AAHNIKH AHMOKPATIA
ANENIZTHMIO KPHTHZ

Eicaywyn ota AikTud
YITNPEoIWV

Assisting Lecture 10 — WS-BPEL

Mupwv lNatraddakng
TuAnua Emotiung YTToAoYIoTWY

7/5/2014

Introduction to Service Networks
CS-592 - Spring 2014

Assisting Lecture : WS-BPEL

Myron Papadakis (myrpap@gmail.com)

CS-592 Spring 2013 - Myron Papadakis

Introduction (1/3)

e Within companies, business applications have to interoperate and
integrate

e |ntegrating different applications has always been a difficult task for
various functional and technology related reasons.

e The most recent answer to the integration challenge is the Service
Oriented Architecture (SOA) and the web services technologies.

e The bottom-up view of the SOA sees different business applications
exposing their functionalities through web services.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis

Introduction (2/3)

e Thus we can now access different functionalities of different legacy and
new developed applications in a standard way (through web services)

e Developing the web services and exposing the functionalities is not
sufficient.

e We also need a way to compose these functionalities in the right order

— a way to define business processes which will make use of the
exposed functionalities.

e This is where the BPEL (Business Process Execution Language for Web
Services) becomes important.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis

Introduction (3/3)

e The process-oriented approach to SOA requires a language for relatively
simple description of how web services should be composed into
business processes

e BPEL is such a language: it allows composition of web services and is the
top-down approach to SOA — the process-oriented approach to SOA

e Web services can be composed in two ways: orchestration and
choreography

7/5/2014 CS-592 Spring 2013 - Myron Papadakis

Orchestration and Choreography

e Orchestration: standards: BPEL (OASIS)
e Choreography: standards: WS-CDL (W3C), WSCI (W3C)

Web Services
QOrchestration

A

Contract

WS-BPEL

SOAP / \SGAF

Contract Contract

Web Web
Service Service

7/5/2014

Web Services
Choreography

A

WS-BPEL

SOAP

=

CS-592 Spring 2013 - Myron Papadakis

WS-BPEL

Orchestration (BPEL)

e |n orchestration, a central process (which can be another web service) takes
control over the involved web services

e It coordinates the execution of different operations on the web services involved
in the operation.

e The involved web services do not know (and do not need to know) that they are
involved into a composition and that they are a part of a higher business process.

e Only the central coordinator of the orchestration knows this

— so the orchestration is centralized with explicit definitions of operations and
the order of invocation of web services.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 6

Orchestration

Web service Web service
1) 2
1: Receive 2: Invoke
5: Reply Orchestration
(co-ordinator) wke
Web service 3: Invoke Web service
3 N
7/5/2014 CS-592 Spring 2013 - Myron Papadakis

Choreography

e Choreography does not rely on a central coordinator.

e Each web service involved in the choreography knows exactly when to
execute its operations and whom to interact with.

e All participants of the choreography need to be aware of the business
process, operations to execute, messages to exchange, and the timing of
message exchanges.

e A choreography is not directly executable

e Choreographies can be used to better understand message exchange
patterns and to monitor message exchanges

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 8

Choreography

Web service
1
5: Invoke 1: Invoke
P .
r .
e S
) .
Web service Web service
4 2
- 3: Reply 7
1&% f”’i’ff
e - .a-"“’i-""#
4: Invoke _ 2: Invoke
Web service
3
7/5/2014 CS-592 Spring 2013 - Myron Papadakis

Web Service Composition Languages

e BPML: Business Process Modeling Language

e XLANG: Extension of Web Services Definition Language

e WSFL: Web Services Flow Language

e WS-BPEL: Web Services Business Process Execution Language
e WS-CDL: Web Services Choreography Description Language

e WSCI: Web Services Choreography Interface

e WS-CAF: Web Services Composite Application Framework

7/5/2014 CS-592 Spring 2013 - Myron Papadakis

10

BPEL Standard Sponsorship

e . _ ()
‘hea [EEEEH SAPMl S1=sEL

BPEL4WS 1.1

OASIS 9

. 2

[WS-BPEL 2.0 }

(*) BPFEL4WS 1.1 authors, May 2003

7/5/2014 CS-592 Spring 2013 - Myron Papadakis

12

WS-BPEL Design Goals

Business processes defined using an XML-based language
Web services are the model for process decomposition and assembly

The same orchestration concepts are used for both the external (abstract)
and internal (executable) views of a business process

Both hierarchical and graph-like control regimes are used, reducing the
fragmentation of the process modelling space

An identification mechanism for process instances is provided at the
application message level

The basic lifecycle mechanism is in implicit creation and termination of
process instances.

A long-running transaction model is defined to support failure recovery
for parts of long running business processes

Language built on compatible Web services standards in a composable
and modular manner

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 13

BPEL

e BPEL is a language used for composition, orchestration, and coordination
of web services.

e BPEL is an orchestration language, not a choreography language

e BPEL represents a convergence of two early workflow languages, WSFL
(Web Services Flow Language) and XLANG.

— WSFL was designed by IBM and is based on the concept of directed
graphs.

