EAAHNIKH AHMOKPATIA
NANENIZTHMIO KPHTH2

Mnyoavikny Mabnon

Evornra 9: Feed-Forward Artificial Neural Networks

lwavvne Toapapdivog
Tunua EmoTtiung YTroAoyioTwy

Binary Classification Example

A
g p fa A
5 A A o
al A
A ®
° e
A “‘
A ® 9

Value of predictor 1

Example:

 Classification to
malignant or
benign breast
cancer from
mammograms

 Predictor 1: lump
thickness

* Predictor 2:
single epithelial
cell size

Possible Decision Area 1

Class area:

Green
triangles Class area:

red circles

Value of predictor 2

of predictor 1

Possible Decision Area 2

Value of predictor 2

Possible Decision Area 3

Value of predictor 2

Binary Classification Example

A
5 A A
3 A A o
5 A
A ®
e
A
“‘
A @9

Value of predictor 1

The simplest
non-trivial
decision
function is the
straight line (in
general a
hyperplane)

One decision
surface

Decision
surface
partitions
space into two
subspaces

Specifying a Line

A

i W, X, +W;X; + W =0 Line equation:
W, X, + W, X, + W, <0 W, X, + W X + W, = 0

/9
A AAA WeXe T >0 Classifier:
A @©
‘ A Ps If w,x, +wx, +w, >0
A A @ @ Output 1
A ® o Else
A ® 0 Output -1

Classifying with Linear Surfaces

W, X, + W, X; + W, =0

A
W, X, + W, X; + W, <0
A AAA A W, X, + W, X, + W, >0
A, A O Classifier becomes
A O
. . . ® o sgn(w, X, + W, X, + W,) =
® e sgn(w, X, + W, X, + W,X,),
A ®9

. set X, =1always

Let n be the number of predictors

sgn(>_ wix;), or
sgn(w - X)

The Perceptron

Output:
classification
of patient
(malignant or
benign)

Weights

Input:
(attributes of
patient to
classify) X4 X3 X5 X1 Xo

The Perceptron

Output:
classification
of patient
(malignant or
benign)

Input:

(attributes of

patient to
classify) X4 X3 X5 X1 Xo

The Perceptron

Transfer
function:
sgn

Output:
classification
of patient
(malignant or
benign)

Input:
(attributes of
patient to
classify) X4 X3 X5 X1 Xo

The Perceptron

Output: / sgn(3)=1 \

classification
of patient
(malignant or
benign)

Input:

(attributes of

patient to
classify) X4 X3 X5 X1 Xo

Training a Perceptron

Use the data to learn a Perceprton that
generalizes

Hypotheses Space: H = {w|w e R""}
Inductive Bias: Prefer hypotheses that do not

misclassify any of the training instances (or
minimize an error function)

Search method: perceptron training rule,
gradient descent, etc.

Remember: the problem is to find “good”
weights

Training Perceptrons

True

Start with random Output: -1 1

weights

Update in an intelligent
way to improve them
using the data

Intuitively (for the
example on the right):

Decrease the weights

/ sgn(3)=1 \

that increase the sum

Increase the weights
that decrease the sum

Repeat for all training
Instances until
convergence

Perceptron Training Rule

For each missclassified
example X, update weights:
Aw; =1ty —04)X; 4

W, < W, + AW,

In vector form:

— W « W +7(t, —0,)X,

n: arbitrary learning rate (e.qg.
0.5)

ty : (true) label of the dth
example

04: output of the perceptron
on the dth example

X; - value of predictor variable
| of example d

ty = o4 : No change (for
correctly classified examples)

Explaining the Perceptron Training
Rule

Rule:w « W +n(t, —0,)X,

Output :sgn(w - X,)

Effect on the output caused by a
misclassified example x,

W Xy =W Xy + AW Xy =W ‘Xd““’?(td_od)HXdHZ

will decrease
will Increase

)_(d

Example of Perceptron Training: The
OR function

1 1]

N

X

£

D 1] -

Example of Perceptron Training: The
OR function

Initial random
weights:
L[] 1] 0x, +1x, —0.5=0
Define line:
<D - > X1:O.5
0 1 X1
Thus:
W = (W,, Wy, W,)

