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Basic Idea

What we have seen . ..
How to generate uniform U[0, 1] pseudo-random numbers.

This lecture will cover . ..
Generating random numbers from any distribution using

o transformations (CDF inverse, Box-Muller method).

@ rejection sampling.

d Transformation Methods:

@ We can generate

U ~ U0, 1].
@ Can we find a transformation 7" such that
T'U)~F

for a distribution of interest with CDF £'7
@ One answer to this question: inversion method.
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Transformation Methods

4 CDF and its Generalized Inverse:

Cumulative distribution function (CDF)

Properties of F'~ (taken without proof)
@ F(F(x)) <z, YueF(0,1])
Q@ F(F~(u))>u, Yue]|0,1]
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Transformation Methods

Jd Inversion Method:

Theorem 2.1: Inversion method
Let U ~ U[0,1] and F' be a CDF. Then F~—(U) has the CDF F'.

Proof: From the definition of the CDF, F(x) =P(U < F'(x)), so

we need to prove that

P(F-(U)<x)=PU < F(x)), V.

It is sufficient to prove the equivalence:

F(U)<ze U< F(x).
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Inverse Method

J Example: Exponential Distribution

The exponential distribution with rate A > 0 has the CDF (x > 0)

Fx(r) = 1—exp(—A\r)
Fo(u) = Fyo'(u) = —log(l—u)/A.

So we have a simple algorithm for drawing Expo(\):
Q@ Draw U ~ U0, 1].
log(1 —-U)

log(U)
; .

Set X = —
Q Se \

, or equivalently X = —
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Inverse Method

d Example: Box - Muller method for Generating Gaussians

Box-Muller method

O Draw -
Uy, Us = U0, 1].

Q Set

X1 = +/—2log(Uy) - cos(2nUs),
Xy = /—2log(U;) -sin(27U>).

Then X1, X5 = N(0,1).
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Inverse Method

d Example: Box - Muller method for Generating Gaussians

@ Consider a bivariate real-valued random variable (X, X5) and
its polar coordinates (I7.6), i.e.

X1 =R-cos(h), Xo = R -sin(#) (1)

@ Then the following equivalence holds:
X1, X2 = N(0,1) <= 6 ~ U0, 27] and R? ~ Expo(1/2)
indep.
@ Suggests following algorithm for generating two Gaussians
X1. X5 "= N(0, 1):
@ Draw angle # ~ U[0,27] and squared radius R? ~ Expo(1/2).
@ Convert to Cartesian coordinates as in (1)

o From Uy. Uy "= U[0, 1] we can generate R and 6 by
R =+/—2log(U,). § = 2rUs,

giving
X1 = V/—2log(Uh)-cos(2nl),  Xa = \/—2log(Uy)-sin(210s)
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Rejection Sampling

 Basic Idea:

@ Assume we cannot directly draw from density f.
e Tentative idea:

O Draw X from another density ¢ (similar to f, easy to sample
from).
Q Only keep some of the X depending on how likely they are

under f.
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Rejection Sampling
d Basic Idea:

o Consider the identity

f(z)
f(x) = / 1 du = /1O<u<f(a:) du.
0 e,

=f(z,u)

@ f(x) can be interpreted as the marginal density of a uniform
distribution on the area under the density f(x):

{(z,u): 0<u< f(x)}.

@ Sample from f by sampling from the area under the density.

u
A
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Rejection Sampling

J Rejection Sampling Algorithm:

Algorithm 2.1: Rejection sampling

Given two densities f, g with f(z) < M - g(z) for all 2, we can
generate a sample from f by

1. Draw X ~ g.
2. Accept X as a sample from f with probability
f(X)
M- g(X)’

otherwise go back to step 1.

Note: f(x) < M - g(x) implies that f cannot have heavier tails
than g.
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Rejection Sampling

J Rejection Sampling Algorithm:

If we know f only up to a multiplicative constant, i.e. if we only
know 7(x), where f(z) = C' - w(x), we can carry out rejection
sampling using

7(X)
M - g(X)

as probability of rejecting X, provided 7(x) < M - g(x) for all .

Can be useful in Bayesian statistics:

fPI:iOr(f))l(yL e ynlﬁ)
Jo PR (D)l(y1, - .- yul?) dI

FPOst () = = C-fP"N () (y1.....ynlf)
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Rejection Sampling

J Example: Rejection Sampling from the N[0, 1] distribution using the Cauchy
proposal

o Recall the following densities:
I

1 2
N(O. 1) f(;l.‘.) = \/27 exp (_7>
1

(1 + z22)
o For M = /27 - exp(—1/2) we have that f(z) < Mg(x).

~+ We can use rejection sampling to sample from f using ¢ as
proposal.

Cauchy g(x) =
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Rejection Sampling

J Example: Rejection Sampling from the N[0,1] distribution using the Cauchy
proposal

J NOTE:
@ We cannot sample from a Cauchy distribution (g) using a
Gaussian (f) as instrumental distribution.

@ Whe Cauchy distribution has heavier tails than the Gaussian
distribution: there is no M € R such that

1 M 1 ( 22
M- ex — | .
m(1+2?) Vara? T\ 2

J Drawbacks:
o We need that f(z) < M - g(x)

@ On average we need to repeat the first step M times before
we can accept a value proposed by g.
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Importance Sampling

Jd Fundamental Identities:

Assume that g(x) > 0 for (almost) all  with f(z) > 0. Then for a
measurable set A:

P(XeA)= /Af(x) dr = /Ag(x) % dr = /Ag(x)w(x) dx
S

=:w(x)

v

For some integrable function h, assume that g(z) > 0 for (almost)

all x with f(x)-h(x)# 0

MC Methods, Ch. 3: Importance Sampling



Importance Sampling

o How can we make use of Ef(h(X)) = E,(w(X) - h(X))?
o Consider Xy,...,X,, ~gand E,;|w(X) - h(X)| < +o0. Then

3 w(Xi)h(Xe) "= Eylw(X) - h(X))
=1

(law of large numbers), which implies

a.s.

