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The outline 

 Motivation, promises and challenges 

 

 Challenges one-by-one 

– Better understanding and formulation 

– Proposed solutions 

– Evaluations 
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TTS at IBM – the modern history  

 Past products – Server based and Embedded trainable unit selection TTS 

systems 

– Robert Donovan, 1990s 

– Sub-phone level units 

– The embedded system: parameterized segments, 10 – 20 MB voices, deployed in 

Honda cars as a part of the embedded ViaVoice driver interface 

  2010 – 2014: Joint Development Agreement (JDA) with Nuance Communications 

– Tens of IBM researchers conducted exploratory work on ASR and TTS aiming at 

advancing Nuance products 

 Since 2013 – IBM cognitive computing products 

– 2014  a new unit – IBM Watson Group to meet demand for cognitive innovations 

– Open cognitive platform – developer cloud including ASR/TTS as a service   
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http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/ 
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 The vision and approaches presented here were developed in collaboration with 

Nuance under the Joint Development Agreement 

 

 The evaluation results were obtained using the data and experimental TTS voices 

provided by Nuance  
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Concatenative TTS vs. HMM TTS  
 

Concatenative TTS 

+Crisp, natural sound 

+Natural prosody 

- High sensitivity to the ‘training 

data’ - domain, sparsity, 

alignment accuracy 

  

- Glitches – discontinuities at  

joints, bad occurrences 

- Speech manipulation is limited  

- Big footprint – memory & CPU 
 

HMM TTS 

- Muffled, artificial sound 

- Averaged, flat prosody 

+Robustness - generalization 

capabilities, tolerance to the 

dataset size and alignment 

accuracy 

+Continuity, stable quality 

+Ease of speech manipulation 

 

+Small footprint  
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Why mixed speech synthesis 
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 To benefit from the respective advantages of the two paradigms 

 Natural and crisp sound of the unit selection TTS 

 Continuity, generalization, ease of manipulation, low footprint of the statistical 

parametric TTS 
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Hybrid TTS voice 
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HMM - GMM    Models  

Templates DB 

Leaves  

Context clustering trees  

 Take a data corpus that you would use for the Unit 

Selection voice building 

 Train an HMM (or HsMM) voice on this corpus 

– E.g. 3 or 5 states per phone 

 As a byproduct you get a mapping of the speech 

segments to leaf nodes (and their respective CD 

HMMs) 

  Retain all the natural segments (templates) and their 

associated leaf labels 

 Manual inspection/correction of pronunciation and 

phonetic alignment is important 

 Dual nature 

– HMM system 

– Unit selection system 

– And each template is mapped to a leaf node (HMM 

model) - important 
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HMM based Unit Selection Synthesis 
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HMM - GMM    Models  

Templates DB 

Leaves  

Context clustering trees  

“Hello world!”  

Leaf 101                        Leaf 53                                 Leaf 412               …   

 HMM synthesis is used to generate targets for the 

conventional unit selection process 

                           OR 

 The unit sequence is selected based on the ML criterion: 

 * argmax log [ ( ) | ] log [ ( ) | ]dur dur

n n
n

P P dur   n n
u

u o u u
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HMM based Unit Selection Synthesis 

 A lot of publications since 2004 

– HMM-based target prediction: Kawai et al, 2004, ISCA SSW5 

– Ling and Wang, ICASSP 2007: ML based unit selection 

 Recent publications 

– Yansuo Yu et al, SHRC Peking University – a winning submission to Blizzard 2013 

 

 

 

 This approach itself does not fully realizes the idea of a hybrid system 

– The output signal is a concatenation of natural segments. In particular, the sparsity issue 

remains unsolved. 
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Mixing natural and generated segments – essentially hybrid synthesis 
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HMM - GMM    Models  

Templates DB 

Leaves  

Context clustering tree  

“Hello world!”  

Leaf 101                 Leaf 53                                 Leaf 412                   …   
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Mixed speech synthesis and related challenges 

 Statistical parametric models based unit selection plus… 

 Splicing natural segments (templates) and model-based segments in the output 

speech signal 

 

 

 

                                                CHALLENGES  

1. Voice quality mismatch between the model and template segments – 

heterogeneous quality 

2. When to use templates and when to use models? 

- How to define and control the working point at the HMM -- UnitSelection axis?  