— XLANG was designed by Microsoft and is a block-structured language.

e BPEL combines both approaches and provides a rich vocabulary for the
description of business processes.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 14

BPEL

BPEL is built on top of a number of XML-related specifications
— XML is used as the syntax for BPEL
— WSDL is used as the interface description of Web Services
— XML Schema is used to describe the types used by BPEL processes

— XPath is used to extract parts of data in a BPEL process

It is an XML-based language which supports the web services technology
stack, including:

— SOAP, WSDL, UDDI, WS-Reliable Messaging, WS-Addressing, WS-
Coordination and WS-Transaction.

WS-BPEL Specification is administered by OASIS

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 15

WS-BPEL in the WS-* Stack

Business
Processes

ek

Description

s
"
>

Quality
Soats ":.-':::.'::'.':':.. .I Of
S Service

) b b

AR
Encoding

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 16

BPEL

e BPEL is a language for creating executable code

e BPEL processes can be executed and thus are programs

e BPEL is a specialized and dedicated programming language
e BPEL combines two tasks when working with Web Services

— it creates a new Web Service which is described by a WSDL interface
— it implements the Web Service by orchestrating a number of partners

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 17

Business Processes in BPEL

With BPEL, we can describe business processes in two distinct ways (BPEL
supports two types of business processes):

We can specify the exact details of business processes.

— Such processes are called executable business processes and follow
the orchestration paradigm.

— They can be executed by an orchestration engine.
— In most cases BPEL is used for executable processes.

We can specify the public message exchange between parties only.
— Such processes are called abstract business processes.

— They do not include the internal details of process flows and are not
executable.

— They are rarely used

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 18

Service Composition with BPEL

e A BPEL process specifies the exact order in which participating web
services should be invoked.

e Described in an XML file with extension .bpel.
e This can be done sequentially or in parallel.

e With BPEL, we can express conditional behavior, for example, a web
service invocation can depend on the value of a previous invocation.

e We can also construct loops, declare variables, copy and assign values,
define fault handlers, and so on.

e By combining all these constructs, we can define complex business
processes in an algorithmic manner.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis

19

Service Composition with BPEL

e Most BPEL applications are executable processes
— describing the interfaces to external data sources
— describing the control flow for orchestrating these data sources

e BPEL is used for defining a new Web Service
— the process is invoked through one of its partner links
— it starts executing by following the process description
— it may contact other partners through other partner links
— as the final result, it may send back a response to the initial caller

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 20

Developing Business Processes with
BPEL

e With BPEL we can define simple and complex business processes.

e To a certain extent, BPEL is similar to traditional programming languages.

— It offers constructs, such as loops, branches, variables, assignments,
etc. that allow us to define business processes in an algorithmic way.

e On the other hand, it is less complex than traditional programming
languages, which simplifies learning.

e The most important BPEL constructs are related to the invocation of web
services.

— BPEL allows to invoke operations of web services either
synchronously or asynchronously.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 21

Developing Business Processes with
BPEL

e Anyone developing BPEL processes requires a good understanding of
WSDL and other related technologies.

e BPEL introduces WSDL extensions, which enable us to accurately specify
relations between several web services in the business process.

— These relations are called partner links.

e The following figure shows a BPEL process and its relation to web services
(partner links)

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 22

Developing Business Processes with

BPEL

A typical BPEL process and its relation to Web services (partner links)

< |
receive >
) —P —P Web
Client Partner Link - Partner Link .
< T Service 1
. portType | et portType
T4 "
<invoke = /,u:-”
é < invoke ::'" .
T N
Partner Link g Web
i N — Pl Service 2
L <invoke > E:nrtType J
T
\ A
hf <reply= ,.J\
BPEL process as Weh Service
7/5/2014

CS-592 Spring 2013 - Myron Papadakis

23

Developing Business Processes with
BPEL

e Executable business processes are processes that compose a set of
existing services.

e When we describe a business process in BPEL, we actually define a new
web service that is a composition of existing services.

e Forits clients a BPEL process looks like any other web service

e The interface of the new BPEL composite web service uses a set of port
types, through which it provides operations like any other web service.

e Toinvoke a business process described in BPEL, we must invoke the
resulting composite web service.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 24

Developing Business Processes with
BPEL

e Atypical BPEL process
— First, the BPEL business process receives a request.
— To fulfill it, the process then invokes the involved web services
— Finally responds to the original caller.

e Because the BPEL process communicates with other web services, it
relies heavily on the WSDL description of the web services invoked by
the composite web service.

e ABPEL process consists of steps.
— Each step is called an activity

e BPEL supports primitive and structured activities

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 25

BPEL Elements Overview

The process element : It is the root element of BPEL process definition. It
has a name attribute and it is used to specify the definition related
namespaces.

Partner Links elements : These elements in a BPEL process define the
interaction of participating services with the process.

Variables elements : A BPEL process allows to declare variables in order to
receive, manipulate, and send data.

Fault Handlers element : A fault handler determines the activity which
the process has to perform when an error occurs.

Correlation Sets element : Message correlation is the BPEL mechanism
which enables several processes to interact in Stateful conversation.

