
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Εισαγωγή στα Δίκτυα
Υπηρεσιών

Assisting Lecture 10 – WS-BPEL

Mύρων Παπαδάκης

Τμήμα Επιστήμης Υπολογιστών

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 1

Introduction to Service Networks
CS-592 – Spring 2014

Assisting Lecture : WS-BPEL

Myron Papadakis (myrpap@gmail.com)

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 2

Introduction (1/3)

• Within companies, business applications have to interoperate and
integrate

• Integrating different applications has always been a difficult task for
various functional and technology related reasons.

• The most recent answer to the integration challenge is the Service
Oriented Architecture (SOA) and the web services technologies.

• The bottom-up view of the SOA sees different business applications
exposing their functionalities through web services.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 3

Introduction (2/3)

• Thus we can now access different functionalities of different legacy and
new developed applications in a standard way (through web services)

• Developing the web services and exposing the functionalities is not
sufficient.

• We also need a way to compose these functionalities in the right order

– a way to define business processes which will make use of the
exposed functionalities.

• This is where the BPEL (Business Process Execution Language for Web
Services) becomes important.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 4

Introduction (3/3)

• The process-oriented approach to SOA requires a language for relatively
simple description of how web services should be composed into
business processes

• BPEL is such a language: it allows composition of web services and is the
top-down approach to SOA — the process-oriented approach to SOA

• Web services can be composed in two ways: orchestration and
choreography

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 5

Orchestration and Choreography

• Orchestration: standards: BPEL (OASIS)

• Choreography: standards: WS-CDL (W3C), WSCI (W3C)

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 6

Orchestration (BPEL)

• In orchestration, a central process (which can be another web service) takes
control over the involved web services

• It coordinates the execution of different operations on the web services involved
in the operation.

• The involved web services do not know (and do not need to know) that they are
involved into a composition and that they are a part of a higher business process.

• Only the central coordinator of the orchestration knows this

– so the orchestration is centralized with explicit definitions of operations and
the order of invocation of web services.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 7

Orchestration

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 8

Choreography

• Choreography does not rely on a central coordinator.

• Each web service involved in the choreography knows exactly when to
execute its operations and whom to interact with.

• All participants of the choreography need to be aware of the business
process, operations to execute, messages to exchange, and the timing of
message exchanges.

• A choreography is not directly executable

• Choreographies can be used to better understand message exchange
patterns and to monitor message exchanges

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 9

Choreography

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 10

Web Service Composition Languages

• BPML: Business Process Modeling Language

• XLANG: Extension of Web Services Definition Language

• WSFL: Web Services Flow Language

• WS-BPEL: Web Services Business Process Execution Language

• WS-CDL: Web Services Choreography Description Language

• WSCI: Web Services Choreography Interface

• WS-CAF: Web Services Composite Application Framework

• …

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 12

BPEL Standard Sponsorship

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 13

WS-BPEL Design Goals

• Business processes defined using an XML-based language

• Web services are the model for process decomposition and assembly

• The same orchestration concepts are used for both the external (abstract)
and internal (executable) views of a business process

• Both hierarchical and graph-like control regimes are used, reducing the
fragmentation of the process modelling space

• An identification mechanism for process instances is provided at the
application message level

• The basic lifecycle mechanism is in implicit creation and termination of
process instances.

• A long-running transaction model is defined to support failure recovery
for parts of long running business processes

• Language built on compatible Web services standards in a composable
and modular manner

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 14

BPEL

• BPEL is a language used for composition, orchestration, and coordination
of web services.

• BPEL is an orchestration language, not a choreography language

• BPEL represents a convergence of two early workflow languages, WSFL
(Web Services Flow Language) and XLANG.

– WSFL was designed by IBM and is based on the concept of directed
graphs.

– XLANG was designed by Microsoft and is a block-structured language.

• BPEL combines both approaches and provides a rich vocabulary for the
description of business processes.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 15

BPEL

• BPEL is built on top of a number of XML-related specifications

– XML is used as the syntax for BPEL

– WSDL is used as the interface description of Web Services

– XML Schema is used to describe the types used by BPEL processes
– XPath is used to extract parts of data in a BPEL process

• It is an XML-based language which supports the web services technology
stack, including:

– SOAP, WSDL, UDDI, WS-Reliable Messaging, WS-Addressing, WS-
Coordination and WS-Transaction.

