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Introduction 

• Possible solution: speaker adaptation 
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Introduction 

• Role of sinusoidal models in TTS: 

– Statistical parametric speech synthesis: vocoders 
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Introduction 

• Sinusoids(+noise) based vocoder? 

– HQ resynthesis and modification, but… 

– Variable dimension 

– Not very tractable, complicated dependencies 
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Introduction 

• Sinusoids(+noise) based vocoder? 

– Use them as an intermediate stage between 
waveforms and parameters 

• Sinusoidal frequencies  logF0 

• Sinusoidal amplitudes  MCEP, MGC, LSF… 

• Sinusoidal phases  RPS, PD… or nothing! 

• Noise  HNR, MVF… 
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• Sinusoids(+noise) based vocoder? 

– Use them as an intermediate stage between 
waveforms and parameters 

• Sinusoidal frequencies  logF0 

• Sinusoidal amplitudes  MCEP, MGC, LSF… 

• Sinusoidal phases  RPS, PD… or nothing! 

• Noise  HNR, MVF… 

– Enables intermediate modifications 
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Introduction 

• Possible solution (ii): train the voice normally, 
then modify it during synthesis 
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Introduction 

• What should we modify? (Cooke et al., 2014) 

– Studies about Lombard effect and clear vs 
spontaneous speech 

• Spectral tilt variations 

• Smaller contrast between vowels and 
consonants/transients 

• Higher F0 mean and range (?) 

• Lower speaking rate (?) 

• Expanded vowel space, more articulated speech 

• … 
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Introduction 

• Noise-dependent? 

– Adapt the modification 
depth to noise level to 
preserve quality 

– Listening and predicting 
future noise  more 
sophisticated algorithms 
and computational 
requirements 

• Noise-independent? 

– It has been shown to 
work well when the goal 
is intelligibility 

– Not listening, not 
predicting  easy to 
implement, rapid 
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Modifications 

• Slightly modified version of the vocoder 

– In noise, with intelligibility as goal, subtle quality 
improvements are no longer necessary 

• No explicit MVF analysis (remember hands-on session!) 

– Energy-related operations 

• Harmonic model, without noise 
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• Slightly modified version of the vocoder 
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Modifications 

• Slightly modified version of the vocoder 
 

Triang win Frame k 
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Modifications 

• Modification #1: uniform lengthening 

– Clear speech is slower than casual speech (longer 
pauses?) 

– It has been shown to make synthetic speech more 
intelligible in various types of noise (Valentini-Botinhao, 2014) 

 



Modifications 

• Modification #1: uniform lengthening 
 

Modificati
ons 

HNM 
synthesis 

Parameteri
zation-1 

Statistical
learning

Model

Parameter
generation

Text
analysis

Acoustic
analysis

Text
analysis

Acoustic
reconstr.

txt

txt

Training

Synthesis

txttxt

Modify durations 
given by the model 
 non-uniform 

state lengthening 

Reconstruct speech at 
a longer frame shift 
 avoids inconsistent 

dynamic features 



Modifications 

• Modification #1: uniform lengthening 

– Calculate phone durations from models 

– Multiply these phone durations by factor 1.2 

– Force new durations at input so that the states 
within each phone are lengthened in a non-
uniform way 



Modifications 

• Modification #2: mean F0 level and range 

– Some people speak in a larger F0, some do not 

– It is known that F0 modifications do not improve 
intelligibility by themselves, BUT… 

– Louder speech  higher sub-glottal pressure  
more rapid glottal fold vibration  higher F0! 

 



Modifications 

• Modification #2: mean F0 level and range 
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Modifications 

• Modification #2: mean F0 level and range 

– Generate parameters as usual 

– Sum log(1.2) to logF0 trajectory 

– Multiply utterance-level variance by1.5 



Modifications 

• Modification #3: redistribute energy over time 

– Reduce contrast betwen vowels and consonants 
without altering global SNR  steal E from “rich” 
frames and give it to “poor” frames 



Modifications 

• Modification #3: redistribute energy over time 

– Reduce contrast betwen vowels and consonants 
without altering global SNR  steal E from “rich” 
frames and give it to “poor” frames 

– Audio engineering solution: Dynamic Range 
Compression (DRC) 



Modifications 

• Modification #3: redistribute energy over time 
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Modifications 

• Modification #3: redistribute energy over time 
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Modifications 

• Modification #4: formant sharpening 

– Clear speech: narrower formants 

– Successful for hearing impaired 

– Unclear improvements in this context 

– Easy to implement in A domain 



Modifications 

• Modification #4: formant sharpening 
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Modifications 

• Modification #4: formant sharpening 
 

Multiplicative 
factor for each Ai 
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(McAulay & Quatieri, 1995) 



Modifications 

• Modification #5: amplify mid-frequencies 
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Modifications 

• Modification #5: mid-freq enhancement 
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Modifications 

• Modification #1: uniform lengthening 

• Modification #2: mean F0 level and range (F0) 

• Modification #3: redistribute energy over time (DRC) 

• Modification #4: formant sharpening (PF) 

• Modification #5: mid-freq enhancement (SS) 
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Experiments 

• Calculate eSII, ANSI S3.5-1997, 0.8 correlation 
with subjective scores (Rhebergen & Versfeld, 2005) 

– Competing speaker, SNR = -7, -14, -21dB 

– Speech-shaped noise, SNR = 1, -4, -9dB 



Experiments 

• Calculate eSII, ANSI S3.5-1997, 0.8 correlation 
with subjective scores (Rhebergen & Versfeld, 2005) 
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Experiments 

• Hurricane Challenge (Cooke et al., 2013) 

– 175 native listeners, Univ. Edinburgh 

– “Listen once and type what you hear” 

– Avg % correct words excluding very short ones (a, 
the, in, to, on, is, and, of, for, at) 

– 15 natural speech enhancement systems, 5 TTS 

– 2 types of noise: speech-shaped, competing spkr 

– TTS: 2863 short sentences for training, 180 for test 



Experiments 

• Results of Hurricane Challenge 
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Experiments 

• Results of Hurricane Challenge 
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Experiments 

• Results High SNR 
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Experiments 

• Results Mid SNR 
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Experiments 

• Results LowSNR 
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Experiments 

 

 

 

http://listening-talker.org/showcase 

 

(PSSDRC-syn) 
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Experiments 

• Impact of modifications on other possibly 
important perceptual aspects 

At some point the 
system should be 

made adaptive 
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Conclusions 

• Noise-independent modifications based on hand-
crafted rules: simple & cheap, no need to retrain! 

• Easy to implement through a harmonic vocoder that 
takes MCEP + logF0 as input 

• Probably speaker-independent 
• Duration, F0 mean and range, DRC, formant sharpening 

(!), mid-f enhancement 
• Very good results in an international campaign, even 

without any external data 
• Speech is perceived as less natural  roughly-noise-

adaptive version 
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