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Mnyoavikcny Mabnon
Evornta 6: Memory-Based Learning, Instance-

Based Learning, K-Nearest Neighbor
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Inductive Assumption

» Similar inputs map to similar outputs
— If not true => learning Is impossible

— If true => learning reduces to defining “similar”

» Not all similarities created equal

— predicting a person’s weight may depend on
different attributes than predicting their 1Q
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1-Nearest Neighbor

N 2
Dist(c,,c,) = ‘/Z attr(c,)—attr(c, ))
i=1
NearestNeighbor = MIN, (Dz'st(cj ¢ )

prediction, = classj (or valuej)

works well if no attribute noise, class noise, class overlap
can learn complex functions (sharp class boundaries)

as number of training cases grows large, error rate of 1-NN
IS at most 2 times the Bayes optimal rate
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k-Nearest Neighbor

Dist(c,,c,)= \/ %(am;. (c,)—attr/(c, ))2
i=1

k — NearestNeighbors = % — MIN(Dist(c,,c,,, ))}
1 £ 1 &
prediction,  =— > class. (or — Xvalue)
lest ko : ki=1 :
» Average of k points more reliable when:
— noise In attributes SO
— noise in class labels

04
— classes partially overlap

o 00 O
+ 1+

attribute 2

attribtite_1
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How to choose k™

Large k:

— less sensitive to noise (particularly class noise)
— better probability estimates for discrete classes
— larger training sets allow larger values of k

Small k:

— captures fine structure of problem space better
— may be necessary with small training sets

Balance must be struck between large and small k

As training set approaches infinity, and k grows large,
KNN becomes Bayes optimal
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1-Nearest Neighbor
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From Hastie, Tibshirani, Friedman 2001 p418




15-Nearest Neighbors
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From Hastie, Tibshirani, Friedman 2001 p418




From Hastie, Tibshirani, Friedman 2001 p419

Misclassification Errors

Test Error
10-fold CV
Training Error
Bayes Error
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Cross-Validation

Models usually perform better on training data
than on future test cases

1-NN 1s 100% accurate on training data!

L eave-one-out-cross validation:

— “remove” each case one-at-a-time

— use as test case with remaining cases as train set
— average performance over all test cases

LOOCYV is impractical with most learning
methods, but extremely efficient with MBL!




Distance-Weighted kNN

» tradeoff between small and large k can be difficult
— use large k, but more emphasis on nearer neighbors?

k k
Zwl. * class, Zwl. *value,

prediction ,,, = = (or =

k k
> >
] i=1

i=1

)

W = 1
‘ DiSt(Ckﬂ Ctest)
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Locally Weighted Averaging

=® . Let k = number of training points

- » Let weight fall-off rapidly with distance

k k
Zwi * class, Zwl. *value

prediction,, , = =

test

1

e KernelWidthDist(c;, ,c,,, )

W, =

*
.
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l » ° KernelWidth controls size of neighborhood that
# has large effect on value (analogous to k)




Locally Weighted Regression

All algs so far are strict averagers: interpolate, but
can’t extrapolate

Do weighted regression, centered at test point,
welight controlled by distance and KernelWidth

Local regressor can be linear, quadratic, n-th
degree polynomial, neural net, ...

Yields piecewise approximation to surface that
typically iIs more complex than local regressor




Euclidean Distance

D(cl,c2)= \/ g(attri (cl)—attr, (c2))2

» gives all attributes equal weight?

— only if scale of attributes and differences are similar
— scale attributes to equal range or equal variance

» assumes spherical classes

attribute 2

attribtite_1

Y
9
*
d
d
e
*
T
»
2
- ®
@
- @
o




Euclidean Distance?

0 o

0)
0)
do
0)

attribute 2
attribute 2

+

I 00

+ O

attribtite 1 attribute_1

If classes are not spherical?

If some attributes are more/less important than
other attributes?

If some attributes have more/less noise in them
than other attributes?
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Weighted Euclidean Distance

D(cl,c2)= \/ _]é w. - (attrl. (cl)—attr, (c2))2

large weights => attribute I1s more important
small weights => attribute is less important
zero weights => attribute doesn’t matter

Weights allow KNN to be effective with axis-parallel
elliptical classes

Where do weights come from?
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Learning Attribute Weights

Scale attribute ranges or attribute variances to
make them uniform (fast and easy)

Prior knowledge

Numerical optimization:

— gradient descent, simplex methods, genetic algorithm
— criterion is cross-validation performance

Information Gain or Gain Ratio of single attributes




Information Gain

» Information Gain = reduction in entropy due to

splitti
o ENtro
encoc

ng on an attribute

0y = expected number of bits needed to
e the class of a randomly drawn + or —

eXam

nle using the optimal info-theory coding

Entropy= —p, log, p, —p_log, p_

Gain(S, A) = Entrop)(S) — Z % Entrop)(S.)

veValues(A)



P

Splitting Rules

S
Entropy(S) — Z = Entropy(S,)

veValues(A) |S

5 S 100 15
velValuesA4) |S 2 |S




Gain_Ratio Correction Factor

Gain Ratio for Equal Sized n-Way Splits

/
/
/
/

20 30

Number of Splits




GainRatio Weighted Euclidean Distance

Z gain _ratio, - (attr,(cl) — attr, ((:2))

=1




Booleans, Nominals, Ordinals, and Reals

Consider attribute value differences:
(attr; (c1) — attr,(c2))

Reals: easy! full continuum of differences
Integers: not bad: discrete set of differences
Ordinals: not bad: discrete set of differences
Booleans: awkward: hamming distances O or 1
Nominals? not good! recode as Booleans?