• WS-BPEL Specification is administered by OASIS

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 16

WS-BPEL in the WS-* Stack

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 17

BPEL

• BPEL is a language for creating executable code

• BPEL processes can be executed and thus are programs

• BPEL is a specialized and dedicated programming language

• BPEL combines two tasks when working with Web Services

– it creates a new Web Service which is described by a WSDL interface

– it implements the Web Service by orchestrating a number of partners

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 18

Business Processes in BPEL

• With BPEL, we can describe business processes in two distinct ways (BPEL
supports two types of business processes):

• We can specify the exact details of business processes.

– Such processes are called executable business processes and follow
the orchestration paradigm.

– They can be executed by an orchestration engine.
– In most cases BPEL is used for executable processes.

• We can specify the public message exchange between parties only.

– Such processes are called abstract business processes.
– They do not include the internal details of process flows and are not

executable.
– They are rarely used

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 19

Service Composition with BPEL

• A BPEL process specifies the exact order in which participating web
services should be invoked.

• Described in an XML file with extension .bpel.

• This can be done sequentially or in parallel.

• With BPEL, we can express conditional behavior, for example, a web
service invocation can depend on the value of a previous invocation.

• We can also construct loops, declare variables, copy and assign values,
define fault handlers, and so on.

• By combining all these constructs, we can define complex business
processes in an algorithmic manner.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 20

Service Composition with BPEL

• Most BPEL applications are executable processes

– describing the interfaces to external data sources

– describing the control flow for orchestrating these data sources

• BPEL is used for defining a new Web Service

– the process is invoked through one of its partner links

– it starts executing by following the process description

– it may contact other partners through other partner links

– as the final result, it may send back a response to the initial caller

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 21

Developing Business Processes with
BPEL

• With BPEL we can define simple and complex business processes.

• To a certain extent, BPEL is similar to traditional programming languages.

– It offers constructs, such as loops, branches, variables, assignments,
etc. that allow us to define business processes in an algorithmic way.

• On the other hand, it is less complex than traditional programming
languages, which simplifies learning.

• The most important BPEL constructs are related to the invocation of web
services.

– BPEL allows to invoke operations of web services either
synchronously or asynchronously.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 22

Developing Business Processes with
BPEL

• Anyone developing BPEL processes requires a good understanding of
WSDL and other related technologies.

• BPEL introduces WSDL extensions, which enable us to accurately specify
relations between several web services in the business process.

– These relations are called partner links.

• The following figure shows a BPEL process and its relation to web services
(partner links)

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 23

Developing Business Processes with
BPEL

A typical BPEL process and its relation to Web services (partner links)

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 24

Developing Business Processes with
BPEL

• Executable business processes are processes that compose a set of
existing services.

• When we describe a business process in BPEL, we actually define a new
web service that is a composition of existing services.

• For its clients a BPEL process looks like any other web service

• The interface of the new BPEL composite web service uses a set of port
types, through which it provides operations like any other web service.

• To invoke a business process described in BPEL, we must invoke the
resulting composite web service.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 25

Developing Business Processes with
BPEL

• A typical BPEL process

– First, the BPEL business process receives a request.

– To fulfill it, the process then invokes the involved web services

– Finally responds to the original caller.

• Because the BPEL process communicates with other web services, it
relies heavily on the WSDL description of the web services invoked by
the composite web service.

• A BPEL process consists of steps.

– Each step is called an activity

• BPEL supports primitive and structured activities

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 26

BPEL Elements Overview

• The process element : It is the root element of BPEL process definition. It
has a name attribute and it is used to specify the definition related
namespaces.

• Partner Links elements : These elements in a BPEL process define the
interaction of participating services with the process.

• Variables elements : A BPEL process allows to declare variables in order to
receive, manipulate, and send data.

• Fault Handlers element : A fault handler determines the activity which
the process has to perform when an error occurs.

• Correlation Sets element : Message correlation is the BPEL mechanism
which enables several processes to interact in Stateful conversation.

• Event handling element : An event handler allows the scope to response
to events, or the expiration of timers, at any time during the execution of
a scope.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 27

BPEL Process Syntax

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 28

BPEL Processes

• A BPEL process can be synchronous or asynchronous.

• A synchronous BPEL process blocks the client (the one which is using the
process) until the process finishes and returns a result to the client.

– <reply> is used for the response of a synchronous BPEL process

• An asynchronous process does not block the client.

