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Linear Dynamical Models

An LDM is a generative model with a time-varying multivariate unimodal
Gaussian output distribution.

An LDM is specified by the following pair of equations:

x1 = N(g1, Q1)
xy =Fx;_1+g+w w~N(0, Q) x; €R"
ye =Hx; +u+v v~N(0, R) y; €R™

t=1
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Linear Dynamical Models

LDMs are described by a hidden Markov chain

_ State evolution models

State evolution Model: p(x/X.;) = N(X; FX.; + g, Q)
X;: Abstract state, Articulators, Sinusoidals, e.t.c.

Observation Model: p(y/x,) = N(y; Hx;+ u, R)
y.: (mceps, FO, bap, phi), Sinusoidal parameters, Raw speech, etc



LDMs vs HMMs

LDM: X, continuous vector HMM: x; € {1, 2, ..., N}
LDM: p(x|X.)=N(X; Fx.,+g, Q) HMM: p(xx..) arbitrary
05 0.2
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Modelling an artificial signal with HMMs and LDMs

An artificial signal is modelled with « m e
a 3-state HMM, oo AL 2 3

a 3-state trajectory HMM and

a single state LDM @
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The signal: |
x = linspace(1, 9, 60)+0.5*randn(1, 60) : 0
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Synthesis with HMMs and LDMs
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HMMs Trajectory HMMs LDM
Number of parameters Number of parameters Number of parameters
3 x (mean + std) + 3 x 3 x (mean + std) + 1x(gl+Ql+F+g+Q
transition matrix = transition matrix = +H+pu+R)=
6+9=15 18 +9 =27 8

In this example, an LDM generates a trajectory that is closer to the
original using fewer parameters than 3-state HMMSs or trajectory HMMs



LDMs and Autoregressive Models

A p-order vector autoregressive (AR) model.
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The corresponding LDM
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LDMs and Sinusoidal Models

Scalar noisy observations y; of a periodic signal represented with a

finite Fourier series plus a noise term

yt — Clejznflt _|_ Czejznfzt _|_ oo _|_ Ckefznfkt _|_ v

where the coefficients c; are complex numbers

By setting
ejznflt ejznfl ces 0

xt — E y F — . . . y H — [C]_J CZJ...
ejznfkt O ces ejznfk

The evolution of the periodic signal can be written as
Xe = Fxp_q
vy = Hx; +v v~N(O,R)



LDMs — State Evolution

Researchers at Haskins Laboratories developed differential equations
that describe how the articulators move to produce a particular
utterance.
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LDMs — State Evolution

The differential equation

2
d xgt) 0
dt dt

can be converted into a second order recurrence relation

+S*(x(t)—u)=w

Therefore the motion of articulators can be connected with the
dynamics of acoustic parameters with a State-Space Model

x1 = N(gy, Q1)
xe =Fx;_1+g+w w~N(0O, Q) x; €R?
y: = h(x;) +v v~N (0, R) y,eR™

The hidden space variables, X, correspond to the states of articulators
The observation space variables, y, correspond to speech parameters
However the mapping between the two spaces may be non-linear



LDMs — Factor Analysis

Factor analysis is a statistical method for modelling the covariance
structure of high dimensional static data using a small number of latent
(hidden) variables

X=W w~N(,I) w € R"
y=Hx+v v~N(R) y,v € R™, R isdiagonal

Number of parameters: m + m X n, instead of m x m of a full R.
Examplen=1, m=2

1
w~ N(0,1) —
H =5 2

0|0 2

H scales x by 5 and
rotates it by 45° clockwise



LDMs — Factor Analysis
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LDMs — Dynamics

LDMs are stochastic models and can explain a huge number of time
series using a small number of parameters

The deterministic part of the dynamics of a first-order LDM is:
xt —_ Fxt_l + g
In speech synthesis, stable models should be used.