3. How to assure smoothness across model – template joints? 

4. How to reduce discontinuities at template - template joints?  
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Mixed speech synthesis - publications 

 Okubo et al, IEICE - Transactions on Information and Systems, 2006 

– The first proposed system with diphone level segments/models for voice mimicking app. 

– Ad hoc on-line template/model decision – in response to the local sparsity observed 

 Aylett and Yamagishi, LangTech 2008 

– Diphone hybrid system for voice mimicking app 

– Ad hoc on-line template/model decision – in response to the local sparsity observed 

 Pollet and Breen, Interspeech 2008 

– Subphone level segments/models. Statistical framework for template/model decision. 

 Tiomkin et al, IEEE Transactions on Audio, Speech & Language Processing, 2011 

– Subphone level.  

– Ad hoc on-line template/model decision – in response to the local sparsity observed 

 Sorin, Shechtman and Pollet. Interspeech  2011, 2012, 2014. 

– Subphone and frame level.  

– Offline template/model decision based on a statistical psychoacoustic measure.  
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Challenge 1. Voice quality mismatch between natural and generated 
segments 

 Switching between muffled generated segments and crisp natural segments 

would lead to patch-like heterogeneous speech quality 

 Enhancement of statistically generated speech is a long-standing and still relevant 

issue tackled by numerous research works 

– Global Variance optimization (Toda and Tokuda, 2007) is the most popular approach  

 This issue is especially relevant to the mixed synthesis 

 

 The approach presented below yields tractable and simple method for effective 

enhancement of statistically generated speech 

 Like in the GV approach we will observe differences between statistically 

generated and natural cepstral coefficients  

 Unlike the GV approach we will 

– Observe the cepsrum vector componets structure rather than their dynamic range 

– Explain and parameterize the differences using cepstrum mathematical properties     
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Development setup 

 Re-synthesize statistically all the sentences used for the voice training 

 Collect all the synthetic cepstrum vectors associated with a selected leaf L 

– All these vectors were emitted from the leaf Gaussian  

 Collect all the real cepstrum vectors associated with the leaf L 

 Transform all the cepstrum vectors to respective spectrum envelops 

 Thus for each leaf L we have two clusters – real and synthetic 

– For each cluster we have a collection of spectra and a collection of cepstrum vectors 
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Spectrum over-smoothing effect and its interpretation 

 Real spectra exhibit much higher peaks and 

deeper valleys than the synthetic spectra 

 Averaging flattens the spectrum structure 
– Cepstra averaging is equivalent to  

log-spectra averaging 

– ML trajectory passes close to the Gaussian means 

– In some sense the average is not representative 

 Zero-Pole representation is useful for  

analysis and parameterization of the  

spectrum flattening  

 

 

 Flattening – moving poles and zeros away from the 

unit circle towards the origin of Z-plane 
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Spectrum flattening – cepstrum attenuation 

 Let’s express cepstral coefficients cn in terms of poles and zeros 

 

 

 

 

 

 When |zm| and |pk| become smaller (moving away from the unit circle) the cepstral 

coefficients cn decay faster with n 

 It means that on the average the synthetic cepstra should exhibit faster 

attenuation than the real cepstra for the same leaf cluster 

 Let’s see if we observe this phenomenon 
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Observing and parameterization of the cepstrum attenuation  

 We observe the extra-attenuation in the 

synthetic cepstra dividing the averaged squared 

real vectors by the averaged squared synthetic 

vectors 

  To reduce the over-smoothing effect we would 

like to push the poles and zeros back towards 

the unit circle 

 The simplest way is to push them uniformly and  

without changing their radial locations 

 

 

 This lead to the exponential liftering of the synthetic cepstrum vectors 
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Enhancement parameter estimation 

 Let’s estimate the exponent base     using the LMS exponential approximation of 

the 2nd moment ratio vector R   
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Adaptive statistical enhancement of model segments 
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Quality and naturalness 
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Challenge 2. Template vs. Model decision 

 When to use template and when to use model? 

