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An LDM is a generative model with a time-varying multivariate unimodal 

Gaussian output distribution. 

An LDM is specified by the following pair of equations: 
 

        

𝑥1 = 𝑁 𝑔1, 𝑄1          

𝑥𝑡 = 𝐹𝑥𝑡−1 + 𝑔 + 𝑤   𝑤~𝑁(0, 𝑄) 𝑥𝑡 ∈ ℝ𝑛

𝑦𝑡 = 𝐻𝑥𝑡 + 𝜇 + 𝑣      𝑣~𝑁(0, 𝑅) 𝑦𝑡 ∈ ℝ𝑚
 

 

 

 

 

 

 

 

Linear Dynamical Models 

Hidden state space (n=2) Observation space (m=3) 

t = 1 

t = 40 



LDMs are described by a hidden Markov chain 

 

 

 

 

 

 

 

 

State evolution Model:  p(xt/xt-1) = N(xt; F·xt-1 + g, Q) 

xt: Abstract state,  Articulators, Sinusoidals, e.t.c. 

 

Observation Model:  p(yt/xt) = N(yt; H·xt + μ, R) 

yt: (mceps, F0, bap, phi), Sinusoidal parameters, Raw speech, etc  

 

Linear Dynamical Models 

xt-1 xt xt+1 

State evolution models 

yt-1 yt yt+1 

Observation 
models 



LDMs vs HMMs 

xt-1 xt xt+1 

yt-1 yt yt+1 

Observation 
models 

LDM: p(xt|xt-1)=N(xt; Fxt-1+g, Q) HMM: p(xt|xt-1) arbitrary 

LDM: xt continuous vector HMM: xt ∈ {1, 2, …, N} 
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Modelling an artificial signal with HMMs and LDMs 

x1 
x2 x3 

y1 
y2 y3 

An artificial signal is modelled with  

a 3-state HMM,  

a 3-state trajectory HMM and  

a single state LDM 

 

 

 

 

 

 

 

 

The signal:  

x = linspace(1, 9, 60)+0.5*randn(1, 60) 



Synthesis with HMMs and LDMs 

HMMs 

Number of parameters 

3 x (mean + std) + 

transition matrix = 

6 + 9 = 15 

Trajectory HMMs 

Number of parameters 

3 x 3 x (mean + std) + 

transition matrix = 

18 + 9 = 27 

LDM 

Number of parameters 

1 x (g1 + Q1 + F + g + Q 

+ H + μ + R) = 

8 

In this example, an LDM generates a trajectory that is closer to the 

original using fewer parameters than 3-state HMMs or trajectory HMMs  

 

 

 

 

 

 

 



 A p-order vector autoregressive (AR) model. 

 

 

 

 The corresponding LDM 

 

 

 

 

 

 

 

 

LDMs and Autoregressive Models 
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Scalar noisy observations 𝑦𝑡 of a periodic signal represented with a 

finite Fourier series plus a noise term 

 

   𝑦𝑡 = 𝑐1𝑒𝑗2𝜋𝑓1𝑡 + 𝑐2𝑒𝑗2𝜋𝑓2𝑡 + ⋯ + 𝑐𝑘𝑒𝑗2𝜋𝑓𝑘𝑡 + 𝑣 
 

   where the coefficients 𝑐𝑖 are complex numbers 

By setting 

 

  𝑥𝑡 =
𝑒𝑗2𝜋𝑓1𝑡

⋮
𝑒𝑗2𝜋𝑓𝑘𝑡

,   𝐹 =
𝑒𝑗2𝜋𝑓1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑒𝑗2𝜋𝑓𝑘

,   𝐻 = 𝑐1, 𝑐2, ⋯ , 𝑐𝑘  

 

The evolution of the periodic signal can be written as  

      
𝑥𝑡 = 𝐹𝑥𝑡−1    
𝑦𝑡 = 𝐻𝑥𝑡 + 𝑣 𝑣~𝑁(0, 𝑅)

 

 

 

 

 

 

 

 

 

LDMs and Sinusoidal Models 



Researchers at Haskins Laboratories developed differential equations 

that describe how the articulators move to produce a particular 

utterance. 