Event handling element : An event handler allows the scope to response
to events, or the expiration of timers, at any time during the execution of
a scope.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 26

BPEL Process Syntax

<process name="ProcessName”>

<!-- Definition of roles of process participants -->
<partnerlLinks> ... </partnerLinks>

<!-- Data and state variables used within the process -->
<variables> ... </variables>

<!-- Correlation comment -->

<correlationSets> ... </correlationSets>

<!-- Exception management -->

<faultHandlers> ... </faultHandlers>

<!-- Message and timeout event handler -->
<eventHandlers> ... </eventHandlers>

<!-- Processing steps —-->

<sequence>

</sequenece>

activities*

</process>

7/5/2014 CS-592 Spring 2013 - Myron Papadakis

BPEL Processes

e A BPEL process can be synchronous or asynchronous.

e A synchronous BPEL process blocks the client (the one which is using the
process) until the process finishes and returns a result to the client.

— <reply>is used for the response of a synchronous BPEL process

e An asynchronous process does not block the client.
— Rather it uses a callback to return the result (if any)

e Usually we use asynchronous processes for longer-lasting processes and
synchronous for processes that return a result in a relatively short time

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 28

Synchronous and Asynchronous BPEL

Processes
Synchronous
1: request
Sender —» Receiver
(client) +— (web service)
2. response
Asynchronous
1: Async one-way)
Sender —> Receiver
(client) (web service)
Sender Receiver
(client) «—— (web service)
1: Callback

If operations require that results are sent back to the client, they usually perform callbacks

7/5/2014 CS-592 Spring 2013 - Myron Papadakis

Main Elements of a BPEL Process
(Process Definition)

Declare dependencies on
external XML Schema or
WSDL definitions

Relationships that a WS-
BPEL process will employ
in its behavior

Data holding state of a
business process or
exchanged with partners

Concurrently process
inbound messages or
timer alarms

Perform the process logic
— any number of activities
may be recursively
nested

7/5/2014

~
< process
imports]‘ extensions]‘]
T) T
(" \\ @
E palf_tnker u:[:: message
L LELCS exchanges
< J ©
4)
@ e A correlatlon
variables -
- ~) -
event % fault
[handlers T [handlers T
S J g _/
e prlmary
\l[] activity
J

CS-592 Spring 2013 - Myron Papadakis

Declare namespaces of
WS-BPEL extension
attributes and elements

Relationship between
inbound and outbound
message activities

Application data fields
that together identify a
conversation

Deal with exceptional
situations in a process

WSDL
definitions
. XML
schemas
30

BPEL Process and WSDL

e As BPEL processes are exposed as web services, we need a WSDL for the
BPEL process

e A client will usually invoke an operation on the BPEL process to start it.
e With the BPEL process WSDL, we specify the interface for this operation.

e We also specify all message types, operations, and port types a BPEL
process offers to other partners.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 31

Partner Link

e The various steps that make up the business process are exposed as
services

e Some type representation of that service: known as partner link

e Essentially an endpoint representing the service we are going to call..

e Partner link only defined with the interface of that service (no
implementation details in the partner link information)

e Partner links utilize roles
— Relationship of partner link with a particular service

e The endpoint or service is identified by a particular role

7/5/2014 CS-592 Spring 2013 - Myron Papadakis

32

Partner Links

e BPEL orchestrates web service interactions.

— Each service interaction can be regarded as a communication with a
business partner.

— The interaction is described with the help of partner links.

e BPEL calls the links to all parties it interacts with as partner links

e You can regard one partner link as one particular communication
channel.

e Partners might be:
1. Services that invoke the BPEL process.
2. Services invoked by the BPEL process.

3. Services that play both roles - the BPEL process invokes the service
and the service invokes a callback on the BPEL process.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 34

Partner Links

e The BPEL process uses partner links not only to define services that are
invoked by the BPEL process, but also to define the interface of the BPEL
process

— Includes how clients contact/interact with the business process (see
WSDL port at the right side of the next slide)

e Each BPEL process has at least one client partner link, because there has
to be a client that invokes the BPEL process.

* BPEL processes use <partnerlLinks/> to define partner links

e For each partner link one (synchronous) or two (asynchronous) roles are
specified and these roles are associated with portTypes.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 35

Inbound request — service
provided by the process

WSDL

Partner Links

% recelve

Ll

Q process

Peer-to-peer conversational partner relationship

@ partner
link

E

=

invoke J

\

~N

myRole

port type

Provided port type

7/5/2014

i

partner link type

partnerRole

Outbound request — service
required by the process

WSDL

CS-592 Spring 2013 - Myron Papadakis

—
port type

Required port type

36

Partner Links Eclipse BPEL Designer

5 Loanlnvoke.bpel 3 22 LoanlnvokeArtifacts.wsdl

rmain

& | receivelnput

= Assigninput

& Invoke

= AssignCutput

2 | replyOutput

@

2P LoanService.wsdl

%2 Loanlnvoke

fim Partner Links
chent
LoanW5PL
& Vanables
input
cutput
LoanW5SPLResponse
LoanWSPLRequest
&3 Correlation Sets