 

 The decision may be static or dynamic 
– Dynamic: made in in synthesis time depending on the  

input text 
– Static: a leaf is marked as “template” or as “model”  

offline prior to the synthesis 

In this chapter we consider an offline decision 
– Enables defining and controlling the working point 

at the HMM -- UnitSelection axis 
– Enables voice size reduction prior to deployment 

 

 The offline decision may be based on psychoacoustic  
properties of speech segments containing in the leaf 
cluster and/or phonological information 

We focus on the psychoacoustic aspect 
– Automation, language independent    
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How to devise a Psychoacoustic Modelability scoring? 

 Modelability score – a degree of perceptual transparency of replacing a natural 

speech segment by a segment generated from a statistical parametric model 

trained on similar natural segments  

 Observation: segments generated from statistical models are highly stationary 

– HMM TTS emits slowly evolving spectral envelope and stationary excitation 

– HMM TTS does not reproduce transient sounds well enough 

 Research hypothesis: Temporal stationarity is indicative of modelability 

– Highly stationary speech segments are transparently replaceable my models 

– Replacement of non-stationary speech segments is audible 

 Approach: 

– Develop a segment temporal stationarity score 

– Develop a leaf-cluster modelability score based on the stationarity scores of the 

containing segments     
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Segmental perceptual stationarity score 

 Divide a segment to T overlapping frames at a high frame update rate, e.g. 1kHz  

– Use frame length slightly greater than the maximal pitch period 

 For example, when 3 segments per phone are used the segment is typically 

longer than 25 ms and contains tens of frames 

 Convert t-th frame (t=1,…,T) to a Perceptual Loudness Spectrum (PLS) adopting 

the transformation utilized in the Perceptual Linear Predictive ASR front-end 

– STFT, power spectrum 

– Filter bank defined on the Bark-scale  

– Power of 0.33 

 

 PLS vector: 

N is the number of frequency bands (23)    

 

           is a perceptual loudness associated with 

k-th critical frequency band 
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Segmental perceptual stationarity score 

 1st and 2nd empirical moments of k-th component          of the PLS vector 

 

 

 Non-stationarity measure - aggregated relative variability of all the PLS 

components 

 

 A reasonable basis for the stationarity score is 

  Finally we define the stationarity  

score S 

– Defined on [0,1] 

– S = 1 for a perfectly stationary 

segment V(1)=V(2)=…=V(T) 

– S = 0 for singular δ-like segment 

 V(t)=0, t≠t0  
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Segment-wise stationarity contour of a natural speech signal 

 Stationary segments – slowly evolving spectral envelope and periodic or gaussian 

excitation, e.g., sustain vowels, fricatives consonants 

 Non-stationary segments – all the others, e.g. transients, plosives. 
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Stationarity Measure of a Leaf Cluster 

 Let’s define a Leaf Stationarity Measure (LSM) as a low percentile (e.g. 10%) of 

the segmental stationarity score distribution within the leaf cluster 
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Taking loudness in consideration and voice-level normalization 

 The most stationary leaves typically represent the loudest parts of vowels. 

Their model-based generation is highly audible – revealed by informal evaluation. 

 Let’s also measure the loudness to take it in consideration 

 

 Perceptual loudness score L of a segment: 

 

 Let’s define a Leaf Loudness Measure (LLM) as a high percentile (e.g. 90%) of 

the loudness score distribution within the leaf-cluster 

 

  The absolute values of the LSM and LLM are irrelevant when we consider a fixed 

voice dataset. Let’s normalize them at the voice level 
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Leaf Modelability Factor (LMF) 
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 LMF threshold or related to it Model/Template Proportion (MTP) defines a working 

point on the “Unit Selection HMM” axis 

 MTP is the percentage of the voice dataset represented by models 

– Can be measured as % of segments or as % of the total speech duration     
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Configuring a mixed synthesis system for a given MTP level 
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values 

 Select the most modelable 

leaves containing together 

MTP% of the speech data 

 Declare the selected leaves 

“model”.  