(01,-0.5)

Example of Perceptron Training: The

OR function

! : Initial random

: welights:
L[] 1] 0x, +1x, —0.5=0
Defines line:

GD n - > X1:O'5

0 1 %1
: %,=0.5

Area where A}ea where

classifier outputs -1 classifier outputs 1

Example of Perceptron Training: The
OR function

4 A . ..
: Only misclassified example

/ X2:1, X1:O, Xg = 1
: X =(101)

'

AN

e

=
v

X;=0.5
Area where Area where
classifier outputs -1 classifier outputs 1

Example of Perceptron Training: The
OR function

4 A . ..
: Only misclassified example

/ X2:1, X1:O, Xg = 1
: X =(101)

Y R |
N Old Line: 0x, +1x,—-0.5=0
X -
Update weights
N T » W <« W +7n(t-0)X
& o
0 1% W «(01-0.5)+0.5-(1-(-1))-(101)

=

«(01-0.5)+1-(1,01)
«(1,1,0.5)

e
|_\

1
=
ol
S

Example of Perceptron Training: The
OR function

4 A . ..
: Only misclassified example

/ X2:1, X1:O, Xg = 1
: X =(101)

'

New line: 1x, +1x, +0.5=0

X - -
weights W = (1,1,0.5)
For x,=0, X,;=-0.5
& - > For x,=0, x,=-0.5
0 1 %1

So, new line is:

(next slide)

Example of Perceptron Training: The
OR function

A .
T Example correctly classified
/ after update
'
N : New line: 1x, +1x, +0.5=0
X
v,
———1 —
05 ™, 0 : 1 L

-0.5 1. x,=0.5

1, +1x, +0.5=0

Example of Perceptron Training: The

OR function
| Next iteration:
W «W +n(t-0)X

1 .
- New|y- W «(1105)+05-(-1-1)-(0,0,1)

& Misclassified R

cxanple, W «(110.5)-10,02)
D S P
05 . 0 1 X
05
‘....‘%1x2 +1x, +0.5=0

Example of Perceptron Training: The
OR function

.. 11 [1] New line:
> 1X,+1X,-0.5=0
x‘
Perfect
classification
>——I —
_ 0 ", 1 1

No change

0.5 1x, +1x, —0.5=0 occurs next

Analysis of the Perceptron Training
Rule

Algorithm will always converge within finite
number of iterations if the data are linearly
separable.

Otherwise, it may oscillate (no convergence)

Training by Gradient Descent

Similar but:
Always converges

Generalizes to training networks of
perceptrons (neural networks) and training
networks for multicategory classification or
regression

|dea:

Define an error function

Search for weights that minimize the error, i.e.,
find weights that zero the error gradient

Setting Up the Gradient Descent

Squared Error: t label of dth example, o4 current output on dth

example
E(W) = Z(t ~0,)°
deD
Minima exist where gradlent IS zero:
ok Z(t
oW, 8W 2 405
- Z_(t
deD
= ZZ(t - (t —0y4)

deD |

= (ty - (0g)

deD |

The Sign Function Is not
Differentiable

0 00
™ (—0,) = _Wd =0, everywhere except o, =0

-3
777777777777777777

Use Differentiable Transfer Functions

Replace

Sgn(W - %,)

with the sigmoid

sig(W- X,)
1
1+e™”

— sig(y) =

B0 _ sig(y)(- sig(y))

Calculating the Gradient

OE 0
mi :(;(td _Od)m(_od)

-3, —od)%(—sig(v*v-id»

-3, —od)%(—sig(v*v-id»

osig(w-X,) o(w- X
St o) T 2%,
deD O(W-X;) ow,

=370, ~0,)sig(i-%,)(L- g (-5,))%(v*v-%d)

== (ty —04)Sig(W- Xy) (1—Sig(W-X,))- X, 4

VE(W) = _Z(td —0,)SIg(W- X,)(L—sig(W-X,))- X,

VE(W) = _Z(td —04)0, (1-04) - X,

Updating the Weights with Gradient
Descent

W < W —nVE (W)