#% Message Exchanges

Partner Links Eclipse BPEL Designer

Loaninvoke.bpel

%l —— S======S==sssSSSSsSsSSSSSSSSSSSSSSSSSSSSSSSsS=SSsSSsS=SsSssSss=sss==s=== o3
< 1—— PARTHERLINES -
<!'—— Li=st of services participating in this BPEL process -
%l —— S======S==sssSSSSsSsSSSSSSSSSSSSSSSSSSSSSSSsS=SSsSSsS=SsSssSss=sss==s=== o3
<bpel :partnerlLinks>

<!—— The 'gclient' role represents the regquester of this service. —->
<bpel:parctnerlink name="clisnt™

partnerLinkTvpe="tns:Loanlnvokse"

myRole="LoanInvokeFProvider™”

£
<bpel:partnerlLink name="LoanWFSPL" partnerlinkTvpe="tns:LoanWSPLT" partnerBole="LoanKFSReole"></bpel :part

LoaninvokeArtifacts.wsdl

<plnk:partnerLinkType name="LoanWSPLT">
splnk:role name="LoanKFSRolse" portTyvpe="wsdl:LoanService"/>

</plnk:partnerLinkType>

each partnerlink contains a partnerLinkType attribute, which references a partnerLinkType

Partner Link Type

e A partner link type declares how two parties interact and what each party
offers.

e A partner link type must have at least one role and can have at most two
roles (the latter is the usual case)

— It contains two PortTypes(WSDL), one for each of the roles in the
partner entry (i.e. one portType belongs to the process itself, the
other one is the portType of the service being invoked).

e Partner link types are not stored in a process

e They are be placed in the WSDL document that describes the partner
web service or the BPEL process.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 39

BPEL Partner Links > WSDL and BPEL
Process

e In partner Service WSDL

<plnk:partnerLinkType name="FunctionProcessService"
xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype">
<plnk:role name="FunctionProcessServicePortTypeRole"
portType="tns:FunctionProcessServicePortType"/>

</plnk:partnerLinkType>

e In BPEL Process
<partnerLinks>

<partnerLink name="FunctionProcessPartnerLink"
xmlns:tns="http://FunctionProcessService.wsdl|"
partnerLinkType="tns:FunctionProcessService"
myRole="FunctionProcessServicePortTypeRole"/>

</partnerLinks>

7/5/2014 CS-592 Spring 2013 - Myron Papadakis

Partner Links and Partner Link types

e |tis easy to confuse partner links and partner link types, however:

— Partner link types and roles are special WSDL extensions defined by
the BPEL specification. As such, they are defined in WSDL files, not in
the process BPEL file.

— Partner Link is a BPEL 2.0 element (defined in the process BPEL file)

e Partner link types are prerequisites to the Partner Link element
definition.

e Note that multiple partnerLink elements can reference the same
partnerLinkType.

— This is useful for when a process service has the same relationship
with multiple partner services. All of the partner services can
therefore use the same process service portType elements

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 41

Basic Activities

e Basic activities represent basic constructs and are used for common tasks:

7/5/2014

Invoking other web services (synchronously or asynchronously), using
<invoke>

<receive>:this activity plays an important role in the lifecycle of a
business process. It is usually used to initiate the process and its main
task is to block and wait for an incoming message.

Generating a response for synchronous operations, using <reply>
Manipulating data variables, using <assign>

Indicating faults and exceptions, using <throw>

Waiting for some time (set a duration or deadline), using <wait>

Terminating the entire process (often used in switches), using
<terminate> etc

CS-592 Spring 2013 - Myron Papadakis 42

Do a blocking wait for a
matching message to arrive /
send a message in reply

Invoke a one-way or
request-response operation

Update the values of
variables or partner links
with new data

Validate XML data stored
in variables

Generate a fault from inside
the business process

Forward a fault from inside
a fault handler

7/5/2014

Basic Activities

~
& process
| receiveJ [{2, repIyJ exit
A
4)
{-E? invoke} [ﬁﬁ compensate
\ J
4)
= assignJ [ﬁ} compensateScope
\ J
4 vaIidateJ {EJ wait
A\
4 ™
13+ throw } [empty
\ J
4)
E g rethrow J [extensionActivity
- J
J

CS-592 Spring 2013 - Myron Papadakis

Immediately terminate
execution of a business
process instance

Invoke compensation on
all completed child scopes
in default order

Invoke compensation on
one completed child scope

Wait for a given time
period or until a certain
time has passed

No-op instruction for
a business process

Wrapper for language
extensions

43

Invoking Web Service Operations

e Web Services are called by using invoke
— Web Service invocations can be request/response
— Web Service invocations can be asynchronous messages

e |nvoke need variables for input and output
— output variables are not required for asynchronous invocations

e Fault handling can be defined to handle WSDL fault messages
— resilient BPEL processes should always handle fault messages

e Compensation handlers can be defined
— compensation is a mechanism to handle transactions in BPEL

