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Introduction 

• Role of sinusoidal models in TTS: 

– Concatenative speech synthesis: prosodic 
modification and smoothing of boundary effects  
(Y. Stylianou, 2001) 
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Introduction 

• A typical vocoder extracts info at 3 levels 

– F0 (log): get_f0, RAPT, YIN, Tempo, PRAAT, SRH… 

– Spectral envelope: SPTK, STRAIGHT+MCEP (Kawahara, 

1999), GlottHMM+LSF (Raitio et al., 2011)… 

– Degree of harmonicity: BAP, HNR, MVF… 
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Introduction 

• Sinusoids(+noise) based vocoder? 

– HQ resynthesis and modification, but… 

– Variable dimension 

– Not very tractable, complicated dependencies 
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Introduction 

• Sinusoids(+noise) based vocoder? 

– Use them as an intermediate stage between 
waveforms and parameters 

• Sinusoidal frequencies  logF0 

• Sinusoidal amplitudes  MCEP, MGC, LSF… 

• Sinusoidal phases  RPS, PD… or nothing! 

• Noise  HNR, MVF… 
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Introduction 

• Sinusoids(+noise) based vocoder? 

– Use them as an intermediate stage between 
waveforms and parameters 

• Sinusoidal frequencies  logF0 

• Sinusoidal amplitudes  MCEP, MGC, LSF… 

• Sinusoidal phases  RPS, PD… or nothing! 

• Noise  HNR, MVF… 

– Enables intermediate modifications (Thursday) 
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Ahocoder, an HNM-based vocoder 

• Every 5ms, fs=16kHz 
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Ahocoder, an HNM-based vocoder 

• F0 estimation 

– Praat / external, every 5ms starting at n=0 

– QHM refinement 
Harmonic model 
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Ahocoder, an HNM-based vocoder 

• F0 estimation 

– Praat / external, every 5ms starting at n=0 

– QHM refinement 

Analysis band? 
1kHz? 2? 4? 8? 

Constant weights? 
Amplitude-related 

weights? 



Ahocoder, an HNM-based vocoder 

• F0 estimation 

– Experiment: more accurate F0  more accurate 
harmonic reconstruction of signals 
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Ahocoder, an HNM-based vocoder 

• F0 estimation 

– Experiment: more accurate F0  more accurate 
harmonic reconstruction of signals 

 

 

 

 

– What about quasi-harmonic reconstruction? 

Constant: wi=1 
By ampl.: wi=sqrt(Ai) 

Apparently QHM 
much better than 

HM, with or without 
F0 refinement 
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• MVF estimation 
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Ahocoder, an HNM-based vocoder 

• MVF estimation 

– Sinusoidal likeness measure (SLM) (Rodet, 1997) 
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Ahocoder, an HNM-based vocoder 

• MVF estimation 

– Sinusoidal likeness measure (SLM) 

If we calculate 
the SLM of a 
time-varying 
sinusoid (f, 

A…), it remains 
very close to 1 

If we mix the 
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noise, the 
SLM decays 

rapidly 
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Ahocoder, an HNM-based vocoder 

• MVF estimation 

– Sinusoidal likeness measure (SLM) 

– Probability of voicing of each “peak” 
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Ahocoder, an HNM-based vocoder 

• MVF estimation 

– Sinusoidal likeness measure (SLM) 

– Probability of voicing of each “peak” 

– Local decision 

– Median filter over t 

Voiced below i Unvoiced above i Freq. (Hz)
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Ahocoder, an HNM-based vocoder 

• MVF estimation 

– Experiments: 

• Baseline method: prediction from c0 

 

 

 

• Subjective preference in resynthesis: 38% vs 17% 

• Subjective preference in synthesis: 29-30% vs 17-22%  

~4.5kHz in “normal” voices 
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Ahocoder, an HNM-based vocoder 

• Spectral analysis 
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Ahocoder, an HNM-based vocoder 

• Spectral analysis 

– HM instead of HNM 
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Ahocoder, an HNM-based vocoder 

• Spectral analysis 

– HM instead of HNM 
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Ahocoder, an HNM-based vocoder 

• Spectral analysis 

– HM instead of HNM 
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• Spectral analysis 

– HM instead of HNM 
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• Spectral analysis 

– HM instead of HNM 
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Ahocoder, an HNM-based vocoder 