W <— \r\/+nz(td —0,)sig(W- X,)(L—sig(W-X,)) - X,
deD

Each weight update goes through all training
Instances

Each weight update more expensive but more
accurate

Always converges to a local minimum regardless of
the data

When using the sigmoid: output is a real number
between 0 and 1

Thus, labels (desired outputs) have to be represented
with numbers from O to 1

Encoding Multiclass Problems

E.g., 4 nominal classes, A, B, C, D

Xo Xy X, Class
1 0.4 -1 A
1 9 0.5 A
1 1 3 C
1 8.4 -.8 B
1 -3.4 2 D

Encoding Multiclass Problems

Use one perceptron (output unit) and encode the output as
follows:

Use 0.125 to represent class A (middle point of [0,.25])
Use 0.375, to represent class B (middle point of [.25,.50])
Use 0.625, to represent class C (middle point of [.50,.75])
Use 0.875, to represent class D (middle point of [.75,1]

The training data then becomes:

Xo Xy X, Class
1 0.4 -1 0.125
1 9 0.5 0.125
1 1 3 0.625
1 8.4 -.8 0.365
1 -3.4 2 0.875

Encoding Multiclass Problems

Use one perceptron (output unit) and encode the output as

follows:

Use 0.125 to represent class A (middle point of [0,.25])
Use 0.375, to represent class B (middle point of [.25,.50])
Use 0.625, to represent class C (middle point of [.50,.75])
Use 0.875, to represent class D (middle point of [.75,1]

To classify a new input vector X:

0,.25] classify as Class A

If sig(w-
If sig(w-
If sig(w -
If sig(w -

X) €
X) €
X) €
X) €

.25, 5]
5,.75]

75,1

classify as Class B
classify as Class C
classify as Class D

For two classes only and a sigmoid unit suggested values 0.1
and 0.9 (or 0.25 and 0.75)

1-of-M Encoding

ASSign Output for Output for Output for Output for
to class ClassA ClassB ~ Class C Class D
with

largest

output

1-of-M Encoding

E.g., 4 nominal classes, A, B, C, D

Xo Xy X, Class | Class | Class | Class
A B C D

1 04 |-1 09 |01 |01 |01

1 9 0.5 09 |01 |01 |01

1 1 3 0.1 |01 |09 |01

1 8.4 |-.8 0.1 |09 |01 |01

1 -34 | .2 0.1 |01 (0.1 |09

Encoding the Input

Variables taking real values (e.g. magnesium level)
Input directly to the Perceptron
Variables taking discrete ordinal numerical values
Input directly to the Perceptron (scale linearly to [0,1])

Variables taking discrete ordinal non-numerical values (e.g.
temperature low, normal , high)

Assign a number (from [0,1]) to each value in the same
order:
Low « O
Normal < 0.5
High <« 1
Variables taking nominal values
Assign a number (from [0,1]) to each value (like above)
OR,

Create a new variable for each value taking. The new variable
Is 1 when the original variable is assigned that value, and O
otherwise (distributed encoding)

Feed-Forward Neural Networks

Output
Layer

Hidden
Layer 2

Hidden
Layer 1

Input
Layer

Increased Expressiveness Example:
Exclusive OR

No line (no set of three
weights) can separate the

1 D training examples (learn

=3 I the true function).
——T] -

0 5 4

Increased Expressiveness Example

|
-
v

Increased Expressiveness Example

X, | X, |Cla
1. a SS
o~ 0 0 1
X
0 1 1
D B—(, [0 |1
0 1
1 1 1

All nodes have the sign
function as transfer
function in this example

Increased Expressiveness Example

w

N
| | o] o %

From the Viewpoint of the Output
Layer

Mapped By @
Hidden Layer
105 C [H; [H, |O

A 7H2 T, |-1 [-1 |1 |-1
T, |1 |-1 |1 |1
Hl
> T, |1 |1 |1 |1
T 1 1 1 1
@ :

From the Viewpoint of the Output
Layer

eEach hidden layer
maps to a new feature
space

\ MappedBy *Each hidden node is

Hidden Layer g new constructed
to:

4 feature
. | H, «Original Problem may
become separable (or
H, easier)
0“ 4,

How to Train Multi-Layered Networks

Select a network structure (number of hidden
layers, hidden nodes, and connectivity).

