EAAHNIKH AHMOKPATIA

MANEMIZTHMIO KPHTHZ

CS255 - Programming Lab
Evérnra: Tutorials
AyyeAog MTriAag

TuAua EmoTAung YmroAoyioTwy

Tutorial 3 - GDB Basics

GDB, the GNU Project debugger, allows you to see what is going on inside another program
while it executes -- or what another program was doing at the moment it crashed.

GDB can do four main kinds of things (plus other things in support of these) to help you
catch bugs in the act:

Start your program, specifying anything that might affect its behavior.

Make your program stop on specified conditions.

Examine what has happened, when your program has stopped.

Change things in your program, so you can experiment with correcting the effects of one bug
and go on to learn about another.

The program being debugged can be written in Ada, C, C++, Objective-C, Pascal (and many
other languages). Those programs might be executing on the same machine as GDB
(native) or on another machine (remote). GDB can run on most popular UNIX and Microsoft
Windows variants.

Compile your program for gdb

gcc -ansi -pedantic -Wall -g

Run your program using gdb
gdb myprogram

GDB will start and you will see a prompt (similar to bash's). Type
r -any_flags needed any_args_needed
to start the execution of your program.

another alternative is

gdb myprogram --args -myprograms_flags myprograms_args

this way simply typing r will pass the arguments passed with --args to your program, saving
you from some typing.

Note that r and run are the same command. From now on we will refer to such shortcuts with
the following syntax, r[un]

Inspect code

[[ist] [lineno] will show you the programs source code around line lineno. If lineno is not given
it will list around the current line.

If you want to see the code of another file issue [[ist] filename:lineno

Breakpoints

Breakpoints help you inspect your program's state at certain points.

Set

To set a breakpoint at line lineno issue b[reak] lineno
To set a breakpoint at every my_function invocation issue b[reak] my_function

Similar to [[ist] if you want to set a breakpoint at another file issue b[reak] filename:lineno

You can also set conditional breakpoints like this b[reak] my_function if a==0 && b==1

Show
Use i[nfo] b[reakpoints] to list all available breakpoints.

Use i[nfo] b[reakpoints] breakpointno to show information about breakpointno

Enable/Disable

You can enable and disable breakpointno issuing en[able] breakpointno and disable
breakpointno

Remove

You can delete breakpointno issuing d[elete] breakpointno. Issue d[elete] to delete all
available breakpoints.

Backtrace

bt or backtrace will show you the call stack that got you here. You can trace the call path that
gave you a crash for instance (get a picture of how we got here). With backtrace you can
investigate the arguments passed to the functions that finally called the function we where
are running at the crash/breakpoint.

Continue/Step/Next/Finish

When a breakpoint is reached the program's execution stops to let you inspect its state. To
continue the execution you can use:

c[ontinue] and the program will execute till its end or till it reaches another breakpoint.
flinish] to execute this function until it returns and stop again.

s[tep] to execute the next line

n[ext] similar to s[tep] but doesn't step into function calls. If a function call is reached
it executes it and then stops.

PO

Note that s[tep] and n[ext] can be given an argument like s[tep] [count] and n[ext] [count].
This way you can tell gdb to execute this commands count times.

Print
From GDB you can print variables/structures, actually almost everything.

Use p[rint] with C-like arguments. For instance p my_struct->value or even p my_struct and
gdb will print all the struct's fields.

Interrupt execution

Pressing Ctrl-C will break the programs execution allowing you to inspect its current state
(useful when you get stack in infinite loops). After you are done You can continue the
program's execution like it was a breakpoint.

Quit

Just type q and Enter

Notes
e Pressing the UP key goes through previously executed commands.
e Pressing Enter executes the last command.

e To visualize the debugging experience use gdbtui or gdb -tui or cgdb

References:

e http://www.gnu.org/software/gdb/

Authored by: Foivos S. Zakkak

Adsieg XpRong

http://www.gnu.org/software/gdb/

*To Tmapdv ekTTaIdeUTIKO UAIKO UTTOKEITAI OTNV Gdela xpriong Creative Commons Kai

€10IKOTEPQ

Avag@opd — Mn gptropiki Xpron — Oxi MNapdywyo ‘Epyo 3.0 EAAGSa

(Attribution — Non Commercial — Non-derivatives 3.0 Greece)

Q0o

*E€aipeital amrd TNV wg dvw adeia UAIKO TTou TTEpIAaUBAvETal aTIG SIaPAVEIEG
TOU MaBruaTog, kal uttokelTal o€ dAAou TUTToU ddela xpriong. H adeia xpriong
OTNV OTTOIx UTTOKEITAI TO UAIKS aUTO ava@épETal pnTwg.

XpnuatodoéTnon

To Tmapdv ekKTTAIBEUTIKO UAIKO £XEI AVATITUXBEI OTa TTAQICIO TOU EKTTAIBEUTIKOU €£pyOU
ToUu d16AOKOVTA.

To ¢pyo «Avolktd Akadnuaikd Madiuara oto MavemotApio KpAtng» £€xel
XPNMATOOOTACEI HOVO TN avadIauOPPWon TOU EKTTAIDEUTIKOU UAIKOU.

To épyo uAotroicital oto TAQicIo Tou Emixeipnoiakou Mpoypdupatog «Ektraideuon
kai Al Biou Md6non» kar ouyxpnuarodorteitar amd Tnv EupwTraik ‘Evwon
(EupwTraikd Koivwviké Tauegio) kai atrd €0vikoug TTOpou.

* X %
*
*

EMXEIPHLIAKO MPOIPAMMA
EKTAIAEYEH KAl AIA BIOY MAGHEH et EZ"A

*
*
*

EnEVIYON STNV UOVWVia TNE YVWIET v
e : = B T
YNOYPFEIO MAIAEIAL KAl GPHIKEYMATON EvPanaAiko KOINONIKO TAMEIO

Evpwmnaikn 'Evwon EIATKH YNMHPEXIA AIAXEIPIZHZ

E kb K & Taued
upumalicc Rotvinie Taueto Me tn ouyxpnuarodotnon tng EAAGdag kat tng Evpwnaikig Evwong

