
CS325 Embedded Systems:CS325 Embedded Systems:

Dealing with Real TimeDealing with Real Time

Slides from: Intel Higher Education Forum, Embedded Systems Course

http://pixel01.cps.intel.com/education/highered/Embedded/Embedded.htm

Lecture 20Lecture 20

Plan for LecturesPlan for Lectures

• Introduction to Real-Time Systems

– Examples

– Terminology, Metrics

– Scheduling Policies

• Rate-Monotonic Analysis (RMA)

– Fundamental concepts

– An Introduction to Rate-Monotonic Analysis: independent tasks

– Present basic theory for periodic task sets

• Extend basic theory to include

– Context switch overhead, Interrupts

– Preperiod deadlines

• Consider task interactions

– Priority inversion

– Synchronization protocols (time allowing)

• Extend theory to aperiodic tasks

– Sporadic servers (time allowing)

RealReal--time Systemtime System

• A real-time system is a system whose specification

includes both logical and temporal correctness

requirements.

– Logical Correctness: Produces correct outputs.

• Can by checked, for example, by Hoare logic.

– Temporal Correctness: Produces outputs at the right time.

• It is not enough to say that “brakes were applied”

• You want to be able to say “brakes were applied at the

right time”

– In this course, we spend much time on techniques for checking

temporal correctness.

– The question of how to specify temporal requirements, though

enormously important, is shortchanged in this course.

Characteristics of RealCharacteristics of Real--Time SystemsTime Systems

• Event-driven, reactive.

• High cost of failure.

• Concurrency/multiprogramming.

• Stand-alone/continuous operation.

• Reliability/fault-tolerance requirements.

• Predictable behavior.

Example RealExample Real--Time ApplicationsTime Applications

Many real-time systems are control systems.

Example 1: A simple one-sensor, one-actuator control system.

control-law

computation

A/D

A/D

D/A

sensor plant actuator

rk

yk

y(t) u(t)

uk

reference

input r(t)

The system

being controlled

Simple Control System (contSimple Control System (cont’’d)d)

Pseudo-code for this system:

set timer to interrupt periodically with period T;

at each timer interrupt do

do analog-to-digital conversion to get y;

compute control output u;

output u and do digital-to-analog conversion;

end do

set timer to interrupt periodically with period T;

at each timer interrupt do

do analog-to-digital conversion to get y;

compute control output u;

output u and do digital-to-analog conversion;

end do

T is called the sampling period. T is a key design choice. Typical

range for T: seconds to milliseconds.

MultiMulti--rate Control Systemsrate Control Systems

More complicated control systems have multiple sensors and actuators

and must support control loops of different rates.

Example 2: Helicopter flight controller.

Do the following in each 1/180-sec. cycle:

validate sensor data and select data source;

if failure, reconfigure the system

Every sixth cycle do:

keyboard input and mode selection;

data normalization and coordinate

transformation;

tracking reference update

control laws of the outer pitch-control loop;

control laws of the outer roll-control loop;

control laws of the outer yaw- and

collective-control loop

Every other cycle do:

control laws of the inner

pitch-control loop;

control laws of the inner roll- and

collective-control loop

Compute the control laws of the inner

yaw-control loop;

Output commands;

Carry out built-in test;

Wait until beginning of the next cycle

Note: Having only harmonic rates simplifies the system.

Hierarchical Control SystemsHierarchical Control Systems

Example 3:

Air traffic-flight

control hierarchy.

state

estimator

state

estimator

state

estimator

−

−

−

air traffic

control

flight

management

flight

control

air data

navigation

virtual plant

virtual plant

operator-system

interface

physical plant

from sensors

responses commands sampling

rates may

be minutes

or even

hours

sampling

rates may

be secs.

or msecs.

SignalSignal--Processing SystemsProcessing Systems

Signal-processing systems transform data from one form to

another.

• Examples:

– Digital filtering.

– Video and voice compression/decompression.

– Radar signal processing.

• Response times range from a few milliseconds to a few

seconds.

DSP

Example: Radar SystemExample: Radar System

radar

memory
DSP

DSP

signal

processors

data

processor

track

records
track

records

signal

processing

parameters

control

status

sampled

digitized

data

Other RealOther Real--Time ApplicationsTime Applications

• Real-time databases.

• Transactions must complete by deadlines.

• Main dilemma: Transaction scheduling algorithms and real-time

scheduling algorithms often have conflicting goals.

• Data may be subject to absolute and relative temporal consistency

requirements.