– Rather it uses a callback to return the result (if any)

• Usually we use asynchronous processes for longer-lasting processes and
synchronous for processes that return a result in a relatively short time

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 29

Synchronous and Asynchronous BPEL
Processes

Synchronous

Asynchronous

If operations require that results are sent back to the client, they usually perform callbacks

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 30

Main Elements of a BPEL Process
(Process Definition)

process

imports

Declare dependencies on

external XML Schema or

WSDL definitions extensions

Declare namespaces of

WS-BPEL extension

attributes and elements

variables

Data holding state of a

business process or

exchanged with partners

partner

links

Relationships that a WS-

BPEL process will employ

in its behavior

correlation

sets

Application data fields

that together identify a

conversation

message

exchanges

Relationship between

inbound and outbound

message activities

event

handlers

Concurrently process

inbound messages or

timer alarms

fault

handlers

Deal with exceptional

situations in a process

primary

activity

Perform the process logic

– any number of activities

may be recursively

nested
XML

schemas

WSDL

definitions

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 31

BPEL Process and WSDL

• As BPEL processes are exposed as web services, we need a WSDL for the
BPEL process

• A client will usually invoke an operation on the BPEL process to start it.

• With the BPEL process WSDL, we specify the interface for this operation.

• We also specify all message types, operations, and port types a BPEL
process offers to other partners.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 32

Partner Link

• The various steps that make up the business process are exposed as
services

• Some type representation of that service: known as partner link

• Essentially an endpoint representing the service we are going to call..

• Partner link only defined with the interface of that service (no
implementation details in the partner link information)

• Partner links utilize roles
– Relationship of partner link with a particular service

• The endpoint or service is identified by a particular role

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 34

Partner Links

• BPEL orchestrates web service interactions.
– Each service interaction can be regarded as a communication with a

business partner.
– The interaction is described with the help of partner links.

• BPEL calls the links to all parties it interacts with as partner links

• You can regard one partner link as one particular communication
channel.

• Partners might be:
1. Services that invoke the BPEL process.
2. Services invoked by the BPEL process.
3. Services that play both roles - the BPEL process invokes the service

and the service invokes a callback on the BPEL process.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 35

Partner Links

• The BPEL process uses partner links not only to define services that are
invoked by the BPEL process, but also to define the interface of the BPEL
process

– Includes how clients contact/interact with the business process (see
WSDL port at the right side of the next slide)

• Each BPEL process has at least one client partner link, because there has
to be a client that invokes the BPEL process.

• BPEL processes use <partnerLinks/> to define partner links

• For each partner link one (synchronous) or two (asynchronous) roles are
specified and these roles are associated with portTypes.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 36

Partner Links

process

partner

link

partner link type

Peer-to-peer conversational partner relationship

WSDL

port type

myRole

Provided port type

WSDL

port type

partnerRole

Required port type

receive

Inbound request – service

provided by the process

invoke

Outbound request – service

required by the process

Partner Links Eclipse BPEL Designer

Partner Links Eclipse BPEL Designer

LoanInvokeArtifacts.wsdl

LoanInvoke.bpel

each partnerLink contains a partnerLinkType attribute, which references a partnerLinkType

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 39

Partner Link Type

• A partner link type declares how two parties interact and what each party
offers.

• A partner link type must have at least one role and can have at most two
roles (the latter is the usual case)

– It contains two PortTypes(WSDL), one for each of the roles in the
partner entry (i.e. one portType belongs to the process itself, the
other one is the portType of the service being invoked).

• Partner link types are not stored in a process

• They are be placed in the WSDL document that describes the partner
web service or the BPEL process.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 40

BPEL Partner Links > WSDL and BPEL
Process

• In partner Service WSDL

<plnk:partnerLinkType name="FunctionProcessService"
xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype">
<plnk:role name="FunctionProcessServicePortTypeRole"
portType="tns:FunctionProcessServicePortType"/>

</plnk:partnerLinkType>

• In BPEL Process

<partnerLinks>

<partnerLink name="FunctionProcessPartnerLink"
xmlns:tns="http://FunctionProcessService.wsdl"
partnerLinkType="tns:FunctionProcessService"
myRole="FunctionProcessServicePortTypeRole"/>

</partnerLinks>

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 41

Partner Links and Partner Link types

• It is easy to confuse partner links and partner link types, however:

– Partner link types and roles are special WSDL extensions defined by
the BPEL specification. As such, they are defined in WSDL files, not in
the process BPEL file.

– Partner Link is a BPEL 2.0 element (defined in the process BPEL file)

• Partner link types are prerequisites to the Partner Link element
definition.

• Note that multiple partnerLink elements can reference the same
partnerLinkType.

