as traffic
destinations and not host aliases (due to the mininet default behavior, which can produce wrong
host to IP mappings, even after you manually change the IP address of a host interface).
Example tests are the following:

hl ping -c1 10.1.1.3 #if successful, it means that
#the learning switch for the
#internal LAN works fine
#you can also try with 10.1.1.4

hl ping -c1 10.1.2.2 #if successful, it means that
#the internal LAN hosts can ping
#the Internet. Besides, it opens
#a 3-sec hole so that the Internet (h4)
#can ping them back, since it is considered
#an established connection from the inside

h4 ping -cl1 10.1.1.2 #Internet to internal hosts: this should only
#work for established connections! (see previous comment)

h4 ping -c1 10.1.1.4 #Internet to HTTP server (ping): this should always work

h4 telnet 10.1.1.4 80 #Internet to HITP server (service flow): this should only work
#as long the pps rate of the flow does not exceed
#a threshold (try rapidly typing characters and see what
#happens)

Good luck!

Acknowledgments

This assignment is based on material from a similar course at ETH Zurich [5]. The
initial instructions for having Pyretic up and running and testing it have been adapted by the
“Software Defined Networking” course archive on www.coursera.org.

References

[1] About Pyretic.
http://frenetic-lang.org/pyretic/.

[2] Mininet official website. http://mininet.org/

<

Pyretic documentation wiki.
https://github.com/frenetic-lang/pyretic/wiki/documentation.

[4] Pyretic github repository.
https://github.com/frenetic-lang/pyretic/tree/deprecated.

[5] ETH Zurich. Advanced Topics in Communications Networks HS 2014: Software-Defined
Networking. http://www.csg.ethz.ch/education/lectures/ATCN/hs2014.

[6] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David Walker.
Composing Software-Defined Networks. In USENIX NSDI, 2013.

12