 

 

 

 

 

 

 

 

The motions of the articulators are simulated with critically-damped 

spring-mass models 

 

LDMs – State Evolution 

wutxS
dt

tdx
S

dt

txd
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The differential equation 

 

 

 

can be converted into a second order recurrence relation 

 

Therefore the motion of articulators can be connected with the 

dynamics of acoustic parameters with a State-Space Model 

 

𝑥1 = 𝑁 𝑔1, 𝑄1          

𝑥𝑡 = 𝐹𝑥𝑡−1 + 𝑔 + 𝑤   𝑤~𝑁(0, 𝑄) 𝑥𝑡 ∈ ℝ𝑛

𝑦𝑡 = ℎ(𝑥𝑡) + 𝑣           𝑣~𝑁(0, 𝑅) 𝑦𝑡 ∈ ℝ𝑚
 

 

The hidden space variables, x, correspond to the states of articulators 

The observation space variables, y, correspond to speech parameters 

However the mapping between the two spaces may be non-linear 

  

 

 

 

 

 

 

The motions of the articulators are simulated with a critically-damped 

spring-mass model 

 

LDMs – State Evolution 

wutxS
dt

tdx
S

dt

txd
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Factor analysis is a statistical method for modelling the covariance 

structure of high dimensional static data using a small number of latent 

(hidden) variables 

 

 

                                                                                                 

 

Number of parameters: 𝑚 + 𝑚 × 𝑛, instead of 𝑚 × 𝑚 of a full R. 

Example n = 1, m = 2 
 

 

 

 

 

 

 

 

 

LDMs – Factor Analysis 
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H scales x by 5 and 

rotates it by 45o clockwise  

𝑤 ∈ ℝ𝑛 

y, v ∈ ℝ𝑚,     𝑅  is diagonal 



LDMs – Factor Analysis 

x Hx 

v y 



LDMs are stochastic models and can explain a huge number of time 

series using a small number of parameters 

The deterministic part of the dynamics of a first-order LDM is: 

                                       𝑥𝑡 = 𝐹𝑥𝑡−1 + 𝑔  

In speech synthesis, stable models should be used.  

The transition matrix 𝐹 is constrained to have spectral radius less 

than one (All the eigenvalues of 𝐹 have absolute values less than 

one). 

Target value of a stable LDM: 𝐼 − 𝐹 −1𝑔 

                          Examples of trajectories of 𝑥𝑡 = 𝐹𝑥𝑡−1 + 𝑔  

 

 

                                                                                                 
 

 

 

 

 

 

 

 

 

LDMs – Dynamics 

Stable first-order LDMs. Target value=3 Unstable first-order LDMs. 



The deterministic part of the dynamics of a second-order LDM is: 

                            𝑥𝑡 = 𝐹1𝑥𝑡−1 + 𝐹2𝑥𝑡−2 + 𝑔  

The above recurrence relation can give oscillations 

 

 

 

 

 

Trajectories of second-order critically dumped linear dynamics 

 

 

                                                                                                 
 

 

 

 

 

 

 

 

 

LDMs – Dynamics 

Second-order critically dumped LDMs.  

They are stable and converge to a target value 



 

Evaluation: Given an LDM with parameters 𝜃 and an observation 

sequence 𝑌 = 𝑦1, 𝑦2, ⋯ , 𝑦𝑇 , calculate the probability that model 𝜃 has 

generated sequence 𝑌. 

 

 

Inference: Given an LDM with parameters 𝜃 and an observation 

sequence 𝑌 = 𝑦1, 𝑦2, ⋯ , 𝑦𝑇 , calculate the probability of hidden states 

𝑥𝑡 that produced this observation sequence 𝑌. 

 

 

Learning: Given a training observation sequence 𝑌 = 𝑦1, 𝑦2, ⋯ , 𝑦𝑇 , 

determine an LDM with parameters 𝜃 that best fit the training data. 
 

 

 

 

 

 

The tree basic problems for HMMs and LDMs 



We assume that the parameters 𝜃 of an LDM are known. 