• Multimedia.

• Want to process audio and video frames at steady rates.

– TV video rate is 30 frames/sec. HDTV is 60 frames/sec.

– Telephone audio is 16 Kbits/sec. CD audio is 128 Kbits/sec.

• Other requirements: Lip synchronization, low jitter, low end-to-end

response times (if interactive).

Real Time Systems and You Real Time Systems and You

• Embedded real time systems enable us to:

– manage the vast power generation and distribution networks,

– control industrial processes for chemicals, fuel, medicine, and

manufactured products,

– control automobiles, ships, trains and airplanes,

– conduct video conferencing over the Internet and interactive

electronic commerce, and

– send vehicles high into space and deep into the sea to explore new

frontiers and to seek new knowledge.

Are Are AllAll Systems RealSystems Real--Time Systems?Time Systems?

• Question: Is a payroll processing system a real-time system?

– It has a time constraint: Print the pay checks every two weeks.

• Perhaps it is a real-time system in a definitional sense, but it

doesn’t pay us to view it as such.

• We are interested in systems for which it is not a priori

obvious how to meet timing constraints.

The The ““Window of ScarcityWindow of Scarcity””

• Resources may be categorized as:

– Abundant: Virtually any system design methodology can be used to

realize the timing requirements of the application.

– Insufficient: The application is ahead of the technology curve; no design

methodology can be used to realize the timing requirements of the

application.

– Sufficient but scarce: It is possible to realize the timing requirements of

the application, but careful resource allocation is required.

Example: Interactive/Multimedia ApplicationsExample: Interactive/Multimedia Applications

sufficient

but scarce

resources

abundant

resources

insufficient

resources

Requirements

(performance, scale)

1980 1990 2000

Hardware resources in year X

Remote

Login

Network

File Access

High-quality

Audio

Interactive

Video

The interesting

real-time

applications

are here

The interesting

real-time

applications

are here

HardHard vs. vs. SoftSoft Real TimeReal Time

– Task: A sequential piece of code.

– Job: Instance of a task.

– Jobs require resources to execute.

– Example resources: CPU, network, disk, critical section.

– We will simply call all hardware resources “processors”.

– Release time of a job: The time instant the job becomes ready

to execute.

– Absolute Deadline of a job: The time instant by which the job

must complete execution.

– Relative deadline of a job: “Deadline − Release time”.

– Response time of a job: “Completion time − Release time”.

ExampleExample

= job release

= job deadline

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

• Job is released at time 3.

• Its (absolute) deadline is at time 10.

• Its relative deadline is 7.

• Its response time is 6.

Hard RealHard Real--Time SystemsTime Systems

• A hard deadline must be met.

– If any hard deadline is ever missed, then the system is incorrect.

– Requires a means for validating that deadlines are met.

• Hard real-time system: A real-time system in which all

deadlines are hard.

– We mostly consider hard real-time systems in this course.

• Examples: Nuclear power plant control, flight control.

Soft RealSoft Real--Time SystemsTime Systems

• A soft deadline may occasionally be missed.

– Question: How to define “occasionally”?

• Soft real-time system: A real-time system in which some

deadlines are soft.

• Examples: Telephone switches, multimedia applications.

Defining Defining ““OccasionallyOccasionally””

• One Approach: Use probabilistic requirements.

– For example, 99% of deadlines will be met.

• Another Approach: Define a “usefulness” function for each

job:

• Note: Validation is trickier here.

1

0

relative

deadline

Reference ModelReference Model

• Each job Ji is characterized by its release time ri, absolute deadline di,

relative deadline Di, and execution time ei.

– Sometimes a range of release times is specified: [ri
−, ri

+]. This range is called

release-time jitter.

• Likewise, sometimes instead of ei, execution time is specified to range over

[ei
−, ei

+].

– Note: It can be difficult to get a precise estimate of ei (more on this later).

Periodic, Sporadic, Periodic, Sporadic, AperiodicAperiodic TasksTasks

• Periodic task:

– We associate a period pi with each task Ti.

– pi is the interval between job releases.

• Sporadic and Aperiodic tasks: Released at arbitrary times.

– Sporadic: Has a hard deadline.

– Aperiodic: Has no deadline or a soft deadline.