The transition matrix F is constrained to have spectral radius less
than one (All the eigenvalues of F have absolute values less than

one).
Target value of a stable LDM: (I — F)"1g

Examples of trajectories of x; = Fx;_1 + g

Stable first-order LDMs. Target value=3 § Unstable first-order LDMs.



LDMs — Dynamics

The deterministic part of the dynamics of a second-order LDM is:
Xe = Fixe 1 +FoXxe 5+ g
The above recurrence relation can give oscillations
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The tree basic problems for HMMs and LDMs

Evaluation: Given an LDM with parameters 8 and an observation
sequence Y = [y4,v,,+, yr], calculate the probability that model 6 has
generated sequence Y.

Inference: Given an LDM with parameters 8 and an observation
sequence Y = [y4,y,, -+, yr], calculate the probability of hidden states
x; that produced this observation sequence'Y.

Learning: Given a training observation sequence Y = [y, v,, -+, yrl,
determine an LDM with parameters 6 that best fit the training data.



LDMs - Inference

We assume that the parameters 8 of an LDM are known.

There are two approaches, in order to infer the hidden state sequence
X = [xq, x5, -, x] Statistics from an observation sequence

Y = [y, y2, 7]

1. Solving a weighted least squares problem
Derivation of square root Kalman filter

2. Using the properties of Gaussian distributions and of Markov chain
of probabilistic interactions

The equations and the algorithms are similar to HMM case

This method can be used to derive equations and recursive
algorithms for any distribution of the exponential family (Gaussian,
exponential, alpha-stable, ...)



LDMs - Inference

From the equations of LDM

X1 =01 1tw; wy~N(0, Q1) x; €R"

xg = Fx;_1+g+w  w~N(0, Q) x; € R®™ it follows that
Ye =Hx;+u+v v~N(0, R) y; € R™

_ I 0 0 0 07 g1
X1 =01 +w
Lo H 0 0 -« 0 0|, [n—n
o =y —u-v F -1 0 0o o[ —g
X
Fxy—x;=—g—w 0 H 0 0 0| |=]Y2"#|-
szzyz—'u—v : : T : : X7 :
0 0 0 - F —I| " —9g
0 0 0 0 H yr — K
Fxr1—xr=—-g—w
Hxr =yr—p—-v
Ax =b—ec=>¢=b — Ax, A € Rn+m)TxnT

minimize E[eTe] 2 AT 1Ax = ATZ 71D
X
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LDMs - Inference

Weighted least squares problem
Ax = b —e=2>2=Dbh — Ax A € R2TnXTn

minimize ||e]|? =2 ATX " 1Ax = AT~ 1b
X
Normal equations

Naive solution x = (ATX714)"1ATx~1p
Matrix ATX 1A is block tri-diagonal.
The structure of matrix ATX 1A allows recursive solution.

Solving the system AT 1Ax = AT ~1h using LU decomposition
of AT 71 A leads to Kalman filter

Solving the system ATX"1Ax = ATX~1b using orthogonalization of
ATY1A, e.g., QR decomposition, leads to square root Kalman filter




LDMs - Inference

Derivation of Kalman filter based on the properties of Gaussian
distribution and the properties of the probabilistic interactions.

X1 . . o
Let x = [le be an n-dimensional random vector with distribution

x~N(u, %), where x; and x, are two sub-vectors of respective

| | _ ~ _ M _ 211 Z:12]
dimensions p and g, withp+g=n, U = [le’ 2= Yo1 Zoo

Theorem

The marginal distributions of x;and x, are also normal with mean
vector ; and covariance matrix X;; (i=1,2), respectively.