Select transfer functions that are
differentiable.

Define a (differentiable) error function.

Search for weights that minimize the error
function, using gradient descent or other
optimization method.

BACKPROPAGATION

How to Train Multi-Layered Networks

Select a network structure
(number of hidden layers,
hidden nodes, and
connectivity).

Select transfer functions that
are differentiable.

Define a (differentiable) error
function.

EW) =2 3, ~0,)’

deD

Search for weights that
minimize the error function,
using gradient descent or other
optimization method. X5 Xy Xq

Back-Propagating the Error

wj_,;: weight

vector from
unit j to unit i

X; : ith output

I, index for
output layer

], index for
— . hidden layer

k, index for
Input layer

Output unit(s):

Hidden unit(s):

iInput unit(s):

Back-Propagating the Error

X.
' Recall, when no
Wi, hidden layer:
VE(W) = _Z (ty —04)04 (1 —04) - X
Xj deD
Wi Assume a single training example x
to avoid carrying the summation in
X, our calculations (we'll put it back in

X5 X1 Xg the end)

VEW)=—(t —0)o (1-0)-X

Back-Propagating the Error

For a single input vector with
! components X,
_ (giving rise to x;'s and x;'s)
a the contribution to the partial
derivative of the error is:

Xj
oE _5x,
Wk—)j aVVj—)i
6 =% (L=X)(t —X)
Xy

Back-Propagating the Error

Xi
wW. .
joi
OW, , |
=7
Wk—)] 5]
Xk

Back-Propagating the Error

Xi
W. .

j—i
X. ok

J = —5 « X

J k
k—
W, 5y =% (1=%) D W, ;-3
ieOutputs

Xk

Back-Propagating the Error

X, 5m - Xm(l_xm)(tm _Xm)

Wi—>m

X o =X (1_Xi) Zwi—m *Op
meQutputs

W. .

joi

X, 5 =x;(1-%;) D w6
ieNextLayer

Wk—>]

Xk

BackPropagation

For a given input vector X

Notation :

0, output of every unit u in network
t desired output

W,_,; weight from uniti to unit |
X;_,; Input from uniti going to unit |

Define :
o, =0,(1-0,)(t —o0,), whenk is the output unit

5k = 0y (1_Ok) Zwk—mé‘u

ue Outputs of unit k

Update weights rule :

W

'
I—

=W, +775jx.

I— |

Back-Propagation Algorithm

Propagate the input forward through the
network

Calculate the outputs of all nodes (hidden and
output)
Propagate the error backward

Update the weights:

OE(W, ;)
Wr—>t < Wr—>t —n oW

W .. < W

r—t r—t

r—t

+177-0, - X,

Training with BackPropagation

Going once through all training examples and
updating the weights: one epoch

Iterate until a stopping criterion is satisfied

The hidden layers learn new features and
map to new spaces

Training reaches a local minimum of the error
surface

Overfitting with Neural

Networks

If number of hidden units (and

weights) Is

large, It iIs easy to memorize the training set

(or parts of it) and not genera
Typically, the optimal number

1ze
of hidden units

IS much smaller than the input units
Each hidden layer maps to a space of smaller

dimension

Avoliding Overfitting : Method 1

The weights that minimize the error function
may create complicate decision surfaces

Stop minimization early by using a validation
data set

Gives a preference to smooth and simple
surfaces

Typical Training Curve

Real Error
or on an
independent
validation
set

|deal training
stoppage

Error on
Training Set

Error

Epoch

Example of Training Stopping Criteria

Split data to train-validation-test sets

Train on train, until error in validation set is

Increasing (more than epsilon the last m
iterations), or

until a maximum number of epochs Is reached
Evaluate final performance on test set

Avoiding Overfitting in Neural
Networks: Method 2

Sigmoid almost linear around
Zero

Small weights imply decision
surfaces that are almost
linear

Instead of trying to minimize
only the error, minimize the
error while penalizing for
large weights