• Spectral analysis 

– HM instead of HNM 

– Normalize by F0 

Crucial to separate 
F0 from spectrum 
and allow signal 

reconstruction at 
different F0 and 
voicing contours 
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Ahocoder, an HNM-based vocoder 

• Spectral analysis 

– HM instead of HNM 

– Normalize by F0 
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Ahocoder, an HNM-based vocoder 

• Spectral analysis 

– HM instead of HNM 

– Normalize by F0 

– MCEP 

Not always used 
(not in HTS, for 

instance) 
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Ahocoder, an HNM-based vocoder 

• Spectral analysis 

– HM instead of HNM 

– Normalize by F0 

– MCEP 

F0-normalized amplitudes  spectral envelope  MCEP coeffs 
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Ahocoder, an HNM-based vocoder 

• Spectral analysis 

– HM instead of HNM 

– Normalize by F0 

– MCEP 

(Tokuda et al., 1994) 
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Ahocoder, an HNM-based vocoder 

• Spectral analysis 

– HM instead of HNM 

– Normalize by F0 

– MCEP 

(Cappé et al., 1995) 

Mel Regularized 
Discrete Cepstrum 
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Ahocoder, an HNM-based vocoder 

• Spectral analysis 

– HM instead of HNM 

– Normalize by F0 

– MCEP 

 

 

– FFT-based harmonic analysis 

• Much faster and less accurate, BUT when MCEP coeffs 
are involved the difference is hard to perceive!! 



Ahocoder, an HNM-based vocoder 

• Spectral analysis 

– Experiments: 

• Resynthesis quality MOS predicted by PESQ, ITU-
T/P.862 (keeping uv frames and measured phases) 

Typical order in 
voice conversion 

for fs=16kHz 

Typical order in 
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interpolation of 
envelope + MCEP 
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Ahocoder, an HNM-based vocoder 

• Spectral analysis 

– Experiments: 

• Resynthesis quality MOS predicted by PESQ, ITU-
T/P.862 (keeping uv frames and measured phases) 

+ F0 refinement + F0 refinement 

QHM  can produce 
inaccuracies when 

combined with Mel-RDC!! 
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Ahocoder, an HNM-based vocoder 

• Spectral analysis 

– Experiments: 

• Resynthesis quality MOS predicted by PESQ, ITU-
T/P.862 (keeping uv frames and measured phases) 

• Accuracy of statistical modeling: average log-probability 
per frame given by HTS (v2.1.1) 

Again, Mel-RDC 
slightly superior to 

interpolation of 
envelope + MCEP, and 
F0 refinement  helps 
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Ahocoder, an HNM-based vocoder 

• Speech waveform reconstruction 

Triang win Frame k 

Not pitch-synchronous but constant frame 
length of 10ms (from nk-5ms to nk+5ms) 

Only part that 
will take part in 

the TTS process!! 



Ahocoder, an HNM-based vocoder 

• Speech waveform reconstruction 
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Ahocoder, an HNM-based vocoder 

• Speech waveform reconstruction 
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• Speech waveform reconstruction 
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Ahocoder, an HNM-based vocoder 

• Speech waveform reconstruction 
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Compensate 
interference: 1.21 



Ahocoder, an HNM-based vocoder 

• Speech waveform reconstruction 

Low-pass 
filter (MVF) 

F0 denorm By definition 
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Ahocoder, an HNM-based vocoder 

• Speech waveform reconstruction 

(McAulay & Quatieri, 1995) 

Min phase Lin term 



Ahocoder, an HNM-based vocoder 

• Speech waveform reconstruction 

– Phase info is discarded by Ahocoder 

– There are attempts to model the non-linear non-
minimum part of phase (Degottex & Erro, 2014) 
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Ahocoder, an HNM-based vocoder 

• Evaluation 

– Comparison with STRAIGHT, 30 listeners 

Not equivalent but 
equally suitable for 

synthesis 
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Conclusions 

• HM/HNM good framework for vocoder development 
• QHM-based pitch refinement (0-MVF band, amplitude-

related weights) helps 
• Explicit MVF analysis and modeling helps 
• Mel-RDC slightly better than log-amplitude envelope 

intepolation + MCEP 
• Don’t discard the FFT-based harmonic analysis 

approach 
• Don’t forget to normalize amplitudes by F0! 
• Be careful with QHM + Mel-RDC!! 
• Overall, the result is comparable with STRAIGHT 
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