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What is Monte Carlo?

(1 The famous casino place

] But also ....
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Monte Carlo Methods

O Monte Carlo numerical methods - Definition :

** Any computational method which solves a problem by generating suitable
random numbers and observing that fraction of the numbers obeying some
property or properties. The method is useful for obtaining numerical solutions

to problems which are too complicated to solve analytically.

v It was named by S. Ulam, who in 1946 became the first mathematician to
dignify this approach with a name, in honor of a relative having a propensity
to gamble (Hoffman 1998, p. 239). Nicolas Metropolis also made important
contributions to the development of such methods.

v They are also called “Monte Carlo Simulation” or “Stochastic Simulation”

methods.




Monte Carlo Methods

(1 ENIAC Los Alamos (1945-1955), from Stanislaw Ulam:

» The first thoughts and attempts | made to practice [the Monte Carlo Method] were
suggested by a question which occurred to me in 1946 as | was convalescing from an
illness and playing solitaires. The question was what are the chances that a Canfield
solitaire laid out with 52 cards will come out successfully? After spending a lot of time
trying to estimate them by pure combinatorial calculations, | wondered whether a more
practical method than "abstract thinking" might not be to lay it out say one hundred
times and simply observe and count the number of successful plays. This was already
possible to envisage with the beginning of the new era of fast computers, and |
immediately thought of problems of neutron diffusion and other questions of
mathematical physics, and more generally how to change processes described by certain
differential equations into an equivalent form interpretable as a succession of random
operations. Later [in 1946], | described the idea to John von Neumann, and we began to
plan actual calculations.



Monte Carlo Methods

» Being secret, the work of von Neumann and Ulam required a code name. Von
Neumann chose the name "Monte Carlo". The name is a reference to the Mote Carlo
Casino in Monaco where Ulam's uncle would borrow money to gamble!

The Monte Carlo Casino




Course Overview

e Chapter 1 — Introduction in Monte Carlo (MC): What is Monte Carlo? Deterministic vs

Stochastic systems. Goals of the course.

e Chapter 2 — Basic Monte Carlo techniques: Random number generators. Numerical

integration with MC. Optimization MC algorithms.

e Chapter 3 — Importance sampling: Monte Carlo importance sampling algorithms.

Acceptance — rejection methods.
e Chapter 4 — Markovian chains: Metropolis — Hastings algorithms. Gibbs sampling.
e Chapter 5 — Special subjects: Convergence of MC algorithms. Comparing algorithms.

» Chapter 6 — Special subjects (graduate): Theoretical study of convergence of MC
Markovian based algorithms. Multi-level techniques. Parallel MC. Models of natural

systems.



Needed / Related Courses

» Needed courses — knowledge :

» Basic knowledge of probability theory, statistics. Introductionin

probability (TEM-151).
» Programming language (C/C++ or Fortran 90 or Matlab)
» Stochastic methods | (TEM-261).
» Numerical methods for ordinary differential equations (TEM-291).
» Related courses:
» Stochastic methods Il (TEM-262).

» Numerical methods for partial differential equations (TEM-292).



Overall Assessment

L Final exam (standard 1-2 hour examination): 70%, Lab/Coursework 30%.
or

1 Final exam (standard 1-2 hour examination): 30%, Lab/Coursework 30%,

Project: 40/%

v’ Note: The grade in the final examination and in the lab should be >=5

(50%).

U The grades of the lab and the projectare valid till September.



Teaching Course

> Lectures

» Lab / Coursework: Examples. Computer experiments using a

programming language (e.g. C/C++, Fortran90, Matlab).
» Slides.

» 4-6 hours per week (2-4 theory + 2 coursework/lab).



Lab

Lab of the course involves:

» Using a programming language or a software package (e.g.

Matlab) for Monte Carlo techniques.

> Applying Monte Carlo algorithms in a series of different examples

from statistics, natural sciences, economics, etc.

 During the semester 3-4 sets of coursework (problem sheets) will be

given.

» The coursework is individual or in a small team of 2 persons.



Project

A During the last 4-5 weeks of the semester a research project could be

given.

[ The project will concern the study and presentation of a research
subject related with the theory and/or the application of Monte Carlo

algorithms.

[ The final project will be team based (small teams of 3-5 persons).



Goals of the Course

Upon completion of this course you should have:

» Acquired basic knowledge of the theory of Monte Carlo techniques.

» Understood Monte Carlo algorithms from the point of view of the

numerical methods.

And be able to:
» Apply Monte Carlo methodologies in a variety of different problems.
» Use/modify Monte Carlo algorithms.

» Use stochastic simulation techniques.



