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Introductory Examples: Calculate m

Calculation of number m with the following method:

> [epIKAEiOUPE KUKAO PE Eva TETPAYWVO. AnploupyoUde m tuxaia onpeia péoa
O0TO TETPAYWVO.

> BpIlOKOUWE TA ONUEIA TTOU EPTIEPLEXOVTAL KAl JECA OTOV KUKAO, n.

> Av r = n/m, 10t€ 0 aplBpoc m mpooeyyiletal wg i = 4r. ‘0co MEPLOOOTEPA TA
onpeia m 1000 peyaAutepn akpiBela tou umoAoylopou.

2r

Ag = (2r)?2 = 4r?
A, = mrx?
n =4 x——

As

MC Methods, Ch. 2: Integration, Optimization, Random Number Generators



Introductory Examples: Calculate m
Algorithm:

npoints = 1000000
circle count=10
do j =1, npoints
generate 2 random numbers between 0 and 1
xcoordinate = random1
ycoordinate = random?2
if (xcoordinate, ycoordinate) inside circle then
circle count = circle_count + 1

end do

PI = 4.0*circle count/npoints

* O xpOVOC VTOAOYICHOD elval KUPIME 0 YPOVOC EKTELECTC TNG EMAVOANTTIKNG OL0OIKAGIOC
(loop).
* Avt0 oonyel o€ (6YedOV) ‘“TéAE10 TAPOAANAIGUO’ (embarrassingly parallelism):

> BEvtotikol vmoAoyioot.

>EAdyiot emkotvovia, eEldyioto 1/0.
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Introductory Examples: Calculate m

 Estimate 7 as a function of sample size:
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Monte Carlo Integration
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Monte Carlo Integration
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Monte Carlo Integration

MC Methods, Ch. 2: Integration, Optimization, Random Number Generators




Monte Carlo Integration: Example

J Example: Calculate the integral of a function h(x)
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Monte Carlo Integration: Example

J Example: Estimators
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Monte Carlo Integration

J Generalization of Integration: Riemann sums vs MC method (see hand

notes).
1
/ f(a) da
0

1 ,f(x)

= / / 1 dt dx
0 0

/ / 1dt dx

{(z,t):t<f(x)}
I 1 dt dx
{(z,t):t<f(x)}
B ff 1dt dx

{0<z,t<1}

f:10,1] — [0,1]
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Monte Carlo Integration

J Comparison — Speed of Convergence:

Speed of convergence of Monte Carlo integration is
Op(n=12).

Speed of convergence of numerical integration of a
one-dimensional function by Riemann sums is O(n=1).

Does not compare favourably for one-dimensional problems.
However:

o Order of convergence of Monte Carlo integration is
independent of the dimension.

e Order of convergence of numerical integration techniqges like
Riemann sums deteriorates with the dimension increasing.

~+ Monte Carlo methods can be a good choice for
high-dimensional integrals.
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Random Number Generators

@ Philosophical paradox:

o We need to reproduce randomness by a computer algorithm.
o A computer algorithm is deterministic in nature.

~ "pseudo-random numbers”

@ Pseudo-random number from U|0, 1| will be our only “source
of randomness”.

@ Other distributions can be derived from UJ0, 1]
pseudo-random numbers using deterministic algorithms.

=
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Pseudo-Random Number Generators

@ A pseudo-random number generator (RNG) should produce
output for which the U[0, 1] distribution is a suitable model.

@ [he pseudo-random numbers X;. X5, ... should thus have the
same relevant statistical properties as independent realisations
of a U[0, 1] random variable.

o They should reproduce independence ( “lack of predictability”):
X1,....X, should not contain any discernible information on
the next value X,,11.This property is often referred to as the
lack of predictability.

e [he numbers generated should be spread out evenly across

0,1].
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Pseudo-Random Number Generators

d A simple example: Congruential pseudo-RNG.

Algorithm 1.1: Congruential pseudo-random number generator

1. Choose a, M € N ,c € Ny, and the initial value ( “seed”)
Zy € {1,...M—1}.

2. Fori=1,2,...

Set Zi = (aZi_1 +¢) mod M, and X; = Z; /M.

Z; €{0,1,....,M — 1}, thus X; € [0, 1).
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Pseudo-Random Number Generators

Cosider the choice of a = 81, ¢ = 35, M = 256, and seed Zy = 4.

Z1 = (81-4+35) mod 256 = 359 mod 256 = 103
(81-103 + 35) mod 256 = 8378 mod 256 = 186
(81186 + 35) mod 256 = 15101 mod 256 = 253

NN
[

The corresponding X; are X1 = 103/256 = 0.4023438,
Xo = 186/256 = 0.72656250, X1 = 253/256 = 0.98828120.
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Pseudo-Random Number Generators

J RANDU: A typical poor choice of RNG.

@ Very popular in the 1970s
(e.g. System/360,
PDP-11).

@ Linear congruential
generator with
a=29% 13 ¢=0, and
f\[ — 231.

@ The numbers generated
by RANDU lie on only 15

hyperplanes in the
3-dimensional unit cube!

According to a salesperson at the time: “We guarantee that each number is
random individually, but we don't guarantee that more than one of them is

random.”
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Pseudo-Random Number Generators

4 Flaw of the linear congruential RNG.

“Crystalline” nature is a problem for every linear congurentrial
generator.

Sequence of generated values X1, X2, ... viewed as points in
an n-dimension cube lies on a finite, and often very small
number of parallel hyperplanes.

Marsaglia (1968): “the points [generated by a congruential
generator| are about as randomly spaced in the unit n-cube as
the atoms in a perfect crystal at absolute zero."

The number of hyperplanes depends on the choice of a, ¢,

and M.

For these reasons do not use the linear congurential generator!

Use more powerful generators (like e.g. the Mersenne twister,
available in GNU R).
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d Ano
th
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