ExamplesExamples

= job release = job deadline

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A periodic task Ti with ri = 2, pi = 5, ei = 2, Di =5 executes like this:

Classification of Scheduling AlgorithmsClassification of Scheduling Algorithms

All scheduling algorithms

static scheduling

(or offline, or clock driven)

dynamic scheduling

(or online, or priority driven)

static-priority

scheduling

dynamic-priority

scheduling

Summary of Lecture So FarSummary of Lecture So Far

• Real-time Systems

– characteristics and mis-conceptions

– the “window of scarcity”

• Example real-time systems

– simple control systems

– multi-rate control systems

– hierarchical control systems

– signal processing systems

• Terminology

• Scheduling algorithms

Plan for LecturesPlan for Lectures

• Introduction to Real-Time Systems

– Examples

– Terminology, Metrics

– Scheduling Policies

• Rate-Monotonic Analysis (RMA)

– Fundamental concepts

– An Introduction to Rate-Monotonic Analysis: independent tasks

– Present basic theory for periodic task sets

• Extend basic theory to include

– Context switch overhead, Interrupts

– Preperiod deadlines

• Consider task interactions

– Priority inversion

– Synchronization protocols (time allowing)

• Extend theory to aperiodic tasks

– Sporadic servers (time allowing)

Metrics for real-time systems differ from that for time-sharing systems.

– schedulability is the ability of tasks to meet all hard deadlines

– latency is the worst-case system response time to events

– stability in overload means the system meets critical deadlines even if all

deadlines cannot be met

WhatWhat’’s Important in Reals Important in Real--TimeTime

Time-Sharing
Systems

Real-Time
Systems

Capacity High throughput Schedulability

Responsiveness Fast average response Ensured worst-case

response

Overload Fairness Stability

Scheduling PoliciesScheduling Policies

• CPU scheduling policy: a rule to select task to run next

– cyclic executive

– rate monotonic/deadline monotonic

– earliest deadline first

– least laxity first

• Assume preemptive, priority scheduling of tasks

– Analyze effects of non-preemption later

• Rate monotonic analysis

– based on rate monotonic scheduling theory

– analytic formulas to determine schedulability

– framework for reasoning about system timing behavior

– separation of timing and functional concerns

• Provides an engineering basis for designing real-time systems

Rate Monotonic Scheduling (RMS)Rate Monotonic Scheduling (RMS)

• Priorities of periodic tasks are based on their rates: highest rate gets

highest priority.

• Theoretical basis

– optimal fixed scheduling policy (when deadlines are at end of period)

– analytic formulas to check schedulability

• Must distinguish between scheduling and analysis

– rate monotonic scheduling forms the basis for rate monotonic analysis

– however, we consider later how to analyze systems in which rate monotonic

scheduling is not used

– any scheduling approach may be used, but all real-time systems should be

analyzed for timing

Rate Monotonic Analysis (RMA)Rate Monotonic Analysis (RMA)

• Rate-monotonic analysis is a set of mathematical techniques for

analyzing sets of real-time tasks.

• Basic theory applies only to independent, periodic tasks, but has been

extended to address

– priority inversion

– task interactions

– aperiodic tasks

• Focus is on RMA, not RMS

Why Are Deadlines Missed?Why Are Deadlines Missed?

• For a given task, consider

– preemption: time waiting for higher priority tasks

– execution: time to do its own work

– blocking: time delayed by lower priority tasks

• The task is schedulable if the sum of its preemption, execution, and

blocking is less than its deadline.

• Focus: identify the biggest hits among the three and reduce, as needed, to

achieve schedulability

B

Example of Priority InversionExample of Priority Inversion

Collision check: {... P () ... V () ...}

Update location: {... P () ... V () ...}

Collision
check

Refresh
screen

Update
location

Attempts to lock data
resource (blocked)

Rate Monotonic Theory Rate Monotonic Theory -- ExperienceExperience

• Supported by several standards

– POSIX Real-time Extensions

• Various real-time versions of Linux

– Java (Real-Time Specification for Java and Distributed Real-Time

Specification for Java)

– Real-Time CORBA

– Real-Time UML

– Ada 83 and Ada 95

– Windows 95/98

– …

A Sample Problem A Sample Problem -- PeriodicsPeriodics

Periodics Servers Aperiodics

ττττ1

ττττ2

ττττ3

20 msec

40 msec

100 msec

100 msec

150 msec

350 msec

20 msec

Data Server

2 msec

10 msec

Comm Server

10 msec

5 msec

Emergency
50 msec

Deadline 6 msec
after arrival

2 msec

Routine
40 msec

Desired response
20 msec average

τ2’s deadline is 20 msec before the end of each period

Concepts and Definitions Concepts and Definitions -- PeriodicsPeriodics

• Periodic task

– initiated at fixed intervals

– must finish before start of next cycle

• Task’s CPU utilization:

