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Part I: Introduction
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❑ The famous casino place 

What is Monte Carlo?

❑ But also …. 
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❑ Monte Carlo numerical methods - Definition :

Monte Carlo Methods

❑ They are also called “Monte Carlo Simulation” or “Stochastic Simulation” 

methods.

✓ It was named by S. Ulam, who in 1946 became the first mathematician to 
dignify this approach with a name, in honor of a relative having a 
propensity to gamble (Hoffman 1998, p. 239). Nicolas Metropolis also made 
important contributions to the development of such methods. 

❖  Any computational method which solves a problem by generating 

suitable random numbers and observing that fraction of the numbers 

obeying some property or properties. The method is useful for obtaining 

numerical solutions to problems which are too complicated to solve 

analytically.
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❑ ENIAC Los Alamos (1945-1955), from Stanislaw Ulam:  

➢ The first thoughts and attempts I made to practice [the Monte Carlo Method] 
were suggested by a question which occurred to me in 1946 as I was convalescing 
from an illness and playing solitaires. The question was what are the chances that 
a Canfield solitaire laid out with 52 cards will come out successfully? After 
spending a lot of time trying to estimate them by pure combinatorial 
calculations, I wondered whether a more practical method than "abstract 
thinking" might not be to lay it out say one hundred times and simply observe and 
count the number of successful plays. This was already possible to envisage with 
the beginning of the new era of fast computers, and I immediately thought of 
problems of neutron diffusion and other questions of mathematical physics, and 
more generally how to change processes described by certain differential 
equations into an equivalent form interpretable as a succession of random 
operations. Later [in 1946], I described the idea to John von Neumann, and we 
began to plan actual calculations. 

Monte Carlo Methods
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➢ Being secret, the work of von Neumann and Ulam required a code name. Von 
Neumann chose the name "Monte Carlo". The name is a reference to the Mote 
Carlo Casino in Monaco where Ulam's uncle would borrow money to gamble!

Monte Carlo Methods
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• Chapter 1 – Introduction in Monte Carlo (MC): What is Monte Carlo? 

Deterministic vs Stochastic systems. Goals of the course. 

• Chapter 2 – Basic Monte Carlo techniques: Random number generators.  

Numerical integration with MC. Optimization MC algorithms. 

• Chapter 3 – Importance sampling: Monte Carlo importance sampling 

algorithms. Acceptance – rejection methods. 

• Chapter 4 – Markovian chains: Metropolis – Hastings algorithms. Gibbs 

sampling.  

• Chapter 5 – Special subjects: Convergence of MC algorithms. Comparing 

algorithms.  

• Chapter 6 – Special subjects (graduate): Theoretical study of convergence of 

MC Markovian based algorithms. Multi-level techniques. Parallel MC. Models of 

natural systems. 

Course Overview
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• Needed courses – knowledge :  

➢ Basic knowledge of probability theory, statistics.  Introduction in 

probability (ΤΕΜ-151). 

➢ Programming language (C/C++ or Fortran 90 or Matlab) 

➢ Stochastic methods I (ΤΕΜ-261). 

➢ Numerical methods for ordinary differential equations (ΤΕΜ-291). 

• Related courses: 

➢ Stochastic methods II (ΤΕΜ-262). 

➢ Numerical methods for partial differential equations (ΤΕΜ-292).

Needed / Related Courses
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❑ Final exam (standard 1-2 hour examination): 70%, Lab/Coursework 

30%. 

or  

❑ Final exam (standard 1-2 hour examination): 30%, Lab/Coursework 

30%, Project: 40/%  

✓ Note:  The grade in the final examination and in the lab should be >= 5 

(50%).   

❑ The grades of the lab and the project are valid till September.

Overall Assessment
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➢  Lectures 

➢  Lab / Coursework: Examples. Computer experiments using a 

programming language (e.g. C/C++, Fortran90, Matlab).    

➢  Slides. 

➢  4-6 hours per week (2-4 theory + 2 coursework/lab).

Teaching Course
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Lab of the course involves: 

➢ Using a programming language or a software package (e.g. Matlab) 

for Monte Carlo techniques. 

➢ Applying Monte Carlo algorithms in a series of different examples 

from statistics, natural sciences, economics, etc.  

❑ During the semester 3-4 sets of coursework (problem sheets) will be 

given. 

➢ The coursework is individual or in a small team of 2 persons.  

Lab
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❑ During the last 4-5 weeks of the semester a research project could be 

given.  

❑ The project will concern the study and presentation of a research 

subject related with the theory and/or the application of Monte Carlo 

algorithms.  

❑ The final project will be team based (small teams of 3-5 persons).  

Project
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Upon completion of this course you should have: 

➢  Acquired basic knowledge of the theory of Monte Carlo techniques. 

➢ Understood Monte Carlo algorithms from the point of view of the 

numerical methods. 

And be able to: 

➢ Apply Monte Carlo methodologies in a variety of different problems.  

➢ Use/modify Monte Carlo algorithms.  

➢ Use stochastic simulation techniques.