There are two approaches, in order to infer the hidden state sequence 

X = 𝑥1, 𝑥2, ⋯ , 𝑥𝑇  statistics from an observation sequence                  

𝑌 = 𝑦1, 𝑦2, ⋯ , 𝑦𝑇 . 

 

1. Solving a weighted least squares problem 

Derivation of square root Kalman filter  

 

2. Using the properties of Gaussian distributions and of Markov chain 

of probabilistic interactions 

The equations and the algorithms are similar to HMM case 

This method can be used to derive equations and recursive 

algorithms for any distribution of the exponential family (Gaussian, 

exponential, alpha-stable, …) 
 

 

 

 

 

 

LDMs - Inference 



From the equations of LDM  

    

𝑥1 = 𝑔1 + 𝑤1            𝑤1~𝑁(0, 𝑄1) 𝑥1 ∈ ℝ𝑛

𝑥𝑡 = 𝐹𝑥𝑡−1 + 𝑔 + 𝑤   𝑤~𝑁 0, 𝑄      𝑥𝑡 ∈ ℝ𝑛

𝑦𝑡 = 𝐻𝑥𝑡 + 𝜇 + 𝑣      𝑣~𝑁 0, 𝑅      𝑦𝑡 ∈ ℝ𝑚
      it follows that 

 

    𝑥1 = 𝑔1 + 𝑤1 

    𝐻𝑥1 = 𝑦1 − 𝜇 − 𝑣 

    𝐹𝑥1 − 𝑥2 = −𝑔 − 𝑤 

    𝐻𝑥2 = 𝑦2 − 𝜇 − 𝑣   

             . . . 

    𝐹𝑥𝑇−1 − 𝑥𝑇 = −𝑔 − 𝑤 

    𝐻𝑥𝑇 = 𝑦𝑇 − 𝜇 − 𝑣   

 

 

LDMs - Inference 

𝐼 0 0
𝐻 0 0
𝐹 −𝐼 0
0 𝐻 0
⋮ ⋮ ⋮
0 0 0
0 0 0

    

⋯ 0 0
⋯ 0 0
⋯ 0 0
⋯ 0 0
⋱ ⋮ ⋮
⋯ 𝐹 −𝐼
⋯ 0 𝐻

𝑥1

𝑥2

⋮
𝑥𝑇

=

𝑔1

𝑦1 − 𝜇
−𝑔

𝑦2 − 𝜇
⋮

−𝑔
𝑦𝑇 − 𝜇

−

𝑤1

𝑣
𝑤
𝑣
⋮
𝑤
𝑣

 

𝐴𝑥 = 𝑏 − 𝜀  𝜀 = 𝑏 − 𝐴𝑥, 

minimize 𝐸[𝜀𝑇𝜀]  𝐴𝑇Σ−1𝐴𝑥 = 𝐴𝑇Σ−1𝑏 

𝐴 ∈ ℝ 𝑛+𝑚 𝑇×𝑛𝑇 

𝑥 



Weighted least squares problem 

 

 

 

 

 

 

Naïve solution 𝑥 = 𝐴𝑇Σ−1𝐴 −1𝐴𝑇Σ−1𝑏 

Matrix 𝐴𝑇Σ−1𝐴 is block tri-diagonal.  

The structure of matrix 𝐴𝑇Σ−1𝐴 allows recursive solution. 

Solving the system 𝐴𝑇Σ−1𝐴𝑥 = 𝐴𝑇Σ−1𝑏 using LU decomposition 

of 𝐴𝑇Σ−1𝐴 leads to Kalman filter 

Solving the system 𝐴𝑇Σ−1𝐴𝑥 = 𝐴𝑇Σ−1𝑏 using orthogonalization of 

𝐴𝑇Σ−1𝐴, e.g., QR decomposition, leads to square root Kalman filter 

 

 

LDMs - Inference 

𝐴𝑥 = 𝑏 − 𝜀  𝜀 = 𝑏 − 𝐴𝑥 

minimize 𝜀 2  𝐴𝑇Σ−1𝐴𝑥 = 𝐴𝑇Σ−1𝑏 

Normal equations 

𝐴 ∈ ℝ2𝑇𝑛×𝑇𝑛 

𝑥 



Derivation of Kalman filter based on the properties of Gaussian 

distribution and the properties of the probabilistic interactions. 