– Ci = worst-case compute time (execution time) for task τi

– Ti = period of task τi

• CPU utilization for a set of tasks

U = U1 + U2 +...+ Un

Ui =
Ci

Ti

IP: UIP =

VIP: UVIP =

1
10

11
25

= 0.10

= 0.44

0 25
VIP:

0 10 20 30

IP:

Semantics-Based Priority Assignment

misses deadline

0 10 20 30

IP:

0 25

VIP:

Policy-Based Priority Assignment

Example of Priority AssignmentExample of Priority Assignment

SchedulabilitySchedulability: UB Test: UB Test

• Utilization bound (UB) test: a set of n independent periodic tasks

scheduled by the rate monotonic algorithm will always meet its

deadlines, for all task phasings, if

U(1) = 1.0 U(4) = 0.756 U(7) = 0.728

U(2) = 0.828 U(5) = 0.743 U(8) = 0.724

U(3) = 0.779 U(6) = 0.734 U(9) = 0.720

For harmonic task sets, the utilization bound is U(n)=1.00 for all n.

--- + + --- < U(n) = n(2 - 1)
C1 Cn 1/ n

T1 Tn

Sample Problem: Applying UB TestSample Problem: Applying UB Test

• Total utilization is .200 + .267 + .286 = .753 < U(3) = .779

• The periodic tasks in the sample problem are schedulable according to

the UB test

C T U

Task ττττ1 20 100 0.200

Task ττττ2 40 150 0.267

Task ττττ3 100 350 0.286

Timeline for Sample ProblemTimeline for Sample Problem

0 100 200 300 400

Scheduling Points

ττττ2

ττττ3

ττττ1

Exercise: Applying the UB TestExercise: Applying the UB Test

a. What is the total utilization?

b. Is the task set schedulable?

c. Draw the timeline.

d. What is the total utilization if C3 = 2 ?

Task C T U

ττττ1111 1 4

ττττ2222 2 6

ττττ3333 1 10

Given:

Solution: Applying the UB TestSolution: Applying the UB Test

a. What is the total utilization? .25 + .34 + .10 = .69

b. Is the task set schedulable? Yes: .69 < U(3) = .779

c. Draw the timeline.

d. What is the total utilization if C3 = 2 ?

.25 + .34 + .20 = .79 > U(3) = .779

0 5 10 15 20

Task ττττ1111

Task ττττ3333

Task ττττ2222

Lecture 21Lecture 21

Toward a More Precise TestToward a More Precise Test

• UB test has three possible outcomes:

0 < U < U(n) � Success

U(n) < U < 1.00 � Inconclusive

1.00 < U � Overload

• UB test is conservative.

• A more precise test can be applied.

SchedulabilitySchedulability: RT Test: RT Test

• Theorem: The worst-case phasing of a task occurs when it arrives

simultaneously with all its higher priority tasks.

• Theorem: for a set of independent, periodic tasks, if each task meets its first

deadline, with worst-case task phasing, the deadline will always be met.

• Response time (RT) or Completion Time test: let an = response time of

task i. an of task I may be computed by the following iterative formula:

• Test terminates when an+1 = an.

• Task i is schedulable if its response time is before its deadline: an < Ti

• The above must be repeated for every task i from scratch

a
n+1

C
i

a
n

T
j

C
j

j 1====

i 1−−−−

∑∑∑∑++++ where a
0

C
j

j 1====

i

∑∑∑∑========

• This test must be repeated for every task ττττi if required
• i.e. the value of i will change depending upon the task you are looking at

• Stop test once current iteration yields a value of an+1 beyond the deadline (else,

you may never terminate).

• The ‘square bracketish’ thingies represent the ‘ceiling’ function, NOT brackets

C T U

Task ττττ1111:::: 20 100 0.200

Task ττττ2222:::: 40 150 0.267

Task ττττ3333:::: 100 350 0.286

Example: Applying RT Test Example: Applying RT Test --11

• Taking the sample problem, we increase the compute time of τ1 from 20 to

40; is the task set still schedulable?