The conditional distribution of X; given X; is also normal with mean
-1
vector ;= M + XX (% — W)

and covariance matrix X;; = X ZUZulZT



LDMs - Inference

Filtering

B

ar(xy) = (e | Y1, .-, yt)

1
2:(x) = —pOelx) f p(x,lxe_y = 2) &1 (2)dz

Normalization j Prediction: p(azt Y1, - - - ayt—l)
constant

p(wt Yi, .- - 7yt)



LDMs - Inference

Smoothing

p(xt | y) o< p(xe | Y1, y)P(Yet1s-- - YT | Tt)
() Bi(xt)

= The forward-backward algorithm updates filtering
via a reverse-time recursion:

A 1 A
Be—1(xp—1) = C_f p(xe = zlx— )pYelxy = z) pr(2)dz

t




LDMs - Inference

Smoothing
Backward recursion

A 1 A
Br—1(xt—1) = C_tf p(xe = z|xe—)pYelx, = 2)B(2)dz

Sequential recursion
&t—l(xt—l),ét—l(xt—l) = fp(xt—llxt = Z, )’1:1:—1)&1:(2),31:(2)612

For the learning problem, the following marginal
probabilities are inferred from the observation

1 ~ A
p(xc|Y) = C_t“t(xt)ﬁt(xt)

1
Ct

P(Xe—q,%¢|Y) = = Qg (X)Xt | X 1) D (Ve |xt),ét (x¢)



The set of Kalman filtering
equations

Correction (Measurement Update)
Prediction (Time Update)

(1) Compute the Kalman Gain

(1) Project the state ahead R Tl e T 1
X i Ke = Z¢e-1HT(HE(e—1HT + R)

Xtjt-1 = FXt_qe-1+ 9
(2) Update estimate with measurement vy,
(2) Project the error covariance ahead

Xeje = Xeje—1 + Ke(ye — HX¢jp—1 — n

Sipe1 = FS 110_1FT + 0
t|t—1 t-1jt-1 (3) Update Error Covariance

2t|t = 2t|t—1 - KtH2t|t—1

=




Algorithm 5: Kalman Filter

Data: Observations, y;.7, and model parameters: F,g,Q, H, u, R, g1,
Result: IDgL = lﬂg{ (11 )) and statistics Ty, Eflt’ te{l,..., T},

/* Initialization */
Te—1 = g1y Lge—1 = @1y logL =0

fort = 1:T do

/* Prediction */

if t > 1 then

LTHf 1 =Fx_q01+4g
Sieo1 = FX,_ 1]t— FU+Q

/* Update */

e =y — (HTy—1 + 1)
Eei —HEﬂf HT + R
ﬂf—Eﬂf (HT E 1

Typ = Ty 1‘|‘Kt~?f
S0 = Bepe1 — KeHSe

logl, = logL + lng(.,-’\f’(ef;{],‘iet)) /* e, = N (e 0, iﬁet) */




Algorithm 6: Kalman Smoother

Data: Statistics T, 2, T¢¢—1, 2¢t—1 calculated from Kalman filter,

and model parameter F h
Result: Statistics &y, Ryp, t € {1,..., T} and R, 7, t€1{2,.... T}

» I <) 2 AT
R =Yo7 + IT|TLT T

fort = T:2 do

Jo= S FTSE

Ty 1|T—Tf 1]t— 1‘|'Jt(fﬂf|T_':‘f’t|f 1)
Er l|T_EE 1)t— L‘I‘Jr[:z::T_E::u )JE
S 1T = e Zr

; - . T
R 11 = Zg17 + Lo 7T _q )7

_ .\ AT
Rit 17 = Let—1r + Lt|T Ly 4T




LDMSs - Learning

The parameters of an autoregressive (AR) model can be specified by
solving closed form equations (e.g., the Yule-Walker equations).

There is no closed form solution to parameter identification in LDMs.
Parameters can be estimated by minimizing the log-likelihood

| 1 B . T-1
Q(#;,0) = cﬂn.st—§10g|QL|—aE [{1?1 — gl}TQl L(Il —g1)|Y, 0:| — 5 log |Q]
e :
— 5 E[(ze—Fri1— )" Q '(zt — Fxy_1 — g)|Y, 0;]