  

Let 𝑥 =
𝑥1

𝑥2
 be an n-dimensional random vector with distribution 

𝑥~𝑁 𝜇, Σ ,  where 𝑥1 and 𝑥2 are two sub-vectors of respective 

dimensions p and q, with p+q = n,     𝜇 =
𝜇1

𝜇2
,   Σ =

Σ11 Σ12

Σ21 Σ22
 

 

Theorem  

The marginal distributions of 𝑥1and 𝑥2 are also normal with mean 

vector 𝜇𝑖 and covariance matrix Σ𝑖𝑖 (i=1,2), respectively. 

The conditional distribution of 𝑥𝑖 given 𝑥𝑗  is also normal with mean 

vector  𝜇𝑖|𝑗 = 𝜇𝑖 + Σ𝑖𝑗Σ𝑗𝑗
−1(𝑥𝑗 − 𝜇𝑗) 

    and covariance matrix   Σ𝑖|𝑗 = Σ𝑖𝑖 − Σ𝑖𝑗Σ𝑗𝑗
−1Σ𝑖𝑗

𝑇  

LDMs - Inference 



Filtering 

 

 

 

LDMs - Inference 

Normalization 

constant 
Prediction: 

Update: 

𝛼 𝑡 𝑥𝑡 =
1

𝑐𝑡
𝑝 𝑦𝑡 𝑥𝑡  𝑝 𝑥𝑡 𝑥𝑡−1 = 𝑧 𝛼 𝑡−1 𝑧 𝑑𝑧 



LDMs - Inference 

𝛽 𝑡−1 𝑥𝑡−1 =
1

𝑐𝑡
 𝑝 𝑥𝑡 = 𝑧 𝑥𝑡−1 𝑝 𝑦𝑡 𝑥𝑡 = 𝑧 𝛽 𝑡 𝑧 𝑑𝑧 

Smoothing 

 

 

 

 The forward-backward algorithm updates filtering 

via a reverse-time recursion: 



LDMs - Inference 

Smoothing 

Backward recursion  

𝛽 𝑡−1 𝑥𝑡−1 =
1

𝑐𝑡
 𝑝 𝑥𝑡 = 𝑧 𝑥𝑡−1 𝑝 𝑦𝑡 𝑥𝑡 = 𝑧 𝛽 𝑡 𝑧 𝑑𝑧 

Sequential recursion  

𝛼 𝑡−1 𝑥𝑡−1 𝛽 𝑡−1 𝑥𝑡−1 =  𝑝(𝑥𝑡−1|𝑥𝑡 = 𝑧, 𝑦1:𝑡−1)𝛼 𝑡(𝑧)𝛽 𝑡 𝑧 𝑑𝑧 

For the learning problem, the following marginal 

probabilities are inferred from the observation 

        𝑝 𝑥𝑡 𝑌 =
1

𝑐𝑡
𝛼 𝑡(𝑥𝑡)𝛽 𝑡(𝑥𝑡)   

 

       𝑝 𝑥𝑡−1, 𝑥𝑡|𝑌 =
1

𝑐𝑡
𝛼 𝑡−1 𝑥𝑡−1 𝑝 𝑥𝑡|𝑥𝑡−1 𝑝(𝑦𝑡|𝑥𝑡)𝛽 𝑡(𝑥𝑡) 



The set of Kalman filtering 

equations 

Prediction (Time Update) 

(1) Project the state ahead 

(2) Project the error covariance ahead 

Correction (Measurement Update) 

(1) Compute the Kalman Gain 

(2) Update estimate with measurement yt 

(3) Update Error Covariance 

𝑥 𝑡|𝑡−1 = 𝐹𝑥 𝑡−1|𝑡−1 + 𝑔 

Σ 𝑡|𝑡−1 = 𝐹Σ 𝑡−1|𝑡−1𝐹𝑇 + 𝑄 

𝐾𝑡 = Σ 𝑡|𝑡−1𝐻𝑇 𝐻Σ 𝑡|𝑡−1𝐻𝑇 + 𝑅
−1

 