0.440

• Utilization of first two tasks: 0.667 < U(2) = 0.828

– first two tasks are schedulable by UB test

• Utilization of all three tasks: 0.953 > U(3) = 0.779

– UB test is inconclusive

– need to apply RT test

Example: Applying RT Test Example: Applying RT Test --22

•Use RT test to determine if τ3 meets its first deadline: i = 3

100
180

100

40(((()))) 180

150

40(((())))++++ ++++ 100 80 80++++ ++++ 260==== ==== ====

a
1

C
i

a
0

T
j

C
j

j 1====

i 1−−−−

∑∑∑∑++++ C
3

a
0

T
j

C
j

j 1====

2

∑∑∑∑++++==== ====

3

a
0

C
j

j 1====

∑∑∑∑ C
1
C
2
C
3

++++ ++++ 40 40 100++++ ++++ 180==== ==== ==== ====

Example: Applying the RT Test Example: Applying the RT Test --33

•Task τ3 is schedulable using RT test

a
3

300==== T<<<< 350====

a
2
C
3

a
1

T
j

C
j

j 1====

2

∑∑∑∑++++==== 100 260

100

(40) 260

150

(40)++++ ++++==== = 300 = 300 = 300 = 300

a
3
a
2

300 Done!==== ====

a
3
C
3

a
2

T
j

C
j

j 1====

2

∑∑∑∑++++==== 100 300

100

(40) 300

150

(40)++++ ++++==== = 300 = 300 = 300 = 300

Timeline for ExampleTimeline for Example

ττττ2

ττττ3

0 100 200 300

ττττ1

ττττ3 completes its work at t = 300

Exercise: Applying RT TestExercise: Applying RT Test

Task τ1: C1 = 1 T1 = 4

Task τ2: C2 = 2 T2 = 6

Task τ3: C3 = 2 T3 = 10

a) Apply the UB test

b) Draw timeline

c) Apply RT test

Solution: Applying RT TestSolution: Applying RT Test

a) UB test

ττττ1111 and ττττ2222OK -- no change from previous exercise

.25 + .34 + .20 = .79 > .779 ==> Test inconclusive for ττττ3333

b) RT test and timeline

0 5 10 15 20

Task ττττ1111

Task ττττ2222

Task ττττ3333

All work completed at t = 6

Solution: Applying RT Test Solution: Applying RT Test (cont.)(cont.)

c) RT test

3

a
0

C
j

j 1====

∑∑∑∑ C
1
C
2
C
3

++++ ++++ 1 2 2++++ ++++ 5==== ==== ==== ====

a
1

C
3

a
0

T
j

C
j

j 1====

2

∑∑∑∑++++==== ==== 2
5

4
1++++

5

6
2++++ ==== 2 + 2 + 2 = 6

a
2

C
3

a
1

T
j

C
j

j 1====

2

∑∑∑∑++++==== ==== 2
6

4
1++++

6

6
2++++ ==== 2 + 2 + 2 = 6

Done

SummarySummary

• Real-time goals are

– fast response, guaranteed deadlines, and stability in overload

– any scheduling may be used, but all real-time systems should be analyzed for timing

• Rate monotonic analysis

– based on rate monotonic scheduling theory

– analytic formulas to determine schedulability

– framework for reasoning about system timing behavior

– separation of timing and functional concerns

– Provides an engineering basis for designing real-time systems

• RMS basic concepts

– UB test is simple but conservative

– RT test is more exact but also more complicated.

• To this point, UB and RT tests share the same limitations:

• all tasks run on a single processor and tasks do not suspend themselves

• rate-monotonic priorities are assigned

• deadlines are always at the end of the period

• there are no interrupts and there is zero context switch overhead

• all tasks are periodic and noninteracting

Plan for LecturesPlan for Lectures

• Introduction to Real-Time Systems

– Examples, Terminology, Metrics, Scheduling Policies

• Rate-Monotonic Analysis (RMA)

– Fundamental concepts

– An Introduction to Rate-Monotonic Analysis: independent tasks

• Present basic theory for periodic task sets

• Extend basic theory to include

– Context switch overhead, Interrupts

– Preperiod deadlines

• Consider task interactions

– Priority inversion

– Synchronization protocols (time allowing)

• Extend theory to aperiodic tasks

– Sporadic servers (time allowing)

A Sample ProblemA Sample Problem

τ2’s deadline is 20 msec before the end of each period

Periodics Servers Aperiodics

ττττ
1

ττττ
2

ττττ
3

20 msec

40 msec

100 msec

100 msec

150 msec

350 msec

20 msec

Data Server

2 msec

10 msec

Comm Server

10 msec

5 msec

Emergency
50 msec

Deadline 6 msec
after arrival

2 msec

Routine
40 msec

Desired response
20 msec average

Extensions to Basic TheoryExtensions to Basic Theory

• This section extends the schedulability tests to address

– nonzero task switching times

– preperiod deadlines

– interrupts and non-rate-monotonic priorities

Modeling Task Switching as Execution TimeModeling Task Switching as Execution Time

time

S S S S SC1

C2

C2ττττ3333

ττττ2222

ττττ1111

40

0 100 200

C1

C2C2

C1 C1

T1 T2 2T1

Ci + 2S

Ti
Ui =

Two scheduling actions per task
(start of period and end of period)