– This is useful for when a process service has the same relationship
with multiple partner services. All of the partner services can
therefore use the same process service portType elements

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 42

Basic Activities

• Basic activities represent basic constructs and are used for common tasks:

– Invoking other web services (synchronously or asynchronously), using
<invoke>

– <receive>:this activity plays an important role in the lifecycle of a
business process. It is usually used to initiate the process and its main
task is to block and wait for an incoming message.

– Generating a response for synchronous operations, using <reply>

– Manipulating data variables, using <assign>

– Indicating faults and exceptions, using <throw>

– Waiting for some time (set a duration or deadline), using <wait>

– Terminating the entire process (often used in switches), using
<terminate> etc

– ….

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 43

process

Basic Activities

receive reply

invoke
Invoke a one-way or

request-response operation

Do a blocking wait for a

matching message to arrive /

send a message in reply

validate

assign
Update the values of

variables or partner links

with new data

Validate XML data stored

in variables

throw

rethrow

Generate a fault from inside

the business process

Forward a fault from inside

a fault handler

exit

Immediately terminate

execution of a business

process instance

compensate

compensateScope

Invoke compensation on

all completed child scopes

in default order

Invoke compensation on

one completed child scope

wait
Wait for a given time

period or until a certain

time has passed

empty
No-op instruction for

a business process

extensionActivity
Wrapper for language

extensions

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 44

Invoking Web Service Operations

• Web Services are called by using invoke

– Web Service invocations can be request/response

– Web Service invocations can be asynchronous messages

• Invoke need variables for input and output

– output variables are not required for asynchronous invocations

• Fault handling can be defined to handle WSDL fault messages

– resilient BPEL processes should always handle fault messages

• Compensation handlers can be defined

– compensation is a mechanism to handle transactions in BPEL

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 45

Invoking Synchronous Web Services >
Sequentially

<process ...>

...

<sequence>

<!-- Wait for the incoming request to start
the process -->

<receive ... />

<!-- Invoke a set of related web services, one
by one -->

<invoke ... />

<invoke ... />

<invoke ... />

...

</sequence>

</process>

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 46

Invoking Synchronous Web Services
Concurrently

<process ...>

...

<sequence>

<!-- Wait for the incoming request to start the
process -->

<receive ... />

<!-- Invoke a set of related web services,
concurrently -->

<flow>

<invoke ... />

<invoke ... />

<invoke ... />

</flow>

...

</sequence>

</process>

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 47

Invoking Synchronous Web Services
Concurrently and Sequentially

<process ...>

<sequence>

<!-- Wait for the incoming request to start the process-->

<receive ... />

<!-- Invoke two sequences concurrently -->

<flow>

<!-- The three invokes below execute sequentially -->

<sequence>

<invoke ... />

<invoke ... />

<invoke ... />

</sequence>

<!-- The two invokes below execute sequentially -->

<sequence>

<invoke ... />

<invoke ... />

</sequence>

 </flow>

</sequence>

</process>

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 48

Invoking Asynchronous Web Services

<process ...>

<sequence>

<!-- Wait for the incoming request to start

the process -->

<receive ... />

<!-- Invoke an asynchronous operation -->

<invoke ... />

<!-- Do something else... -->

<!-- Wait for the callback -->

<receive ... />

...

</sequence>

</process>

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 49

How do synchronous and asynchronous
processes differ in the BPEL specification?

• Both first wait for the initial message, using a <receive>.
• Both also invoke other web services, either synchronously or asynchronously.
• However, a synchronous BPEL process will return a result after the process has

completed.
– Therefore, we use a <reply> construct at the end of the process

 <process ...>

<sequence>

<!-- Wait for the incoming request to start the
process -->

<receive ... />

<!-- Invoke a set of related web services -->

...

<!-- Return a synchronous reply to the caller (client)
-->

<reply ... /> <!– reply sends a response to a previous
receive -->

</sequence>

..</process>

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 50

Asynchronous Processes

• An asynchronous BPEL process does not use the <reply> clause.

• If such a process has to send a reply to the client, it uses the <invoke>
clause to invoke the callback operation on the client's port type

• An asynchronous BPEL process does not need to return anything.
<process ...>

<sequence>

<!-- Wait for the incoming request to start the
process -->

<receive ... />

<!-- Invoke a set of related web services -->

...

<!-- Invoke a callback on the client (if needed) -->

<invoke ... />

</sequence>

 </process>

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 51

Structured Activities

• Sequence (<sequence>), which allows us to define a set of activities that
will be invoked in an ordered sequence. The order of execution is
determined by their place inside the structure activity.