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 44

Invoking Synchronous Web Services >

Sequentially
<process ...>
<sequence>
<!-- Wait for the incoming request to start
the process -->
<receive ... />
<!-- Invoke a set of related web services, one
by one -->
<invoke ... />
<invoke ... />
<invoke ... />
</sequence>

</process>

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 45

Invoking Synchronous Web Services
Concurrently

<process ...>

<sequence>

<!-- Wait for the incoming request to start the
process -->

<receive ... />

<!-- Invoke a set of related web services,
concurrently -->

<flow>
<invoke ... />
<invoke ... />
<invoke ... />
</flow>

</sequence>
</process>

7/5/2014 CS-592 Spring 2013 - Myron Papadakis

Invoking Synchronous Web Services
Concurrently and Sequentially

<process ...>
<sequence>
<!-- Wait for the incoming request to start the process-->
<receive ... />
<!-- Invoke two sequences concurrently -->
<flow>
<!-- The three invokes below execute sequentially -->
<sequence>
<invoke ... />
<invoke ... />
<invoke ... />
</sequence>
<!-- The two invokes below execute sequentially -->
<sequence>
<invoke ... />
<invoke ... />
</sequence>
</flow>
</sequence>
</process>

7/5/2014 CS-592 Spring 2013 - Myron Papadakis

a7

Invoking Asynchronous Web Services

<process ...>
<sequence>

<!-- Wait for the incoming request to start
the process -->

<receive ... />

<!-- Invoke an asynchronous operation -->
<invoke ... />

<!-- Do something else... -->

<!-- Wait for the callback -->

<receive ... />

</sequence>
</process>

7/5/2014 CS-592 Spring 2013 - Myron Papadakis

How do synchronous and asynchronous
processes differ in the BPEL specification?

e Both first wait for the initial message, using a <receive>.
e Both also invoke other web services, either synchronously or asynchronously.

e However, a synchronous BPEL process will return a result after the process has
completed.

— Therefore, we use a <reply> construct at the end of the process

<process ...>
<sequence>
<!-- Wait for the incoming request to start the
process -->
<receive ... />
<!-- Invoke a set of related web services -->
<!-- Return a synchronous reply to the caller (client)
-=>
<reply ... /> <!- reply sends a response to a previous
receive -->
</sequence>
. .</process>

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 49

Asynchronous Processes

e An asynchronous BPEL process does not use the <reply> clause.

e |f such a process has to send a reply to the client, it uses the <invoke>
clause to invoke the callback operation on the client's port type

e An asynchronous BPEL process does not need to return anything.

<process ...>
<sequence>
<!-- Wait for the incoming request to start the
process -->
<receive ... />
<!-- Invoke a set of related web services -->
<!-- Invoke a callback on the client (if needed) -->
<invoke ... />
</sequence>
</process>

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 50

Structured Activities

Sequence (<sequence>), which allows us to define a set of activities that
will be invoked in an ordered sequence. The order of execution is
determined by their place inside the structure activity.

Flow (<flow>) for defining a set of activities that will be invoked in parallel
Case-switch construct (<switch>) for implementing branches
While (<while>) for defining loops

<repeatUntil>: just like while. It executes the containing activity while a
condition is true

<pick>: associates activities with events and waits until an event is
triggered. The activities corresponding to the event are executed. The
event that occurs first is processed if multiple events are triggered.

— Pick can be used like the receive activity in order to initialize a process.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 51

Contained activities are
executed in parallel,
partially ordered through
control links

Contained activities are
performed sequentially in
lexical order

Contained activity is
repeated while a predicate
holds

Contained activity is
repeated until a predicate
holds

7/5/2014

Structured Activities

f Q process\
/ 1| flow (& pick
¢ J L
(- sequence\ ;?"; forEach
ENIERET ENIEARIN
¢ J € J
/ I o
) while |f elseif-else
(" A .
Aol repeatUntil =] scope
> & &
(] < ©
€ J A
. J

CS-592 Spring 2013 - Myron Papadakis

Block and wait for a
suitable message to arrive
(or time out)

Contained activity is
performed sequentially or
in parallel, controlled by a
specified counter variable

Select exactly one branch
of activity from a set of
choices

Associate contained activity
with its own local variables,
partner links, etc.,

and handlers

52

Nesting Structured Activities

<sequence>
<receive .../>
<flow>
<sequence>
<invoke .../>
<while ... >
<assign>...</assign>
</while>
</sequence>
<sequence>
<receive .../>
<invoke ... />
</sequence>
</flow>
<reply .../>
</sequence>

-

(
!

~ sequence

]
)

p
&> | receive }
o

-

N

Vs

&

A

N

invoke

J
while

1| flow

/—[-~ sequence }—\

s

/—[-~ sequence }—\

T

[{:'::.3 invoke }

— assign
g J

.