𝑥 𝑡|𝑡 = 𝑥 𝑡|𝑡−1 + 𝐾𝑡 𝑦𝑡 − 𝐻𝑥 𝑡|𝑡−1 − 𝜇  

Σ 𝑡|𝑡 = Σ 𝑡|𝑡−1 − 𝐾𝑡𝐻Σ 𝑡|𝑡−1 







The parameters of an autoregressive (AR) model can be specified by 

solving closed form equations (e.g., the Yule-Walker equations). 

There is no closed form solution to parameter identification in LDMs. 

Parameters can be estimated by minimizing the log-likelihood 

 

 

 

 

 

 

 

 

Numerical optimization algorithms  

Steepest ascent 

Expectation maximization algorithm 

      
 

 

 

 

 

 

 

 

LDMs - Learning 



EM-algorithm 

 

Repeat until convergence 

E-step: Given an estimate of the parameters of the model,  

     compute the sufficient statistics, 

                             and the expected log-likelihood 

 

M-step: Update the parameters of the model 

 

LDMs - Learning 



E-step: Smoothed state estimates  

  𝐸 𝑥𝑡|𝑦1:𝑇 = 𝑥 1|𝑇 

 

     𝐸 𝑥𝑡𝑥𝑡
𝑇 𝑦1:𝑇 = Σ 𝑡|𝑇 + 𝑥 𝑡|𝑇𝑥 𝑡|𝑇

𝑇 = 𝑅 𝑡|𝑇  
 

     𝐸 𝑥𝑡𝑥𝑡−1
𝑇 𝑦1:𝑇 = Σ 𝑡,𝑡−1|𝑇 + 𝑥 𝑡|𝑇𝑥 𝑡−1|𝑇

𝑇 = 𝑅 𝑡,𝑡−1|𝑇 

 

Sufficient statistics 

     𝜁1 =  𝑥 𝑡|𝑇
𝑇−1
𝑡=1                      Γ1 =  𝑅 𝑡|𝑇

𝑇−1
𝑡=1  

    𝜁2 =  𝑥 𝑡|𝑇
𝑇
𝑡=2                       Γ2 =  𝑅 𝑡|𝑇

𝑇
𝑡=2  

    𝜁3 =  𝑥 𝑡|𝑇
𝑇
𝑡=1                       Γ3 =  𝑅 𝑡|𝑇

𝑇
𝑡=1   

    𝜁4 =  𝑦𝑡
𝑇
𝑡=1                          Γ4 =  𝑅 𝑡,𝑡−1|𝑇

𝑇
𝑡=2  

                                                Γ5 =  𝑦𝑡𝑥 𝑡|𝑇
𝑇𝑇

𝑡=1     

                                                Γ6 =  𝑦𝑡𝑦𝑡
𝑇𝑇

𝑡=1  

LDMs - Learning 



M-step: Compute the  

    parameters of the  

    model 

 

LDMs - Learning 



Training LDMs for speech synthesis 

α1 

Utterance 1 

α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15 α16 

φ1 φ5 φ7 φ3 φ5 

α17 α18 α19 α20 α21 α22 

φ2 φ7 φ3 

β1 

Utterance 2 

β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 β12 β13 β14 β15 β16 

φ1 φ7 φ5 φ3 φ5 

β17 β18 β19 β20 β21 β22 

φ2 φ4 φ6 φ6 φ5 

Each utterance consists of segments of phones or subphones. 



Training LDMs for speech synthesis 

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 

α11 α12 

α13 α14 

α15 α16 

φ1 

α17 α18 α19 α20 α21 α22 

φ2 φ3 

β1 

β2 β3 β4 β5 β6 β7 β8 β9 

β10 

β11 β12 

β13 β14 

β15 

β16 β17 β18 

β19 β20 β21 β22 

φ4 φ5 φ6 φ7 

 Train an LDM for each label φ1, φ2, φ3, φ4, φ5, φ6, φ7, ... 