40

C1 C1

Modeling Modeling PreperiodPreperiod DeadlinesDeadlines

• Suppose task τ, with compute time C and period T, has a preperiod

deadline D (i.e. D < T).

• Compare total utilization to modified bound:

where ∆i is the ratio (Di / Ti).

U(n, ∆∆∆∆i) =
n 2∆∆∆∆i(((())))

1 n⁄⁄⁄⁄
1−−−−(((()))) 1 ∆∆∆∆i−−−−++++

1

2
∆∆∆∆i 1.0≤≤≤≤<<<<,,,,

∆∆∆∆
i

∆∆∆∆
i

1

2
≤≤≤≤,,,, 

 ÷
 ÷
 

U
total

C
1

T
1

...
C
n

T
n

U n ∆∆∆∆i,,,,(((())))≤≤≤≤++++ ++++====

SchedulabilitySchedulability with Interruptswith Interrupts

• Interrupt processing can be inconsistent with rate-monotonic priority

assignment.

– interrupt handler executes with high priority despite its period

– interrupt processing may delay execution of tasks with shorter periods

• Effects of interrupt processing must be taken into account in

schedulability model.

• Question is: how to do that?

Example: Determining Example: Determining SchedulabilitySchedulability with Interruptswith Interrupts

ττττ3 is an interrupt handler

C T U

Task ττττ1:::: 20 100 0.200

Task ττττ2: 40 150 0.267

Task ττττ3:::: 60 200 0.300

Task ττττ4:::: 40 350 0.115

Example: Execution with RateExample: Execution with Rate--Monotonic PrioritiesMonotonic Priorities

ττττ1111

ττττ2222

ττττ3333

ττττ4444

0000 100100100100 200200200200 300300300300 400400400400

Example: Execution with an Interrupt PriorityExample: Execution with an Interrupt Priority

ττττ1111

ττττ2222

Interrupt

ττττ4444

0000 100100100100 200200200200 300300300300 400400400400

Task

(i)

Period

(T)

Execution

Time (C)

Priority

(P)

Deadline

(D)

τ3
200 60 Hardware

(highest)

200

τ1
100 20 High 100

τ2
150 40 Medium 150

τ4
350 40 Low 350

Resulting Table for ExampleResulting Table for Example

UB Test with Interrupt PriorityUB Test with Interrupt Priority

• Test is applied to each task.

• Determine effective utilization (fi) of each task τi using

j Hn

f
C

T∑∑∑∑
C

T

1

T
C∑∑∑∑++++ ++++====

i

j

j

i

i
k

i k H1

Preemption

from tasks that

can “hit” more than once

(with period less than Di)

Execution of

task under test

Preemption

from tasks that

can hit only once

(with period greater

than Di)

Compare effective utilization against bound U(n).

• n = num(Hn) + 1

• num(Hn) = the number of tasks in the set Hn

∋∋∋∋ ∋∋∋∋

UB Test with Interrupt Priority: t3UB Test with Interrupt Priority: t3

• For τ3, no tasks have a higher priority:
– H = Hn = H1 = { }

f 0∑∑∑∑
C

T
0∑∑∑∑++++ ++++====

3

3

3

Note:

num(Hn) = 0; therefore, utilization bound is U(1).

Plugging in the numbers:

f
C

T

60

200
0.3 1.0<<<<==== ==== ====3

3

3

UB Test with Interrupt Priority: UB Test with Interrupt Priority: ττ11

To ττττ1, ττττ3 has higher priority: H = {ττττ3 }; Hn = { }; H1 = {ττττ3 }

f 0∑∑∑∑
C

T

1

T
C∑∑∑∑++++ ++++====

1

1

1
k

k=31

Note:
num(Hn) = 0; therefore, utilization bound is U(1).