=2

P &
T 1
— 5 log|R| = 53 E[(ye—Hze—p) R (yr — Hre — p)|Y.0:] (54)

f—=1

Numerical optimization algorithms
Steepest ascent

Expectation maximization algorithm



LDMSs - Learning

EM-algorithm

Repeat until convergence

E-step: Given an estimate of the parameters of the model,
compute the sufficient statistics,

and the expected log-likelihood

M-step: Update the parameters of the model



LDMSs - Learning

E-step: Smoothed state estimates

Elx¢|yi.r] = 551|T

Elx¢x; |3’1 T1 = Zt|T + xt|Txt|T — RtlT

e

- T _ S A AT .
E_tht—1|3’1:T] = 211 t Xeir X1 = Rep—qyr

Sufficient statistics

(1 = ZT 1 xt|T I = Z{ 11ﬁt|T

{y = Xi- 2 Xt|T [ =Xty Rt|T

(3 = t 1xt|T I3 = Z=1 §t|T

(4 = t=1 Yt [y = T—z ﬁtt 1|T
[5 = Z 1ytxt|T

[¢ = t 13’t3’t



LDMSs - Learning

M-step: Compute the
parameters of the g = :F:HT

model X
Q1= Ryr — 9191

F = (T4 — 75671 — 756¢T) !

g==77(C2—FG)

Q:ﬁ(Fg-FFI—QCg)

H = (T — +6cT) (Ts — £¢acT) ™

p= (01— HG)




Training LDMs for speech synthesis

\ J o S — o 7 O J G I g
Y oY Y Y Y Y v

¢1 ®5 @7 @3 @5 @2 @7 ¢3
Utterance 1

\ J o N -/ — 7 \ J J . J \ ) 7 N— —
Y Y Y Y Y YT Y

¢1 ¢7 ¢S5 ¢3 6 @5 ¢2 ¢S ¢4 ¢6
Utterance 2

Each utterance consists of segments of phones or subphones.



Training LDMs for speech synthesis
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Train an LDM for each label @1, @2, ¢3, ¢4, @5, 96, ¢7, ...




EM Algorithm

Training an LDM for label @
Initial guesses of F, H, Q, R, g, i, 9;, Q,

Kalman smoother (E-step):
— Clear the sufficient statistics variables
— For each example y,, ... yir In @,
« Compute distributions of X, ..., X;
givendatay,, ... yyand F, H, Q, R, g, u, g, Q.
« Accumulate the sufficient statistics into global variables

Update parameters (M-step):
— Update F, H, Q, R, g, u, g;, Q, based on sufficient statistics.

Repeat until convergence (local optimum)



Training

Observation vectors LDM model Maximize likelihood to Parameters
Cepstrum coefficients + FO estimate the parameters FH QR,aqgu,
X1~N(g1’ Ql) F1 H’ Ql R1 g’ IJ’ gl! Ql 91, Ql
Y11 Y125 -+ Yima X=FXi 1 tg+w,
Yo1,Yo2s ---Yoro Yi = Hxtu+v,  mefppl and the hidden states i
X111 X125 -+ X711
Yk Ykar--- Ykt w~N(0, Q) X21:X225 «+-Xo12
vi~N(O, R)
Xi1r Xk2s- -+ Xkrk
Synthesis
Initial state State Hidden Observation Observation Speech
X;=0; equation state model vectors
vectors Cepstrum
' X=FX;,+0 ' y . Y; = HX+u coefficients + '
1,X2, ...XT FO
Y Yoo - Y7

4

Duration of sub-
phoneme




LDM configurations

Optimization of LDM training configurations:
The ideal state-space dimension is between 6 and 9
Low dimensional dynamics produce high dimensional

o

bservations (e.g., 40 cepstral coefficients)

5.65

567

5.66

5.65

4.64

Cepstral distance

563

562
n

10 20 30 40
State-space dimension

Matrices Q and R should be diagonal
The parameter u is necessary

Stabili

ty constraints should be enforced to LDMs

All models can have the same matrix H



LDM - Maximum likelihood trajectory generation
The likelihood of a given LDM and observation sequence Y is