EM Algorithm   

 Training an LDM for label φi 

 

 Initial guesses of F, H, Q, R, g, μ, g1, Q1 

 

 Kalman smoother (E-step):  

– Clear the sufficient statistics variables 

– For each example yi1, … yiT in φi 

• Compute distributions of X1, …, XT   
given data yi1, … yiT and F, H, Q, R, g, μ, g1, Q1. 

• Accumulate the sufficient statistics into global variables 

 

Update parameters (M-step): 

– Update F, H, Q, R, g, μ, g1, Q1 based on sufficient statistics. 

 

Repeat until convergence (local optimum) 



Training 

Synthesis 

Initial state 

x1=g1 

 

State 

equation 

 

xt=Fxt-1+g 

Hidden 

state 

vectors 

 

X1,x2, …xT 

Duration of sub-

phoneme 

Observation 

model 

 

yt = Hxt+μ 

 

  

 

Observation 

vectors 

Cepstrum 

coefficients + 

F0 

 

y1, y2, … yT 

Speech 

Observation vectors 

Cepstrum coefficients + F0 

 

y11, y12, … y1T1 

y21,y22, …y2T2 

         ... 

yk1, yk2,… ykTk 

LDM model 

 

x1~N(g1, Q1) 

xt=Fxt-1+g+wt 

yt = Hxt+μ+vt 

 

wt~N(0, Q) 

vt~N(0, R) 

 

 

Maximize likelihood to 

estimate the parameters 

F, H, Q, R, g, μ, g1, Q1 

 

and the hidden states 

x11, x12, … x1T1 

x21,x22, …x2T2 

         ... 

xk1, xk2,… xkTk 

Parameters  

F, H, Q, R, g, μ, 

g1, Q1 

 

 



Optimization of LDM training configurations: 

The ideal state-space dimension is between 6 and 9 

Low dimensional dynamics produce high dimensional 

observations (e.g., 40 cepstral coefficients) 

 

 

 

 

  

 

 

 

Matrices Q and R should be diagonal 

The parameter μ is necessary 

Stability constraints should be enforced to LDMs 

All models can have the same matrix H 

 

 

 

      

LDM configurations 

C
e
p
s
tr

a
l 
d
is

ta
n
c
e
 

State-space dimension 



The likelihood of a given LDM and observation sequence 𝑌 is 

    𝑃 𝑌 𝜃 =  𝑃 𝑋, 𝑌 𝜃 𝑑𝑋
𝑋

=  𝑃 𝑌 𝑋, 𝜃 𝑃 𝑋 𝜃 𝑑𝑋
𝑋

 

Sub-optimum state sequence 𝑋  is determined, independently of 𝑌  

𝑋 = arg max𝑃 𝑋 𝜃  

Since the maximum likelihood estimate of a Gaussian is its mean, the 

state sequence can be found by the following iteration: 

    𝑥 1 = 𝑔1 

    𝑥 𝑡 = 𝐹𝑥 𝑡−1 + 𝑔,    𝑡 ∈ {2, ⋯ , 𝑇}   

The maximum of 

    𝑃 𝑌 𝑋 , 𝜃 =  𝑁(𝑦𝑡; 𝐻𝑥 𝑡 + 𝜇, 𝑅)𝑇
𝑡=1  

    is attained when: 

    𝑦𝑡 = 𝐻𝑥 𝑡 + 𝜇,   𝑡 ∈ {1, 2, ⋯ , 𝑇}  

 

 

 

 

 

 

 

LDM - Maximum likelihood trajectory generation 



  

    𝑥 1 = 𝑔1 

 

    for t = 1:T  

        if (t > 1)  

            𝑥 𝑡 = 𝐹𝑥 𝑡−1 + 𝑔  

         𝑦𝑡 = 𝐻𝑥 𝑡 + 𝜇 

 

 

Very low computational requirements 

LDMs are suited for real time speech production 

 

 

 

 

LDM - Maximum likelihood trajectory generation 



Second-order LDMs fit better the ceptrum than first-order LDMs. 