Applications of Monte Carlo
Algorithms

» Natural sciences: Statistical physics, chemistry, materials science, ...
* Engineering,

* Economics,

* Mathematics: Applied Statistics,

 Astrophysics,

* Environmental models,

* Computational Biology, Biostatistics,

* Neural network models: modeling of brain,

* Many more ...



Stochastic vs Deterministic

v Monte Carlo is a stochastic simulation technique:

(1 Deterministic system: A system in which the later states of the system follow from, or
are determined (exactly) by, the earlier ones.

» No randomness.

» A deterministic model always produce the same output from a given starting

condition or initial state.

[ Stochastic system: A system in which the later states of the system are not determined
(exactly) by the earlier ones.
» Involve randomness.

» There are many possible future states, for a given starting condition.



Stochastic vs Deterministic: Examples

O Deterministic systems: Classical mechanics, quantum mechanics, Navier —

Stokes equations, ... etc.

[ Stochastic systems: Random walks, Brownian motion, stock market prices,

biology (gene expression), ... etc.

v Note: If a system is deterministic, this doesn't necessarily imply that later
states of the system are predictable from a knowledge of the earlier ones. In
this way, chaos is similar to a random system. For example, chaos has been
termed "deterministic chaos" since, although it is governed by deterministic
rules, its property of sensitive dependence on initial conditions makes a chaotic
system, in practice, largely unpredictable.



History of Monte Carlo Methods

* (1733) Buffon's needle problem.
* (1812) Laplace suggests using Buffon's needle experiment to estimate .
* (1946) ENIAC (Electronic Numerical Integrator And Computer) built.

* (1947) John von Neuman and Stanislaw Ulam propose a computer simulation
to solve the problem of neutron diffusionin fissionable material.

* (1949) Metropolis and Ulam paper (Journal of the American Statistical
Association).

* (1984) Gibbs sampler technique (Geman & Geman).

* From then onwards: continuously growing interest of statisticians in Monte
Carlo methods.



A little bit of History: Buffon’s Needle

¢ First (?) application of Monte Carlo methods: Buffon’s needle (Buffon 1777)

“ Suppose we have a floor made of parallel strips of
wood, each the same width, and we drop a needle onto
the floor. What is the probability that the needle will lie
across a line between two strips?”

Georges-Louis Leclerc, Comte de Buffon
2 (7 September 1707 — 16 April 1788)

» Solution (short needle / < t): P

7l

» Home exercise: yﬁ \b

A) Derive the above solution (short needle / < t)

B) What is the solution for large needle (/> t)?



Buffon’s Needle

% Monte Carlo algorithm for the calculation of m:

A. “Throw” randomly n needles.
B. Checkhow many of them cut a line (suppose m).

C. Compute probability P, through: P,=m/n
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The Best of the 20th Century:
Top 10 Algorithms

¢ Dongarra and Sullivan, Computing in Science and Engineering, 2000, SIAM News.

1 "Great algorithms are the poetry of computation", says Francis Sullivan of the
Institute for Defense Analyses' Center for Computing Sciences in Bowie, Maryland. He
and Jack Dongarra of the University of Tennessee and Oak Ridge National Laboratory
have put together a sampling that might have made Robert Frost beam with pride--had

the poet been a computer jock.

O Their list of 10 algorithms having "the greatest influence on the development and
practice of science and engineering in the 20th century" appears in the
January/February issue of Computing in Science & Engineering. If you use a computer,

some of these algorithms are no doubt crunching your data as you read this.



The Best of the 20th Century:
Top 10 Algorithms

The drum roll, please:

1946: The Metropolis Algorithm for Monte Carlo. Through the use of random
processes, this algorithm offers an efficient way to stumble toward answers to
problemsthat are too complicated to solve exactly.

1947: Simplex Method for Linear Programming. An elegant solution to a common
problemin planning and decision-making.

1950: Krylov Subspace Iteration Method. A technique for rapidly solving the linear
equations that abound in scientific computation.

1951: The Decompositional Approach to Matrix Computations. A suite of
techniques for numerical linear algebra.

1957: The Fortran Optimizing Compiler. Turns high-level code into efficient
computer-readable code.



The Best of the 20th Century:
Top 10 Algorithms

1959: QR Algorithm for Computing Eigenvalues. Another crucial matrix operation
made swift and practical.

1962: Quicksort Algorithms for Sorting. For the efficient handling of large
databases.

1965: Fast Fourier Transform. Perhaps the most ubiquitous algorithm in use today,
it breaks down waveforms (like sound) into periodic components.

1977: Integer Relation Detection. A fast method for spotting simple equations
satisfied by collections of seemingly unrelated numbers.