• Flow (<flow>) for defining a set of activities that will be invoked in parallel

• Case-switch construct (<switch>) for implementing branches

• While (<while>) for defining loops

• <repeatUntil>: just like while. It executes the containing activity while a
condition is true

• <pick>: associates activities with events and waits until an event is
triggered. The activities corresponding to the event are executed. The
event that occurs first is processed if multiple events are triggered.

– Pick can be used like the receive activity in order to initialize a process.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 52

process

flow Contained activities are

executed in parallel,

partially ordered through

control links

sequence Contained activities are

performed sequentially in

lexical order

while Contained activity is

repeated while a predicate

holds

repeatUntil Contained activity is

repeated until a predicate

holds

pick Block and wait for a

suitable message to arrive

(or time out)

forEach Contained activity is

performed sequentially or

in parallel, controlled by a

specified counter variable

if-elseif-else Select exactly one branch

of activity from a set of

choices

scope Associate contained activity

with its own local variables,

partner links, etc.,

and handlers

Structured Activities

2. N. 1. …

B C

A

c

c

c1 c2
…

2. N. 1. …

… A M2 M1

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 53

Nesting Structured Activities

<sequence>

 <receive .../>

 <flow>

 <sequence>

 <invoke .../>

 <while ... >

 <assign>...</assign>

 </while>

 </sequence>

 <sequence>

 <receive .../>

 <invoke ... />

 </sequence>

 </flow>

 <reply .../>

</sequence>

receive

reply

receive

invoke

invoke

assign

sequence

sequence sequence

flow

while

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 54

Variables

• Variables represent the state of a business process

• In a BPEL process, variables are used to hold messages that could be:

– an incoming message from a partner,

– outgoing message to a partner,

– data required to hold the state of a process instance (and are never
exchanged with partners) etc.

• These are specified in <variable/> elements, inside <variables /> element.

• Each variable has to be declared before it can be used.

• When we declare a variable, we must specify the variable name and type.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 55

Variables

• To specify type we have to specify one of the following attributes:

– messageType: A variable that can hold a WSDL message

– element: A variable that can hold an XML Schema element

– type: A variable that can hold an XML Schema simple type

• Variables can be declared globally at the beginning of a BPEL process
declaration document or within scopes

• Variables are manipulated using the <assign> activity

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 56

Variables

<variables>

<variable name="myVar1"

messageType="myNS:myWSDLMessageDataType" />

<variable name="myVar1" element="myNS:myXMLElement" />

<variable name="myVar2" type="xsd:string" />

<variable name="myVar2" type="myNS:myComplexType" />

</variables>

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 57

Variables and assigning

• Copying the data from one variable to the other is something that will
happen very often in a business process.

• Copying data can be achieved with the assign activity.

• This activity can also be used to copy new data into a variable.

• <assign>
 <copy>
 <from variable="ncname" part="ncname"/>
 <to variable="ncname" part="ncname"/>
 </copy>
</assign>

• If a variable holds a WSDL message, which is common, we can refine the
copy by specifying the part of the message we would like to copy.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 58

Scopes

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 59

Scopes

• SCOPEs enables you to divide a complex process into several parts

• SCOPEs provide a context for activities:

– Enables you to define different fault handlers for different activities.

– You can declare variables that are visible only with the scope.

– You can also define, correlation sets, compensation handlers, event
handlers.

• Each scope MUST have a PRIMARY activity

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 60

Scope Syntax

 <scope>

 <variables>variables local to the

scope</variables>

 <correlationSets>...</correlationSets>

 <faultHandlers>local handlers</faultHandlers>

 <compensationHandler>...</compensationHandler>

 <eventHandlers>...</eventHandlers>

 BASIC OR STRUCTURED ACTIVITIES

 </scope>

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 61

Scope Rules

• Each scope has a primary activity.

• This activity may be a basic activity or a structured activity such as
sequence or flow.

• If a scope has a structured activity, it can have many nested activities (all
in the same scope)

• A scope can also have nested scopes with arbitrary depth.

• Faults not caught in a scope are re-thrown to the enclosing scope.

• Scopes in which faults have occurred are considered to have ended
abnormally even if a fault handler has caught the fault and not re-thrown
it.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 62

Correlation

• A business process is communicating with multiple services and these
services could also be communicating with other services

• It's important to make sure that you are always talking with the right
instance of a service.

• To realize this in BPEL you could make use of correlation.

• Correlation offers the possibility to make sure you always talking to the
same instance of a service by adding identifying variables.