Goals of the Course
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Applications of Monte Carlo Algorithms

❖ Natural sciences: Statistical physics, chemistry, materials science, … 

❖ Engineering,  

❖ Economics,  

❖ Mathematics: Applied Statistics,  

❖ Astrophysics,  

❖ Environmental models,  

❖ Computational Biology, Biostatistics,  

❖ Neural network models: modeling of brain,  

❖ Many more …
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✓ Monte Carlo is a stochastic simulation technique: 

❑ Deterministic system: A system in which the later states of the system 

follow from, or are determined (exactly) by, the earlier ones. 

➢ No randomness. 

➢ A deterministic model always produce the same output from a given 

starting condition or initial state.

Stochastic vs Deterministic

❑ Stochastic system: A system in which the later states of the system are not 

determined (exactly) by the earlier ones. 

➢ Involve randomness. 

➢ There are many possible future states, for a given starting condition.
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✓ Note: If a system is deterministic, this doesn't necessarily imply that later 
states of the system are predictable from a knowledge of the earlier ones. In 
this way, chaos is similar to a random system. For example, chaos has been 
termed "deterministic chaos" since, although it is governed by deterministic 
rules, its property of sensitive dependence on initial conditions makes a 
chaotic system, in practice, largely unpredictable. 

Stochastic vs Deterministic: Examples
❑ Deterministic systems: Classical mechanics, quantum mechanics, Navier – 

Stokes equations, … etc.  

❑ Stochastic systems: Random walks, Brownian motion, stock market prices, 

biology (gene expression), … etc.  
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History of Monte Carlo Methods

❑ (1733) Buffon's needle problem. 

❑ (1812) Laplace suggests using Buffon's needle experiment to estimate π. 

❑ (1946) ENIAC (Electronic Numerical Integrator And Computer) built. 

❑ (1947) John von Neuman and Stanislaw Ulam propose a computer 
simulation to solve the problem of neutron diffusion in fissionable material. 

❑ (1949) Metropolis and Ulam paper (Journal of the American Statistical 
Association). 

❑ (1984) Gibbs sampler technique (Geman & Geman). 

❑ From then onwards: continuously growing interest of statisticians in Monte 
Carlo methods.
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A little bit of History: Buffon’s Needle

❖ First (?) application of Monte Carlo methods: Buffon’s needle (Buffon 1777)

“ Suppose we have a floor made of parallel strips 
of wood, each the same width, and we drop a 
needle onto the floor. What is the probability that 
the needle will lie across a line between two 
strips?”

➢  Solution (short needle l < t): 2lP
tπ

=

➢  Home exercise:  

 A) Derive the above solution (short needle l < t) 

 B) What is the solution for large needle (l > t)?
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Buffon’s Needle

❖ Monte Carlo algorithm for the calculation of π:

A. “Throw” randomly n needles.  

B. Check how many of them cut a line (suppose m).  

C. Compute probability Pn  through: Pn = m/n

2lim
n

n

l
P t

π
→∞

=
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The Best of the 20th Century: Top 10 Algorithms

❖ Dongarra and Sullivan, Computing in Science and Engineering, 2000, SIAM 
News.

❑ "Great algorithms are the poetry of computation," says Francis Sullivan of 

the Institute for Defense Analyses' Center for Computing Sciences in Bowie, 

Maryland. He and Jack Dongarra of the University of Tennessee and Oak 

Ridge National Laboratory have put together a sampling that might have 

made Robert Frost beam with pride--had the poet been a computer jock.  

❑ Their list of 10 algorithms having "the greatest influence on the 

development and practice of science and engineering in the 20th century" 

appears in the January/February issue of Computing in Science & 

Engineering. If you use a computer, some of these algorithms are no doubt 

crunching your data as you read this. 
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The Best of the 20th Century: Top 10 
Algorithms

The drum roll, please:  

1946: The Metropolis Algorithm for Monte Carlo. Through the use of random processes, this 
algorithm offers an efficient way to stumble toward answers to problems that are too 
complicated to solve exactly.  

1947: Simplex Method for Linear Programming. An elegant solution to a common problem in 
planning and decision-making.  

1950: Krylov Subspace Iteration Method. A technique for rapidly solving the linear equations 
that abound in scientific computation.  

1951: The Decompositional Approach to Matrix Computations. A suite of techniques for 
numerical linear algebra.  

1957: The Fortran Optimizing Compiler. Turns high-level code into efficient computer-
readable code.  

1959: QR Algorithm for Computing Eigenvalues. Another crucial matrix operation made swift 
and practical.  

1962: Quicksort Algorithms for Sorting. For the efficient handling of large databases.  

1965: Fast Fourier Transform. Perhaps the most ubiquitous algorithm in use today, it breaks 
down waveforms (like sound) into periodic components.  

1977: Integer Relation Detection. A fast method for spotting simple equations satisfied by 
collections of seemingly unrelated numbers.  

1987: Fast Multipole Method. A breakthrough in dealing with the complexity of n-body 
calculations, applied in problems ranging from celestial mechanics to protein folding. 
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