P(Y10) = [, P(X,Y10)dX = [, P(Y|X,0)P(X|6)dX
Sub-optimum state sequence X is determined, independently of Y
X = arg maxP(X|0)

Since the maximum likelihood estimate of a Gaussian Is its mean, the
state sequence can be found by the following iteration:

X1 = 01

% =F%_1+g, te{2,-,T}
The maximum of

P(Yl)?,@) = [liza N(ye; HX + 11, R)
IS attained when:

ye = HX; +u, te{l,2,---,T}



LDM - Maximum likelihood trajectory generation

X1 = 01

fort=1.T
if (t>1)
X =Fx;_1+g
Ve = HXx: +

Very low computational requirements
LDMs are suited for real time speech production



LDMSs - Experiments

Second-order LDMs fit better the ceptrum than first-order LDMSs.
Mean cepstral distance
Informal listening tests

First-order LDMs fit better the continuous FO than second-order LDMs.
Informal listening tests

Discontinuities between neighbouring segments in synthesized speech
A common parameter H alleviates the problem

0.252

025
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0.246

0.244

0242+

024

0.23a . . . . .
] 20 40 60 a0 100 120



Linguistic-to-Acoustic Mappings

The simplest map is for each linguistic (phonetic and prosodic
contextual unit) unit to assign an acoustic model (an LDM).

Not enough training samples to robustly train all models

Example:

There are, for
example, 42
examples
(segments) in
the database

Linguistic
unit 1

A 4

LDM 1

Robust
estimate of
parameters

There is no There is no There are 3 There are 10
example in example in examples in examples in
the speech the speech the database the database
database database
Linguistic Linguistic Linguistic Linguistic
unit 2 unit 3 unit 4 unit 5
\ 4 A 4
LDM 4 LDM 5
Cannot Cannot Not robust Marginally
estimate any estimate any estimate of robust
acoustic acoustic parameters estimate of
model model parameters



Linguistic-to-Acoustic Mappings

A solution: Use the same LDM for more than one linguistic units.

Cluster linguistic units in an way that is close to optimal, using binary
decision trees.

There are, for

example, 42 There is no There is no There are 3 There are 10
examples example in example in examples in examples in
(segments) in the speech the speech the database the database
the database database database
L|ngg|st|c Llngl_Jlstlc Llngglstlc Llngglstlc Llngglstlc PP
unit 1 unit 2 unit 3 unit 4 unit 5
LDM 1 LDM 5
Robust Robust
estimate of estimate of

parameters parameters



LDM: Decision Tree Clustering

= The LDM models are trained using full context labelling
= The context is independent of the number of states

Current
phoneme

<
-~ ~
f’ \\
- ~
- ~
- ~
~

Current
phoneme

=

15 frames statel state2 state3 stated stateb5

5 states in HMMs

3 states in LDMs

statel state2 state3



LDM: Decision Tree Clustering

The LDM models are trained using full context labelling

The number of possible pentaphons far exceeds the number of training
examples

Solution: One LDM models many pentaphons that have similar speech
parameters

The training examples are clustered according to linguistic questions and
how well they fit to LDM that models the examples of a cluster.

Initially, all training examples are modelled with one LDM.

An LDM models an
_________ “average” trajectory of a
set of example trajectories




LDM: Decision Tree Clustering

Hierarchical top-down clustering. Splitif L, + L, > L, + MDL_threshold

L,: Sum log-likelihood using

Question: LDMp

C_phone(notin)+continuant

L,: Sum log-likelihood using

L,: Sum log-likelihood using LDM,,

LDM,



LDM: Decision Tree Clustering Algorithm

Create the root node of the decision tree, which contains all examples
gueue.put(rootNode)
While(is_not_empty(queue))
node = queue.pop()
Find the question that has the largest L, + L,
For each question //Do this using Parallel Processing
Split the examples associated with the current node
Fit an LDM to "yes” examples and calculate L,
Fit an LDM to "no” examples and calculate L,
Checkif L, + L, > L, + MDL_threshold and store L, + L,
If a (best) question is found
Create tree node yesNode that contains the “yes” examples
Create tree node noNode that contains the “no” examples
gueue.put(yesNode)
gueue.put(noNode)