• When the process is invoked, these variables always have to be supplied
to make sure it's the same process you where talking to earlier on.

• A set of properties shared by messages and used for correlation is called
a correlation set.

• Correlation sets are defined and then used in invokes and receives.

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 63

Properties and Correlation Sets

• How to define stateful instances via stateless WS interfaces?

• A process instance is assigned one or more keys

– Business data is used as key, e.g. customerID

– A key can be compound, e.g (customerID, orderNo)

– WS-BPEL calls a key a correlation set – it is used to correlate an
incoming message with a process instance

13/10/2009 63

Process 4
(0123,15)

Process 3
(0815,42)

Process 2
(4711,37)

Process 1
(0815,12)

0815 42

Message 2

customerID

orderNumber

4711 37

Message 1

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 64

Compensation

• The goal of compensation is to reverse the effects of previous activities
that have been carried out as part of a business process that is being
abandoned.

• To define the compensation activities, BPEL provides compensation
handlers.

• Compensation handlers gather all activities that have to be carried out to
compensate another activity.

• Compensation handlers can be defined:

– For the whole process

– For the scope

– Inline for the <invoke> activity

• The compensation handler for the whole BPEL process is defined
immediately after the fault handlers section and before the main activity
of the process

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 65

compensation

handler

charge

credit card
refund

customer
ship

goods

fault

handler

notify

manager

compensate

fault

handler

rethrow

Process

sequence

scope scope 

Fault Handling & Compensation

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 66

Example

• BPEL process that selects the best insurance offer

– Two insurance services A and B

• Client invokes the BPEL process

• First we declare the partner links to the BPEL process client (called client)
and two insurance web services (called insuranceA and insuranceB)

• Next, we declare variables for the insurance request (InsuranceRequest),
insurance A and B responses (InsuranceAResponse,InsuranceBResponse),
and for final selection (InsuranceSelectionResponse)

• Finally we specify the process steps

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 67

BPEL Example

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 68

Declaring the Variables

Next, we declare variables for the insurance request (InsuranceRequest),
insurance A and B responses (InsuranceAResponse,InsuranceBResponse), and
for final selection (InsuranceSelectionResponse)

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 69

Specifying the process steps

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 70

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 71

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 72

Example > Send the response to the
client

7/5/2014 CS-592 Spring 2013 - Myron Papadakis 73

References

• https://www.oasis-
open.org/committees/download.php/23964/

• Book: Ws-Bpel 2.0 for Soa Composite Applications with
Oracle Soa Suite 11G

• http://www.oracle.com/technetwork/articles/matjaz-
bpel1-090575.html

• http://www.csie.ndhu.edu.tw/~showyang/SOC2008/04aBP
EL.pdf

https://www.oasis-open.org/committees/download.php/23964/
https://www.oasis-open.org/committees/download.php/23964/
https://www.oasis-open.org/committees/download.php/23964/
http://www.oracle.com/technetwork/articles/matjaz-bpel1-090575.html
http://www.oracle.com/technetwork/articles/matjaz-bpel1-090575.html
http://www.oracle.com/technetwork/articles/matjaz-bpel1-090575.html
http://www.oracle.com/technetwork/articles/matjaz-bpel1-090575.html
http://www.oracle.com/technetwork/articles/matjaz-bpel1-090575.html
http://www.csie.ndhu.edu.tw/~showyang/SOC2008/04aBPEL.pdf
http://www.csie.ndhu.edu.tw/~showyang/SOC2008/04aBPEL.pdf

Τέλος Ενότητας

Χρηματοδότηση
•Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
έργου του διδάσκοντα.

•Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Κρήτης» έχει
χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού.

•Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος
«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την
Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Σημειώματα

Σημείωμα αδειοδότησης
• Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons

Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 4.0 [1] ή
μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ.
φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία
αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

•Ως Μη Εμπορική ορίζεται η χρήση:
–που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του
έργου και αδειοδόχο
–που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο
–που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις)
από την προβολή του έργου σε διαδικτυακό τόπο

•Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το
έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί.
.

Σημείωμα Αναφοράς

Copyright Πανεπιστήμιο Κρήτης, Μύρων Παπαδάκης. «Εισαγωγή στα Δίκτυα
Υπηρεσιών. Assisting Lecture 10 – WS-BPEL». Έκδοση: 1.0.
Ηράκλειο/Ρέθυμνο 2015. Διαθέσιμο από τη δικτυακή διεύθυνση:
https://elearn.uoc.gr/course/view.php?id=416/