Vs

g

A | reply}

7/5/2014 CS-592 Spring 2013 - Myron Papadakis

53

Variables

e Variables represent the state of a business process

* |na BPEL process, variables are used to hold messages that could be:
— an incoming message from a partner,
— outgoing message to a partner,

— data required to hold the state of a process instance (and are never
exchanged with partners) etc.

e These are specified in <variable/> elements, inside <variables /> element.
e Each variable has to be declared before it can be used.

e When we declare a variable, we must specify the variable name and type.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 54

Variables

e To specify type we have to specify one of the following attributes:
— messageType: A variable that can hold a WSDL message
— element: A variable that can hold an XML Schema element
— type: A variable that can hold an XML Schema simple type

e Variables can be declared globally at the beginning of a BPEL process
declaration document or within scopes

e Variables are manipulated using the <assign> activity

7/5/2014 CS-592 Spring 2013 - Myron Papadakis

55

Variables

<variables>

<variable name="myVarl"
messageType="myNS :myWSDLMessageDataType" />

<variable name="myVarl" element="myNS:myXMLElement" />
<variable name="myVar2" type="xsd:string" />
<variable name="myVar2" type="myNS:myComplexType" />

</variables>

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 56

Variables and assigning

Copying the data from one variable to the other is something that will
happen very often in a business process.

Copying data can be achieved with the assign activity.
This activity can also be used to copy new data into a variable.

<assign>
<copy>
<from variable="ncname" part="ncname"/>
<to variable="ncname" part="ncname"/>
</copy>
</assign>

If a variable holds a WSDL message, which is common, we can refine the
copy by specifying the part of the message we would like to copy.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 57

Scopes provide a context
which influences the
execution behavior of its
enclosed activities

Local declarations —
pariner links, message
exchanges, vanables,
correlation sets

Local handlers — event
handlers, fault handlers, a
termination handler, and a
compensation handler

lsolated scopes provide
control of concurrent
access to shared
resources

7/5/2014

&

CS-592 Spring 2013 - Myron Papadakis

Termination handler to deal
with forced scope termination
(external faults)

Compensation handler to
undo persisted effects of
already completed activities

58

Scopes

SCOPEs enables you to divide a complex process into several parts

SCOPEs provide a context for activities:
— Enables you to define different fault handlers for different activities.

— You can declare variables that are visible only with the scope.
— You can also define, correlation sets, compensation handlers, event
handlers.

Each scope MUST have a PRIMARY activity

7/5/2014 CS-592 Spring 2013 - Myron Papadakis

59

Scope Syntax

<scope>

<varlables>variables local to the
scope</variables>

<correlationSets>...</correlationSets>
<faultHandlers>local handlers</faultHandlers>
<compensationHandler>...</compensationHandler>
<eventHandlers>...</eventHandlers>
BASIC OR STRUCTURED ACTIVITIES
</scope>

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 60

Scope Rules

 Each scope has a primary activity.

* This activity may be a basic activity or a structured activity such as
sequence or flow.

« |f a scope has a structured activity, it can have many nested activities (all
in the same scope)

A scope can also have nested scopes with arbitrary depth.
* Faults not caught in a scope are re-thrown to the enclosing scope.

* Scopes in which faults have occurred are considered to have ended
abnormally even if a fault handler has caught the fault and not re-thrown
it.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 61

Correlation

A business process is communicating with multiple services and these
services could also be communicating with other services

It's important to make sure that you are always talking with the right
instance of a service.

To realize this in BPEL you could make use of correlation.

Correlation offers the possibility to make sure you always talking to the
same instance of a service by adding identifying variables.

When the process is invoked, these variables always have to be supplied
to make sure it's the same process you where talking to earlier on.

A set of properties shared by messages and used for correlation is called
a correlation set.

Correlation sets are defined and then used in invokes and receives.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 62

Properties and Correlation Sets

e How to define stateful instances via stateless WS interfaces?

e A process instance is assigned one or more keys

— Business data is used as key, e.g. customerlID

— A key can be compound, e.g (customerlD, orderNo)

— WS-BPEL calls a key a correlation set — it is used to correlate an
incoming message with a process instance

Message 1

Message 2

7/5/2014

customerID

F

orderNumber]

CS-592 Spring 2013 - Myron Papadakis

Process 4
(0123,15)

k2

[l

Process 3
(0815,42)

K

Process 2
(4711,37)

K

Process 1
(0815,12)

63

Compensation

The goal of compensation is to reverse the effects of previous activities
that have been carried out as part of a business process that is being
abandoned.

To define the compensation activities, BPEL provides compensation
handlers.

Compensation handlers gather all activities that have to be carried out to
compensate another activity.

Compensation handlers can be defined:
— For the whole process
— For the scope
— Inline for the <invoke> activity

The compensation handler for the whole BPEL process is defined
immediately after the fault handlers section and before the main activity
of the process

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 64

Fault Handling & Compensation

{Q Process }

” |
(= uencew (fault\
4 L - a J handler
notify
-
compensation o fault
{F handler handler
& ciil & i I ’ﬁ compensate
refun ship
[{:'creditcard } [“::' customer } = goods
J
A
-
- /
7/5/2014 CS-592 Spring 2013 - Myron Papadakis 65