()= 2 32, 007+ 7w
deD

Again, this imposes a
preference for smooth and
simple (linear) surfaces

Classification with Neural Networks

Determine representation of input:
E.g., Religion {Christian, Muslim, Jewish}

Represent as one input taking three different
values, e.g. 0.2, 0.5, 0.8

Represent as three inputs, taking 0/1 values

Determine representation of output (for
multiclass problems)

Single output unit vs Multiple binary units

Classification with Neural Networks

Select
Number of hidden layers
Number of hidden units
Connectivity
Typically: one hidden layer, hidden units is a small
fraction of the input units, full connectivity
Select error function

Typically: minimize mean squared error (with penalties
for large weights), maximize log likelihood of the data

Classification with Neural Networks

Select a training method:

Typically gradient descent (corresponds to
vanilla Backpropagation)

Other optimization methods can be used:
Backpropagation with momentum
Trust-Region Methods

Line-Search Methods
Congugate Gradient methods
Newton and Quasi-Newton Methods

Select stopping criterion

Classifying with Neural Networks

Select a training method:

May include also searching for optimal
structure

May include extensions to avoid getting stuck
In local minima

Simulated annealing

Random restarts with different weights

Classifying with Neural Networks

Split data to:
Training set: used to update the weights
Validation set: used in the stopping criterion

Test set: used in evaluating generalization
error (performance)

Other Error Functions in Neural
Networks

Minimizing cross entropy with respect to
target values

network outputs interpretable as probability
estimates

Representational Power

Perceptron: Can learn only linearly separable
functions

Boolean Functions: learnable by a NN with
one hidden layer

Continuous Functions: learnable with a NN
with one hidden layer and sigmoid units

Arbitrary Functions: learnable with a NN with
two hidden layers and sigmoid units

Number of hidden units in all cases unknown

Issues with Neural Networks

No principled method for selecting number of
layers and units

Tiling: start with a small network and keep
adding units

Optimal brain damage: start with a large
network and keep removing weights and units

Evolutionary methods: search in the space of
structures for one that generalizes well

No principled method for most other design
choices

Important but not Covered In This
Tutorial

Very hard to understand the classification
logic from direct examination of the weights

Large recent body of work in extracting

symbolic rules and information from Neural
Networks

Recurrent Networks, Associative Networks,
Self-Organizing Maps, Committees or
Networks, Adaptive Resonance Theory etc.

Why the Name Neural Networks?

Initial models that
simulate real
neurons to use for
classification

Efforts to simulate and

Efforts to improve and P » understand biological
understand classification neural networks to a
independent of similarity larger degree

to biological neural
networks

Conclusions

Can deal with both real and discrete domains
Can also perform density or probability estimation
Very fast classification time

Relatively slow training time (does not easily scale to
thousands of inputs)

One of the most successful classifiers yet
Successful design choices still a black art
Easy to overfit or underfit if care is not applied

Suggested Further Reading

Tom Mitchell, Introduction to Machine
Learning, 1997

Hastie, Tibshirani, Friedman, The Elements of
Statistical Learning, Springel 2001

Hundreds of papers and books on the subject

Téloc Evotnroc

ENIXEIPHIIAKO MPOTPAMMA
EKMAIAEYZH KAl !.‘\IA B!OIY MABHEZH 5 EznA
e e =

YNOYPTEIO MAIAEIAT & BPHEKEYMATON, IODAITIEMOY & ABAY
EvpwnaikiBvwon £ AIKH YIHPELIA AIAXEIPI
Sepuereied Korrsh Torsls . a1y croyamsppaerroBienan nig EXAAS6C win try¢ Evpasmelicc Evesdiy:

XpNuUoToooTnom

To TTapoVv eKTTAIOEUTIKO UAIKO £XEI avaTITUXBEi oTa TTAQiOIO TOU
EKTTAIOEUTIKOU £pyouU TOU OIOACKOVTA.

To €pyo «AvolkTa Akadnuaika Madnuara oTo

MavemoTApio KpATNG» £XEI XPNUATOOOTHOEI HOVO TN
aAvadIaANOPPWON TOU EKTTAIOEUTIKOU UAIKOU.