Plugging in the numbers:

++++ ++++ 0.800 < 1.0==== ==== ====
20

100

60

100
f
1

C

T

1

1

C

T
1

3

UB Test with Interrupt Priority: UB Test with Interrupt Priority: ττ22

To ττττ2: H = {ττττ1111,τ,τ,τ,τ3333}; Hn = {ττττ1111}; H1 = {ττττ3333}.

f ∑∑∑∑
C

T

1

T
C∑∑∑∑++++ ++++====

2

2

2
k

k=32

C

T

j

jj = 1

f
C

T

C

T
++++

20

100

60

150
++++ 0.867 > 0.828==== ==== ====

2

1

1 2

3C

T
2

2

++++
40

150
++++

Note:
num(Hn) = 1; therefore, utilization bound is U(2).

Plugging in the numbers:

UB Test with Interrupt Priority: UB Test with Interrupt Priority: ττ44

To ττττ4: H = {ττττ1, τ, τ, τ, τ2, τ, τ, τ, τ3}; Hn = {ττττ1, τ, τ, τ, τ2, τ, τ, τ, τ3}; H1 = { }.

f ∑∑∑∑
C

T
0∑∑∑∑++++ ++++====

4

4

4

C

T

j

j
j = 1,2,3

f
C

T

C

T
++++

20

100
++++

====

====

4

1

1 3

3C

T
2

2

++++
C

T
4

4

++++

40

150
++++ 60

200 350
++++
40

= 0.882 > 0.756= 0.882 > 0.756= 0.882 > 0.756= 0.882 > 0.756

Note:

num(Hn) = 3; therefore, utilization bound is U(4).

Plugging in the numbers:

Exercise: Exercise: SchedulabilitySchedulability with Interruptswith Interrupts

• Use the UB test to determine which tasks are schedulable

Task
(i)

Period
(T)

Execution
Time
(C)

Deadline
(D)

Priority
(P)

ττττint 6 2 HW 6

ττττ2222 4 1 High 3

ττττ3333 10 1 Low 10

• Given the following tasks:

Solution: Solution: SchedulabilitySchedulability with Interruptswith Interrupts

0.334 < 1.0U 1≤≤≤≤ ()
Cint

Tint

++++ U 1, .75)≤≤≤≤ (
C1

T1

Cint

T1

++++ U 3)≤≤≤≤ (
C1

T1

Cint

Tint

++++
C2

T2

0.250 + 0.500 = 0.750 = U(1, .75)

0. 334 + 0. 250 + 0.100 = 0.684 < 0.779

{H1}

{Hn}

Basic Theory: Where Are We?Basic Theory: Where Are We?

• We have shown how to handle

– task context switching time: include 2S in C

– Pre-period deadlines: change bound to U(n, Di)

– non-rate-monotonic priority assignments

• We still must address

– task interactions

– aperiodic tasks

• We still assume

– single processor

– priority-based scheduling

– a task does not suspend itself voluntarily

Plan for LecturesPlan for Lectures

• Introduction to Real-Time Systems

– Examples, Terminology, Metrics, Scheduling Policies

• Rate-Monotonic Analysis (RMA)

– Fundamental concepts

– An Introduction to Rate-Monotonic Analysis: independent tasks

• Present basic theory for periodic task sets

• Extend basic theory to include

– Context switch overhead, Interrupts

– Preperiod deadlines

• Consider task interactions

– Priority inversion

– Synchronization protocols (time allowing)

• Extend theory to aperiodic tasks

– Sporadic servers (time allowing)

Priority Inversion Priority Inversion

• Ideally, under prioritized preemptive scheduling, higher priority tasks

should immediately preempt lower priority tasks.

• When lower priority tasks cause higher priority tasks to wait (e.g. the

locking of shared data), priority inversion is said to occur.

• It seems reasonable to expected that the duration of priority inversion

(also called blocking time) should be a function of the duration of the

critical sections.

• Critical section:

– the duration of a task using a shared resource.

Unbounded Priority Inversion Unbounded Priority Inversion

Basic Priority Inheritance Protocol Basic Priority Inheritance Protocol

• Let the lower priority task τ3 use the highest priority of the higher
priority tasks it blocks. In this way, the medium priority tasks can no

longer preempt low priority task τ3, which has blocked the higher priority
tasks.

• Priority inheritance is transitive.

– If A blocks B and B blocks C, A should execute at the priority of max(B,C).

Basic Priority Inheritance Protocol Basic Priority Inheritance Protocol

Chained Blocking Chained Blocking

Deadlock Under BIP Deadlock Under BIP

Properties of Basic Priority Inheritance Properties of Basic Priority Inheritance

• There will be no deadlock if there is no nested locks, or application level

deadlock avoidance scheme such the ordering of resource is used.