Example

e BPEL process that selects the best insurance offer
— Two insurance services A and B
e (Client invokes the BPEL process

e First we declare the partner links to the BPEL process client (called client)
and two insurance web services (called insuranceA and insuranceB)

e Next, we declare variables for the insurance request (InsuranceRequest),
insurance A and B responses (InsuranceAResponse,InsuranceBResponse),
and for final selection (InsuranceSelectionResponse)

e Finally we specify the process steps

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 66

BPEL Example

<?xml version="1.0" encoding="utf—8"7>

< process name="insuranceSelectionProcess"”
targetNamespace=" http://packtpub.com/bpel/example/"
xmins="http://schemas.xmlsoap.org/ws/2003/03/business—process,/"
xmins:ins=" http://packtpub.com/bpel/insurance/"
xmins:com=""http://packtpub.com/bpel/company/" >

< partnerLinks>
< partnerLink name="client"
partnerLink Type=""com:selectionLT"
myRole="insuranceSelectionService" />

< partnerLink name="Iinsurancei"
partnerLink Type="ins:insuranceLT"
myRole="insuranceRequester”
partnerRole=" insuranceService" />

< partnerLink name="insuranceB"
partnerLink Type="ins:insuranceLT"
myRole=" insuranceRequester”
partnerRole="insuranceService" />

< /partnerLinks>
7/5/2014 CS-592 Spring 2013 - Myron Papadakis

Declaring the Variables

Next, we declare variables for the insurance request (InsuranceRequest),
insurance A and B responses (InsuranceAResponse,InsuranceBResponse), and
for final selection (InsuranceSelectionResponse)

< variables>
<|—— input for BPEL process ——>>
< variable name="InsuranceRequest”
message Type=""ins:InsuranceRequestMessage” />
< | —— output from insurance A ——>>
<variable name="InsuranceAResponse”
messageType=""ins:InsuranceResponseMessage" />
<|—— output from insurance B ——>
<variable name="InsuranceBResponse"
message Type=""ins:InsuranceResponseMessage” /=
<l—— output from BPEL process —— >
<wvariable name="InsuranceSelectionResponse"
messageType="Iins:InsuranceResponseMessage" />

215120 < /variables> 68

7/5/201

Specifving the process steps

<sequence™

< |— — Receive the initial request from client ——>>
<receive partnerLink="client”
port Type="com:InsuranceSelectionPT"
operation="5electInsurance”
variable="InsuranceRequest”
createlnstance="yes" />

<l—— Make concurrent invocations to Insurance A and B —— >
< flow=>

<1—— Invoke Insurance A web service ——>

< invoke partnerLink="insuranceA"
portType="ins:ComputelnsurancePremiumpPT"
operation=" ComputelnsurancePremium"
inputVariable="InsuranceRequest”
outputVariable="InsuranceAResponse” />

<! —— Invoke Insurance B web service —— >

<invoke partnerLink="insuranceB"
port Type=""ins:ComputelnsurancePremiumPT"
operation=" ComputelnsuranceFPremium"”
inputVariable="InsuranceRequest"

69

outputVariable="InsuranceBResponse” />
< [flow>

< 1—— Select the best offer and construct the response —— >
<switch>

< case condition="bpws:getVariableData('InsuranceAResponse’,
"confirmationData’,” /confirmationData/Amount’)
<= bpws:getVariableData('InsuranceBResponse’,
"confirmationData’,” /confirmationData/Amount’)" >

<l— — Select Insurance A ——>
< assign>
< COpY >
<from variable="InsuranceAResponse” />
<to variable="InsuranceSelectionResponse” />
</copy>
< fassign>
< Jcase>

< otherwise>
<!—— Select Insurance B ——>
< assign>
<copy >
7/5/2014 <from variable="InsuranceBResponse” />

70

outputVariable="InsuranceBResponse” />
< [flow>

<|—— Select the best offer and construct the response —— >
<switch>

< case condition="bpws:getVariableData('InsuranceAResponse’,
'confirmationData’,’" /confirmationData/Amount')
<= bpws:getVariableData('InsuranceBResponse’,
'confirmationData’,’ /confirmationData/Amount')" >

<l!—— Select Insurance A ——>
< assign >
< COpY >
<from variable="InsuranceAResponse” />
<to variable="InsuranceSelectionResponse" />
< fcopy>
< fassign>
< fcase>

< otherwise™>
<|—— Select Insurance B ——>
< assign>
< COpY >
<from variable="InsuranceBResponse” />

7/5/2

71

7/5/2014

Example > Send the response to the
client

<to variable="InsuranceSelectionResponse"” />
< fcopy>
< /assign>>
< /otherwise>
< /switch>

<|—— Send a response to the client ——>
<reply partnerLink=""client"”
port Type="com:InsuranceSelectionPT"
operation=" 5Selectinsurance”
variable="InsuranceSelectionResponse" />