To €pyo uAoTTolEiTal OTO TTAQiOIO ToUu ETTiXEIpnoiakou
[Mpoypdupatog «EkmTaideuon kai Aia Biou Madnon» kai
ouyxpnuMatodorteital atro Tnv Eupwtraikn ‘Evwon (Eupwtraiko
Koivwviko Tauegio) kar atmrd €Bvikoug TTopoud.

* X %k
*
*

EMIXEIPHXIAKO TPC
EKHAIAEYZH KAI AIA BIOY MAGHI_'H — Ez "A

*
*
*

* x K EE=] < fnpéypoppn yio v avinin

YNOYPFEIO NMAIAEIAL KAl BPHEKEYMATAQON

EvpwmaikiiEvwon EI!AIKH YMNHPEZIIA AIAXEIPIZHE

Evpwnaiké Kowvwviké Tapeio) . .
Me tn cuyxpnuarodotnon tng EAMaSag kat tng Evpwnaikng Evwong

2NUEIOLATO

2nueiopua 00e000Tnons (1)

« To Tapov UAIKO dIaTiOETal JE TOUC OPOUC TNG ADEIAC
xpnong Creative Commons Avagopd, Mn Eptropikn
Xpnon, Oxi MNMapdaywyo ‘Epyo 4.0 [1] | yeTayeveoTepPn,
AieBvnc ‘'Ekdoon. EcaipouvTal Ta AQutoTEAN £pYya TRITWV
TT.X. PWTOYPAPIEC, dlIAYPANUATA K.A.TT., TA OTTOId
EUTTEPIEXOVTAI OE AUTO KAl TA OTToia ava@EpovTtal padi Je
TOUC OPOUC XPNOoNG Toug OTo «Znueiwpa Xpnong Epywv

Tpitwv».
[@olcle]

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

2nueiopa 00e000tTnonc (2)

* Q¢ Mn Eptropikni opiletal n xpnon:
— TToU O¢gV TTEPIAAUPBAVEI AUEDO I EPUECO OIKOVOUIKO OPEAOG ATTO
TV XPNOon TOU £pYOuU, YIa TO JIQVOUEQ TOU £PYOU Kal adEI0OOXO0

— TToU OgV TTEPIAAUPBAVEI OIKOVOMIKI) ouvaAAayry wg TTpoUTToBeon
yia Tn xprion n rpdéofaon oTo £pyo
— Trou OgVv TTPOoOoTTopifel 0TO DIAVOUEQ TOU £pPYOU

Kal ad€I000X0 EPMMUETO OIKOVOUIKO OPEAOG (TT.X. dDlAPNMICEIC)
aT1To TNV TTPOLBOAN TOU £pyou o€ dIAdIKTUOKO TOTTO

« O dIKaIOUXOC JTTOPEI va TTapEXEl OTOV adEI0dOXO0
CEXWPIOTN AdEIO VA XPNOIUOTIOIEI TO £PYO YIA EUTTOPIKN
Xpnon, Epooov auto Tou {NTnOEi.

2nuetoue AvoQopog

Copyright NavemoTtiuio Kpntng, lwavvne Toauapdivog
2015. «Mnxaviki MaBnon. Feed-Forward Artificial
Neural Networks». ‘'Ekdoon: 1.0. HpakAeio 2015.
AiaBEoipo atrd Tn dikTuakn dievBbuvon:

https://opencourses.uoc.gr/courses/course/view.php?id=
362.

AlaTr)pnon ZNUEIOUATOV

OT1ro1adNTTOTE avatrapaywyn f d1aoKeur Tou UAIKOU Ba
TTPETTEI VA OUUTTEPIAAUPBAVEL:

" TO 2NUEiwpa Avagpopag

= TO 2NUeEiwPa AdEIOOOTNONG

= TN ONAwaonN Alatnpnong ZNUEIWPATWY

" 7O Znueiwpa Xpnong Epywv Tpitwv (EOCOV UTTAPXEI)

uadi ue TOUC CUVOOEUOMEVOUC UTTEPOUVOECUOUG.