Mean cepstral distance 

Informal listening tests 

First-order LDMs fit better the continuous F0 than second-order LDMs. 

Informal listening tests 

Discontinuities between neighbouring segments in synthesized speech 

A common parameter 𝐻 alleviates the problem 
 

 

 

 

LDMs - Experiments 



The simplest map is for each linguistic (phonetic and prosodic 

contextual unit) unit to assign an acoustic model (an LDM). 

Not enough training samples to robustly train all models 

Example: 

 

 

 

 

 

 

Linguistic-to-Acoustic Mappings 

Linguistic 

unit 1 

Linguistic 

unit 2 

Linguistic 

unit 3 

Linguistic 

unit 4 

Linguistic 

unit 5 

LDM 1 LDM 4 LDM 5 

There are, for 

example, 42 

examples 

(segments) in 

the database 

There is no 

example in 

the speech 

database 

There is no 

example in 

the speech 

database 

There are 3 

examples in 

the database 

There are 10 

examples in 

the database 

Robust 

estimate of 

parameters 

Cannot 

estimate any 

acoustic 

model 

Not robust 

estimate of 

parameters 

Marginally 

robust 

estimate of 

parameters 

Cannot 

estimate any 

acoustic 

model 



A solution: Use the same LDM for more than one linguistic units.  

Cluster linguistic units in an way that is close to optimal, using binary 

decision trees. 

 

 

 

 

 

 

Linguistic-to-Acoustic Mappings 

Linguistic 

unit 1 

Linguistic 

unit 2 

Linguistic 

unit 3 

Linguistic 

unit 4 

Linguistic 

unit 5 

LDM 5 

There are, for 

example, 42 

examples 

(segments) in 

the database 

There is no 

example in 

the speech 

database 

There is no 

example in 

the speech 

database 

There are 3 

examples in 

the database 

There are 10 

examples in 

the database 

Robust 

estimate of 

parameters 

Robust 

estimate of 

parameters 

LDM 1 



The LDM models are trained using full context labelling 

The context is independent of the number of states 

  

 

 

 

LDM: Decision Tree Clustering  

sil p l ii z 

Current 
phoneme 

5 states in HMMs 
Current 

phoneme 

15 frames state1 state2 state3 state4 state5 

state1 state2 state3 

3 states in LDMs 



The LDM models are trained using full context labelling 

The number of possible pentaphons far exceeds the number of training 

examples 

Solution: One LDM models many pentaphons that have similar speech 

parameters 

The training examples are clustered according to linguistic questions and 

how well they fit to LDM that models the examples of a cluster. 

Initially, all training examples are modelled with one LDM. 

 

  

 

 

 

LDM: Decision Tree Clustering 

An LDM models an 
“average” trajectory of a 
set of example trajectories 



Hierarchical top-down clustering. Split if Ly + Ln > Lp + MDL_threshold 

 

  

 

 

 

LDM: Decision Tree Clustering  

Question: 

C_phone(notin)+continuant 

yes no 

Lp: Sum log-likelihood using 
LDMp 

Ly: Sum log-likelihood using 
LDMy 

Ln: Sum log-likelihood using 
LDMn 



Create the root node of the decision tree, which contains all examples 

queue.put(rootNode)   

While(is_not_empty(queue)) 

node = queue.pop()  

Find the question that has the largest Ly + Ln 

For each question    //Do this using Parallel Processing 

Split the examples associated with the current node 

Fit an LDM to “yes” examples and calculate Ly 

Fit an LDM to “no” examples and calculate Ln 

Check if Ly + Ln > Lp + MDL_threshold and store Ly + Ln 

If a (best) question is found  

Create tree node yesNode that contains the “yes” examples 

Create tree node noNode that contains the “no” examples 

queue.put(yesNode) 

queue.put(noNode) 

 