• Chained priority is fact of life. But a task is blocked at most by n lower

priority tasks sharing resources with it, when there is no deadlock.

• The priority inheritance protocol is supported in POSIX real time

extensions.

– It is easy to implement

– it is supported by not only most RT OS vendors but also OS/2, Windows 95,

Windows CE, AIX, HP/UX and Solaris.

Priority Ceiling Protocol Priority Ceiling Protocol

• A priority ceiling is assigned to each mutex, which is equal to the

highest priority task that may use this mutex.

• A task can lock a mutex if and only if its priority is higher than the

priority ceilings of all mutexes locked by other tasks.

• If a task is blocked by a lower priority task, the lower priority task

inherits its priority.

Blocked by At Most One Critical Section (PCP) Blocked by At Most One Critical Section (PCP)

Deadlock Avoidance: Using PCP Deadlock Avoidance: Using PCP

A Sample Problem A Sample Problem

Sample Problem: Using BIP Sample Problem: Using BIP

E

E

SchedulabilitySchedulability Model Using BIP Model Using BIP

Plan for LecturesPlan for Lectures

• Introduction to Real-Time Systems

– Examples, Terminology, Metrics, Scheduling Policies

• Rate-Monotonic Analysis (RMA)

– Fundamental concepts

– An Introduction to Rate-Monotonic Analysis: independent tasks

• Present basic theory for periodic task sets

• Extend basic theory to include

– Context switch overhead, Interrupts

– Preperiod deadlines

• Consider task interactions

– Priority inversion

– Synchronization protocols (time allowing)

• Extend theory to aperiodic tasks

– Sporadic servers (time allowing)

Concepts and Definitions Concepts and Definitions

• Aperiodic task

– runs at irregular intervals

• Aperiodic deadline

– hard, minimum inter-arrival time

– soft, best average response

Sporadic Server (SS) Sporadic Server (SS)

• To provide on-demand service to aperiodic events, we can allocate a

budget periodically. A periodic event can execute as long as there is

budget left.

• Modeled as periodic tasks

– Fixed execution budget (C)

– Replenishment interval (T)

• Priority is based on T, just like periodic tasks.

• Replenishment occurs one “period” after start of use.

A Sample Problem A Sample Problem

Sample Problems: Sample Problems: AperiodicAperiodic

• Emergency Server (ES)

– Execution Budget, C = 5

– Replenish Interval, T= 50

• General Aperiodic Server (GS) Design guideline:

– Give it as high a priority as possible and as much “tickets” as possible,

without causing regular periodic tasks to miss deadlines:

• Execution Budget, C = 10

• Replenish Interval, T = 100

• Simulation and queuing theory using M/M/1 approximation indicate that

the average response time is ~2 msec.

Additional Results Additional Results

• In networks, distributed scheduling decision must be made with

incomplete information and yet the distributed decisions are coherent -

– lossless communication of scheduling messages, distributed queue

consistency, bounded priority inversion, and preemption control.

• From a software engineering perspective, software structures dealing

with timing must be separated with construct dealing with functionality.

• To deal with re-engineering, real time scheduling abstraction layers

(wrappers) are needed

– old software packages and network hardware behavior can be made to look

as if they are designed to support RMA.

Implementing Period Transformation Implementing Period Transformation

• Recall that period transformation is a useful technique to ensure:

– stability under transient overload

– improve system schedulability

• But it is undesirable to slice up the program codes.

– Thou shalt separate timing concerns from functional concerns.

– For example, a task with period T and exception time C, can be transformed

into a sporadic task with a budget C/2 and periodic T/2.

• This is transparent to the applications.

– What is the exception?

Modeling Interrupts Modeling Interrupts

• A hardware interrupt can have higher priority than software.

• When an interrupt service routine, R, is used to capture data for longer

period task, it will still preempt the execution of shorter period tasks.

• From the perspective of RMA, the time spent in R is a form of priority

inversion. Thus, we can add R into the blocking time from an analysis

perspective.

• Try to do as little as possible in the interrupt handling routine.

– For example, if you need to capture data and filter it, do not do the data

filtering within the interrupt routine.

Summary of LectureSummary of Lecture

• Synchronization in real-time systems

– Priority inversion

– Unbounded priority inversion

– Protocols to bound priority inversion

• basic priority inheritance protocol

• priority ceiling protocol

• Dealing with Aperiodic tasks

– sporadic servers

• Solving our example problem completely

– early deadlines

– average response time