1987: Fast Multipole Method. A breakthrough in dealing with the complexity of n-
body calculations, applied in problems ranging from celestial mechanics to protein
folding.
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T€Aog Evotntog

EE&E'AIAEYZH KAI AIA BIOY MA.GIH.ZVH :ﬁ Ez nA
ereévdyon gTnv Uowwvia Tne yviwone |
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Evpwmaikn Evwon 3
E iix6 Korvwwixo Tapeis
opumaS KomasSTAKES 11 v ouyxpnaTos6Ton e ENNGSac Kai TG Eupwnaikiic Eveone



Xpnuoatodotnon

To mapOv ekTALOEVUTLKO UALKO €XEL avartuxBel ota mAaiola tou
eKTIALOEVTLKOU £pyou Tou dLdaokovta.

To €pyo «Avoikta Akadnpaika Madnpata oto NMNaveniotipio Kpntng»
gxeLxpnuatodotnoeL povo tn avadlapopdwaon tou ekmatdeutikol UALKOU.

To €pyo uAoroLeita oto mAaioLo tou Emyelpnotlakou MNpoypappotod
«Ekmaidegvon kot Ata Biov Madnon» kat cuyxpnuatodoteital amno tnv
Evpwmnaiki Evwon (Evpwmaiko Kowvwviko Tapeio) kot oo eBvikolg
TIOPOUC.

* X %

EMNIXEIPHXIAKO NMPOIPAMMA
EKMAIAEYZH KAI AIA BIOY MAGHZH 5 EZ"A

* *
* *
* *

* 5k

= n npéypappa yia v avdntugn

YNOYPFEIO MAIAEIAL KAl OPHIKEYMATQON

EvpwndixiEvwon E!AIKH YMNHPEZIA AIAXEIPIZHE
Evpwmaiké Kowvwviké Tapeio 5 e P
Me tn ouyxpnparodoétnon tn¢ EAAGdag kat tng Evpwnaikig Evwong
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2 NMELWMOTO



Znueiwpa adsodotnonc

*  Tomapov UALKO SratiBetal pe Toug opouc tne adetacg xpnong Creative Commons
Avadopd, Mn Epmoptkn Xpnon, Oxt Napaywyo Epyo 4.0 [1] A petayevéotepn,
AeBvnic Ekboon. E€alpouvtal ta autoteln Epya Tpitwv m.x. dwtoypadlec,
Slaypappato KA., TO OTtola EUTIEPLEXOVTAL OE AUTO Kal Ta omoia avadEpovtal
Holl LE TOUC OpOUC XPNONG TOUC 0To «Inueilwpa Xpriong Epywv Tplitwv».

(@0l

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

* Q¢ Mn Epmopikni opiletal n xpnon:

— Tou bev mepAapBAVEL AUECO 1 EUUECO OLKOVOULKO OPEANOC aTtd TNV Xprion Tou £pyou, yLd
To SLovopEa Tou €pyou Katl adelodoxo

— T1ou Oev mepAaUBAVEL OLKOVOULKN) cuvaAlayr we poUnoBeon ya tn xprion A mpoofaocn
OTO £pyO

— Tmou dev pooTopilel oto SlavopEa Tou Epyou Kal adeLoSOX0 EUUECO OLKOVOLKO OdENOC
(r.x. Stadpnuioelc) amod tnv npoPoAr tou Epyou o€ SLadLKTUAKO TOTIO

* O dkalouyoc umopet va apexeLl otov adelodoyo Eexwplotn AdeLla val XpnNOLUOTIOLEL
TO €PYO yla EUTTOPLKN Xprion, Edocov auto tou {Ntnosl. 26



npeiwpa Avadopag

Copyright Navemotiuio KpAtng, BayyeAnc Xapuavdapng 2015. «Elcaywyn
oe pe6odouc Monte Carlo. Evotnta 1: Elcaywyn». Ekdoon: 1.0. HpakAelo
2015. AtaBgouo amno tn diktuvakn dtevBuvon:
https://opencourses.uoc.gr/courses/course/view.php?id=228.



AlotApnNon ZNUELWHATWVY

OrnoladNmote avarnopaywyn N SLeokeun Tou UALKOU Ba mpEmel
va cupTeplAapUBavet:

" T0 ZNUeilwpa Avadopag

= 10 2nueilwpa Adelodotnong

= tn 6NAwon AlatApnNong ZNUELWUATWY

" tolnueiwpa Xprong Epywv Tpitwv (epooov umapxet)

Holl e Toug ouVOSEUOUEVOUC UTTIEPCUVOETHOUC.