LDM: Decision Tree Clustering Algorithm 



Part of the Decision Tree of mceps  

Application of LDMs to TTS – Clustering  

C_phone(notin) 
+voiced 

L_phone(notin) 
+sonorant 

L_phone(in) 
edge_silence 

C_phone(notin) 
consonant 

C_phone(in) 
unvoiced 

C_phone(in) 
-sonorant 

L_phone(in) 
-sonorant 

C_phone(in)vowel 
_height>=lowmid 

C_phone(in) 
release 

C_phone(in)- 
strident 

C_phone(in) 
unvoiced 

C_phone(in) 
-strident 

Orth(=)now 
C_phone(in) 

nasal_consonant 
C_phone(in) 

fricative 

yes no 

74908 training examples 

53411 

3389 18108 23005 30406 

553 2836 5462 12646 16177 6828 8388 22018 

21497 



Application of LDMs to TTS – Global Variance  

Global Variance (GV) is defined as an intra-utterance variance of a 

speech parameter trajectory and is modelled by a Gaussian 

distribution. 

The GV algorithm constrain the synthesized trajectories to have the 

same GV as the GV of the corresponding training samples. 

In speech parameter generation, the optimum parameter sequence is 

determined so as to maximize an objective function consisting of the 

LDM and GV log pdfs  

 

 

 

 

 

 

 

 

The objective function L is maximized by a steepest decent algorithm 

 

)|(log),|(log
1

GVLDM vPXYP
T

L  

where θLDM and θGV are the parameters of the distributions of LDM and 
GV, Y are the trajectories of speech parameters (e.g., Cepstrum), vector v 
has the variances of Y trajectories, T is the duration of trajectories, and 
hidden state      is   

)|(maxarg LDMXPX 

X



Application of LDMs to TTS – Global Variance  

GV has been applied both to traditional LDMs and to LDMs with critically 

dumped target-dynamics. 

In informal subjective listening tests the volunteers preferred the GV LDM 

synthesized speech from the LDM synthesized speech    

Natural    
Synthesized 
Synthesized GV 

Trajectories of c(32) 



Application of LDMs to TTS – Global Variance  

Trajectories of c(16) 

Natural    
Synthesized 
Synthesized GV 



LDMs – Footprint 

LDM footprint  

Matrices H, and R are globally tied 

Their contribution to the total number of parameters is minimal 

Matrix Q is constant (Q = I). 

Matrix F and vector g are different for every model (leaf of the 

clustering tree) 

n2  parameters for F and n parameters for q, where n < m (m is the 

number of static features). 

Total number of parameters ≈ (n2 + 3n + m) × number of leafs in 

clustering trees 

HSMM footprint  

Total number of parameters ≈ 6m × number of leafs in clustering trees 

+ elements of transition matrix x number of leafs in cluster trees 

If the number of clustering leafs are equal, then LDM uses 1/3 of the 

parameters of HSMM  

Alternatively LDM can use finer clustering, improving the quality of 

synthesized speech 

 



The software was implemented in Matlab. 

It has been written from scratch and does not depend on HTS 

Those parts of the software that are computationally demanding have 

been implemented in C 

The BLAS and LAPACK numerical libraries were used for the matrix 

operations 

The software uses the conventional Kalman filter, but there is the option 

to switch to the square root Kalman filter in ill conditioned models 

(relatively few samples).  

 
 

 

 

 

 

 

 

 

 

LDMs – Implementation issues 



Samples: March 2015 

herald_264 

herald_439 

herald_264 

herald_439 

herald_264 

herald_439 

LDM LDM GV HSMM GV 

Samples from the test set  

HSMM duration. Synthesized Cepstrum, Band aperiodicity and F0 

herald_413 

herald_752 

hvd_720 

mrt_150 

herald_413 

herald_752 

hvd_720 

mrt_150 

herald_413 

herald_752 

hvd_720 

mrt_150 

LDM LDM GV HSMM GV 

Samples from the training set  

HSMM duration. Synthesized Cepstrum, Band aperiodicity and F0 



Samples: July 2015 

herald_264 

herald_439 

herald_264 

herald_439 

LDM LDM GV 

Samples from the training set  

Natural duration.  

Second-order LDMs: Cepstrum,  Band aperiodicity and phase 

First-order LDMs: F0 

herald_24 

herald_26 herald_26 

herald_142 

herald_198 

herald_142 

herald_198 

herald_24 