PN
19
*
d
d
T
*
T
»
2
- ®
@
- @
- 2




=9
Curse of Dimensionality

as number of dimensions increases, distance between
points becomes larger and more uniform

If number of relevant attributes is fixed, increasing the
number of less relevant attributes may swamp distance

relevant lrrelevant

9
D(cl,c2) = \/ attr(cl) —attr, (02))2 attr, (cl)—am;. (02))
when more irrelevant than relevant dlmensions, distance

becomes less reliable

solutions: larger k or KernelWidth, feature selection,
feature weights, more complex distance functions
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Advantages of Memory-Based Methods

Lazy learning: don’t do any work until you know what you
want to predict (and from what variables!)

never need to learn a global model

many simple local models taken together can represent a more
complex global model

better focussed learning
handles missing values, time varying distributions, ...

Very efficient cross-validation

Intelligible learning method to many users

Nearest neighbors support explanation and training
Can use any distance metric: string-edit distance, ...
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Weaknesses of Memory-Based Methods

Curse of Dimensionality:
— often works best with 25 or fewer dimensions

Run-time cost scales with training set size
Large training sets will not fit in memory
Many MBL methods are strict averagers

Sometimes doesn’t seem to perform as well as other
methods such as neural nets

Predicted values for regression not continuous
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§ o Combine KNN with ANN

Train neural net on problem

Use outputs of neural net or hidden unit
activations as new feature vectors for each point

Use KNN on new feature vectors for prediction
Does feature selection and feature creation
Sometimes works better than KNN or ANN




Current Research in MBL

Condensed representations to reduce memory requirements
and speed-up neighbor finding to scale to 105-10%2 cases

L earn better distance metrics
Feature selection

Overfitting, VC-dimension, ...
MBL in higher dimensions

MBL In non-numeric domains:
— Case-Based Reasoning
— Reasoning by Analogy
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References

» Locally Weighted Learning by Atkeson, Moore, Schaal

» Tuning Locally Weighted Learning by Schaal, Atkeson,
Moore




Closing Thought

In many supervised learning problems, all the information
you ever have about the problem is in the training set.

Why do most learning methods discard the training data
after doing learning?

Do neural nets, decision trees, and Bayes nets capture all
the information In the training set when they are trained?

In the future, we’ll see more methods that combine MBL
with these other learning methods.

— to improve accuracy

— for better explanation

— for increased flexibility
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2nueiopo aogo0tTnonc (1)

* To mapodv vAko dwatiBeton pe ToVg OPOLE TNG AOELNC YPTNOTG
Creative Commons Avagopd, Mn Eunopikn Xpnon, Oyt
[Hapdywyo 'Epyo 4.0 [1] 1 uetayevéotepn, Atebvnc 'Exooon.
ECaipolvtal o autoTeEAN £pYa TPITOV Y. POTOYPUPIEC,
OLOY PALLLLOTO K.A.TT., TO OTTOI0L EUTEPIEYOVTOL GE OVTO KO TO
omoia avapEPpovTot HLall LLE TOVC OPOVC ¥PNONS TOVS GTO
«Xnuetopo Xpnone Epyov Tpitovy.

[©0SIe)

[ 1] http://creativecommons.org/licenses/by-nc-nd/4.0/
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2nUEl®OU 0OEI000TNoNC (2)

e Qc Mn Epmopukn) opileton n ypnon:
— 7OV 0V TEPTAOUPAVEL AUEGO 1) EUUEGO OIKOVOUTIKO OPEAOG OO
TNV YPNCN TOL £PYOV, Y10, TO OLALVOUEN TOL EPYOL KOl OLOE000YO
— OV 0&V TEPTAOUPEvVEL O1KOVOLIKT GuVAALAYT) OC TPOoUTOOEGT Yo
N ypnon N tpocPacmn 6to £pyo
— TIOV 0&V TPOGTOPILEL GTO OLOVOUEN TOV EPYOV

KOl OEL00OY0 EUUEGO OIKOVOLKO OQEAOG (TT.). OL0LPMUIGELS) Ao
TNV TPOOAT] TOL £pYOV GE SLAOIKTVOKO TOTTO
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2nuetouo. Avopopog

Copyright ITavemomuio Kpntg, Imdvvng Toapapdivog 2015.
«Mnyaviky Manon. Memory-Based Learning, Instance-Based
Learning, K-Nearest Neighbor». 'Exooon: 1.0. HpdxAewo 2015.
AlaBéoipo amod ) otktvokn dtevbvvon:
https://opencourses.uoc.gr/courses/course/view.php?1d=362.
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Aot pnon ZNUEIOUATOV

Omo1aONTOTE avamapoy®YN N OLOCKELT] TOV VAIKOV Oal Tpémet
vo, GuumeptAauPdvet:

- 170 Znueiouo Avapopdc

- 70 Znueiopo Aogl0d00TNoNg

- TN ONA®GN A0 ThPNoNG ZNUEI®UATOV

- 10 Znueiopa Xpnone Epyov Tpitwv (epdcov vrdpyet)
Lot LE TOVG GLVOOEVOUEVOVS VITEPGLVOEGLLOVG,.
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