< /sequence>

< /process>

CS-592 Spring 2013 - Myron Papadakis

72

References

e https://www.oasis-
open.org/committees/download.php/23964/

e Book: Ws-Bpel 2.0 for Soa Composite Applications with
Oracle Soa Suite 11G

e http://www.oracle.com/technetwork/articles/matjaz-
bpell-090575.html

e http://www.csie.ndhu.edu.tw/~showyang/S0C2008/04aBP
EL.pdf

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 73

https://www.oasis-open.org/committees/download.php/23964/
https://www.oasis-open.org/committees/download.php/23964/
https://www.oasis-open.org/committees/download.php/23964/
http://www.oracle.com/technetwork/articles/matjaz-bpel1-090575.html
http://www.oracle.com/technetwork/articles/matjaz-bpel1-090575.html
http://www.oracle.com/technetwork/articles/matjaz-bpel1-090575.html
http://www.oracle.com/technetwork/articles/matjaz-bpel1-090575.html
http://www.oracle.com/technetwork/articles/matjaz-bpel1-090575.html
http://www.csie.ndhu.edu.tw/~showyang/SOC2008/04aBPEL.pdf
http://www.csie.ndhu.edu.tw/~showyang/SOC2008/04aBPEL.pdf

TEAog EvoTnTag

i EMIXEIPHEIAKO MPOrPAMMA
x M EKMAIAEYZH KAI AIA BIOY MABHEH

* *
* YNOYPTEIO MAIAEIAL & BPHEKEYMATAN, NOAITIZMOY & ABAHTIZMOY

EvpwnaikiEBvwon EIAIKH YMHPEZIA AIAXEIPIZHE
Evpwnaiké Kowvwvié Tapgio

Me tn ouyxpnpatodétnon e EAadag kai tng Evpwraikic Evwong

XpnuatodoTnon

*To TTapOV eKTTAIOEUTIKO UAIKO £XEI avaTTTuXOEi oTa TTAQiOIa TOU EKTTAIOEUTIKOU
EPyou Tou 0I10A0KOVTA.

*To £pyo «AvolkTa Akadnuaika Madiupara oto Mavemmiotiio KpATNG» £XEI
XPNMUATOOOTNOEI HOVO TN AVAdIAUOPPWON TOU EKTTAIOEUTIKOU UAIKOU.

*To €pyo uAoTrolgiTal oTo TTAaiclo Tou ETixeipnoiakou Npoypduuatog
«EkTtTaideuon kai Aia Biou M&bnon» kai cuyxpnuaTtodoTeital atro TV
Eupwtraiki 'Evwon (EupwTtraikd Koivwviké Tapegio) kal atrd €Bvikoug TTOpOoUC.

EMIXEIPHXIAKO MPOIPAMMA
EKMAIAEYZH KAI AlA BIOY MAGHZH .= Ez nA

enévdyuen sTny Uowvia Tne yvuone
y EE= < [npdypopo v ow avimgn
YNOYPTEIO NMAIAEIAL KAl OPHEKEYMATAQN

Evpwmaikr ‘Evwon EIAIKH YNMHPEZIA AIAXEIPITHL

E 6 K 8 Tauei
PUNAIEOTONMIKO TAHE Me ™ cuyxpnhparodotnon ¢ EAAadag kat tng Evpwnaikig Evwong

2NUEIWMUATO

2nNUEiwpa adglodoTnong

* To mmapdv UAIKG diaTiBeTal Je TOUG OGpoug TNG adelag xprions Creative Commons
Ava@opd Anuioupyou - Mn Eutropikry Xprion - MNapduoia Aiavouri 4.0 [1]1 R
uetayevéoTepn, AleBvric ‘Ekdoorn. ECaipouvTtal Ta auTOTEAR £€pya TRITWYV TT.X.
PwTOYPAYIES, dlaypAPMATA K.A.TT., TA OTTOIO EUTTEPIEXOVTAI OE AUTO KAl TA OTTOIA
avagEpovtal padi he Toug OPOUG XProng Toug oTo «Znueiwpa Xpnons Epywv Tpitwvy.

@089

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

*()0¢ Mn Eptropikni opiletal n xprion:
—1ou d&v mep\aUBAVEL AUECO 1 EUUECO OLKOVOULKO OPEAOC QO TNV XPron Tou €pyou, yla To SLOVOUEN TOU
€pyou kot adelodoyo

—T1tou Hev epLAAUBAVEL OLKOVOLLLKY) cuvaAAayn wc poUnmoBeon yia tn xprnon r npocBacn oto €pyo

—mtou dev npooTopilel 0To SLavopEa Tou Epyou Kot adelod0X0 EUMECO OLKOVOLKO 0deAOG (m.x. Stadnuioeslg)
aro tnv npoBoAr Tou £pyou o€ SLASLKTUAKO TOTIO

*O JIKAIOUXOC UTTOPEI va TTAPEXEI OTOV ADEIODOXO EEXWPIOTH AdEIQ VA XPNOIMOTIOIEI TO
€PYO VIO EUTTOPIKN XPron, Epocov auto Tou {nTnoki.

2NUEIWNA Ava@popac

Copyright MNavemotiuio Kptng, Mupwv MNMatmmaddkng. «Eicaywyn ota AikTua
YTrnpeoiwv. Assisting Lecture 10 - WS-BPEL». 'Ekdoon: 1.0.
HpdkAeio/P£Bupuvo 2015. AiaBéaipo atrd tn diIKkTuakn dieuBuvon:
https://elearn.uoc.gr/course/view.php?id=416/