Declare the remaining leaves  

“template” 

 Prune the voice dataset  …
 

LMF 

30% 

M
o
d
e
l 

T
e
m

p
la

te
 

MTP=30% 



© 2009 IBM Corporation 

Challenge 3. How to assure smoothness at model – template joints  

33 
Speech Synthesis Summer School. Heraklion, Crete, Greece 2015 

 Cepstral coefficients and F0 within model segments are obtained by the classical 

Maximum Likelihood parameter generation algorithm which is not aware of the 

template segments 
 

 Parameter values derived from 

template frames 

 Maximum Likelihood trajectory  

(HMM synthesis)   

 “Ideal” trajectory that we would like 

to see 
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Constrained ML trajectory (not new, e.g. Tiomkin et al 2011) 

 Find the ML trajectory passing through the points (nk,tk) given by the template 

frames 

– Constrained ML trajectory or ML interpolation in the acoustic parameter space  
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Hmm… optimization with equality-style constraints 

 Do not use Lagrange multipliers which are useful for solving a general problem 

 

                  max F(x),  s.t.: G(x) = const 

 It yields an overcomplicated solution 

 

 There is a simple and efficient solution to our problem 
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An exercise  
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Now more formally and applying to our case 

 Vector t is known – its components are the parameter values at template frames 

 Vector m is unknown – its components are the parameter values at model frames 

 The role of the matrices T and M is to place the template and model components 

at their respective positions in the entire combined trajectory c 

 

 

 

A toy example: 
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 Substitution of 

 

in 

 

yields 

 

 

 

 Finally the unknown points on the constrained trajectory are obtained by solving 

the linear equation:  
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 argmin 2T T -1 T T -1

c

c W Σ Wc c W Σ μ

 c = T t +M m

* 1 1argmin[ 2 ( )]T T T T T T   
m

m m M W Σ WMm m M W Σ μ WTt
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Constrained ML trajectory – concluding notes 

 The matrix of the equations inherits the sparse diagonal structure from the 

classical unconstrained solution 

– Only the delta relations tie frames to each other 

– For the usual delta calculation algorithm any single equation cannot tie more then 3 

consecutive frames 

 We throw out many equations present in the classical unconstrained system 

 Hence the whole set of the equations can be split to independent separately 

solved subsets of a small size 

– Two consecutive template frames lead to a split  

 

39 
Speech Synthesis Summer School. Heraklion, Crete, Greece 2015 

t t m m m t t t m m m t t m t t



© 2009 IBM Corporation 

How to deal with the phases? 

 Case 1. The template segments are represented by their waveforms. 

– Generate the model segments waveform 

– Find the best (e.g. max correlation) time offsets between the template and model 

waveform 

– Shift and overlap-add 

 

 

 Case 2. The template segments are parameterized – we used a harmonic + noise 

representation 

– Convert the model segments to the same harmonic + noise structure 

– Interpolate/smooth respective harmonic phases over the template-model joints 

– Convert to the waveform 

– Overlap-add 
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Reality vs. the Idea – feasibility test 

 The idea begin to look realistic 
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Challenge 4. How to reduce discontinuities at template-template 
joints  

 Partially addressed by the works that used the mixed synthesis as a means to 

overcome the sparseness of the units inventory 

– When there is no suitable unit generate the segment from the model using the 

constrained ML parameter trajectories 

– The notion of suitable includes a low joint cost (Tiomkin et al, 2011)   

 The drawback – insertion of a model segment ad hoc might be audible even if it 

smoothly joins the surrounding natural segments 

 

 An alternative approach – generate from the model only a small amount of frames 

surrounding the joint 

– Virtually inaudible 

– All the voiced joints may be processed to guarantee smoothness  
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Frame level template by model substitution for joints smoothing 

 The blue frames are replaced by the model 

 The brown frames establish the boundary constraints for the ML trajectory 

generation 
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Comparative evaluation of the frame-level joints smoothing effect 

 Phase smoothing is facilitated by the full parameterization 

– Not only the model segments but also the template segments are parameterized  

 Full parameterization with the joints smoothing outperforms the PCM based 

segments without the joints smoothing  
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Thanks for your attention! 
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