%Zwvﬁ-)h()ﬁ) = Ey(h(X)).

o Thus we can estimate p1 := E¢(h(X)) by
Q Sample X4,.... X, ~ ¢
Q ji:= 5 3L w(Xi)h(X5)
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Importance Sampling

A Importance Sampling Algorithm:
Algorithm 2.1a: Importance Sampling

Choose g such that supp(g) D supp(f - h).
1. Fore=1,...,n:
i. Generate X ~ g.
- Set w(X;) = L

a
v

2. Return .
> im1 w(X;)h(X;)

n

i =

as an estimate of E¢(h(X)).

@ Contrary to rejection sampling, importance sampling does not
yield realisations from f, but a weighted sample (X;, W;).

@ The weighted sample can be used for estimating expectations

Ef(h(X)) (and thus probabilities, etc.)
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Importance Sampling

4 Importance Sampling Algorithm - Basic Properties:
@ We have already seen that /i is consistent if
supp(g) D supp(f - h) and E;|w(X) - h(X)| < 400, as

a.s.

= w(Xh(Xs) "= Ey(h(X))
=1

o The expected value of the weights is E,(w(X)) = 1.

@ /i is unbiased (see theorem below)

Theorem 2.2: Bias and Variance of Importance Sampling
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Importance Sampling

4 If we know f up to a multiplicative constant:
@ Assume f(x) = Cm(z). Then

o im w(X)h(Xy) 1~ On(X),
'L n n ; g(X;) hXi)

@ ldea: Estimate 1/C as well. Consider the estimator

0 = Z?:l w(X;)h(X;)
D> e w(X;)

@ Now we have that

" n  m(X;) ,
i = Eizl w(X;)h(X;) _ Zi:l g(Xi)h(X’t)
D iy w(X5) S ”(Xf') ?

~ [1 does not depend on C
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Importance Sampling

A Importance Sampling Algorithm - Revised:

Algorithm 2.1b: Importance Sampling using self-normalised

weights
Choose g such that supp(g) D supp(f - h).

1. Fori=1,...,n:
I. Generate X; ~ g.
i. Set w(X;) = L&)

9(X;
2. Return

p—

D i1 W(Xo)h(X5)
> im1 w(Xi)
as an estimate of E¢(A(X)).

>
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Importance Sampling

 Basic Properties of the Estimate:

@ /L Is consistent as

Z?:l 'w(Xz)h(Xz) n a.s.

i = - " B (h(X)),
- ST #(h(X))
=p—Ef(h(X)) 1

(provided supp(g) D supp(f-h) and E;|w(X)-h(X)| < +00)

@ /i is biased, but asymptotically unbiased (see theorem below)

By (i) = e+ 1Ya(0) = Covg(w(X), wlX) MXD) | g,
Var,(p) = Serg(w(X) h(X)) - 2ugovg(w(X),w(X) - h(X))
_I_,U2Vargrfw(X)) L On?)
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Importance Sampling
 Finite Variance Estimators:

@ Importance sampling estimate consistent for large choice of g.
(only need that ...)

@ More important in practice: finite variance estimators, i.e.

"L w(X)h(X5)

n

Var(ji) = Var (Z ) < 400

o Sufficient conditions for finite variance of /i:
o f(z) <M -g(x)and Varg(h(X)) < oo, or
o F is compact, f is bounded above on E, and ¢ is bounded
below on F.

@ Note: If f has heavier tails then g, then the weights will have
infinite variance!
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Importance Sampling

 Optimal Proposal:

Theorem 2.3: Optimal proposal

The proposal distribution g that minimises the variance of /i is

()| f()

") = TR 70 d

@ [heorem of little practical use: the optimal proposal involves
[ |h(t)| f(t) dt, which is the integral we want to estimate!

@ Practical relevance of theorem 2.3:
Choose g such that it is close to |h(x)| - f(x)
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Importance Sampling
4 Super-efficiency of Importance Sampling:

@ For the optimal ¢* we have that

Var; (h(Xl) 4o+ h(X,)

n

) > Varg«(f1),

if h is not almost surely constant.

Superefficiency of importance sampling

The variance of the importance sampling estimate can be /ess than
the variance obtained when sampling directly from the target f.

@ Intuition: Importance sampling allows us to choose ¢ such
that we focus on areas which contribute most to the integral

[ h(@)f(z) do.

@ Even sub-optimal proposals can be super-efficient.
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Importance Sampling: Example

A Calculation of integral in 2 dimensions of f(x,y):

I= ”{o 1140, uf (x,y) dxdy f(x. \) — (.50 0(x-03) 450407 | ~45(x+0.4) ~60(»~05)’

\ [—04]1/90 o0 1)
+0.54N |
, | 05 0 1/120]

[os
Proposal Distribution: q(x.y)=0.46N [ {—0 J {

1/180 0
.0 1/20

-'gO-‘NOJbMQNGO
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Importance Sampling: Example
 Obtained Estimates:

d N=2000, count =20 (we take 2000 random sample points
per run and run the simulation 20 times)

 The results of importance sampling are more accurate
than the standard MC method.
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