Application of LDMs to TTS — Clustering

Part of the Decision Tree of mceps

C_phone(notin) | 74908 training examples

+voiced
L_phone(in) L_phone(notin)
[ edge_silence } 21497 [ +sonorant 53411
C_phone(in) 3389 L_phone(in) 18108 C phone(notln) 23005 C_phone(in) 30406
unvoiced -sonorant consonant -sonorant

C_phone(in) Orth(=)now C_phone(in) C_phone(in) phone(ln)vowel C phone(ln) C _phone(in)- C_phone(in)
release R unvoiced fricative helght> |meld -strident strident nasal_consonan

2836 5462 12646 16177 6828 8388 22018




Application of LDMs to TTS — Global Variance

Global Variance (GV) is defined as an intra-utterance variance of a
speech parameter trajectory and is modelled by a Gaussian
distribution.

The GV algorithm constrain the synthesized trajectories to have the
same GV as the GV of the corresponding training samples.

In speech parameter generation, the optimum parameter sequence is
determined so as to maximize an objective function consisting of the
LDM and GV log pdfs

L :%10gP(Y|)_(,(9LDM)+10gP(V|QGV)

where 6, 5, and 8, are the parameters of the distributions of LDM and
GV, Y are the trajectories of speech parameters (e.g., Cepstrum), vector v
has the variances of Y trajectories, T is the duration of trajectories, and
hidden state x is

X =argmax P(X |6,,,,)

The objective function L is maximized by a steepest decent algorithm



Application of LDMs to TTS — Global Variance

GV has been applied both to traditional LDMs and to LDMs with critically
dumped target-dynamics.

In informal subjective listening tests the volunteers preferred the GV LDM
synthesized speech from the LDM synthesized speech
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Application of LDMs to TTS — Global Variance
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LDMs — Footprint

LDM footprint

Matrices H, and R are globally tied
Their contribution to the total number of parameters is minimal
Matrix Q is constant (Q =1I).

Matrix F and vector g are different for every model (leaf of the
clustering tree)

n? parameters for F and n parameters for g, where n <m (m is the
number of static features).

Total number of parameters = (n? + 3n + m) x number of leafs in
clustering trees

HSMM footprint
Total number of parameters = 6m x number of leafs in clustering trees
+ elements of transition matrix x number of leafs in cluster trees

If the number of clustering leafs are equal, then LDM uses 1/3 of the
parameters of HSMM

Alternatively LDM can use finer clustering, improving the quality of
synthesized speech



LDMs — Implementation issues

The software was implemented in Matlab.
It has been written from scratch and does not depend on HTS

Those parts of the software that are computationally demanding have
been implemented in C

The BLAS and LAPACK numerical libraries were used for the matrix
operations

The software uses the conventional Kalman filter, but there is the option
to switch to the square root Kalman filter in ill conditioned models
(relatively few samples).



Samples: March 2015

Samples from the training set

HSMM duration. Synthesized Cepstrum, Band aperiodicity and FO

herald_264 herald 264 herald_264
herald 439 herald_439 herald 439
LDM LDM GV HSMM GV

Samples from the test set

HSMM duration. Synthesized Cepstrum, Band aperiodicity and FO

herald 413 herald 413 herald 413
herald 752 herald_752 herald 752
hvd_720 hvd_720 hvd_720
mrt_150 mrt_150 mrt_150

LDM LDM GV HSMM GV



Samples: July 2015

Samples from the training set
Natural duration.
Second-order LDMs: Cepstrum, Band aperiodicity and phase
First-order LDMs: FO

herald_24 herald_24
herald_26 herald 26
herald_142 herald_142
herald_198 herald 198
herald_264 herald_264
herald 439 herald_439

LDM LDM GV



