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Support Vector Machines

Decision surface is a hyperplane (line in 2D) in
feature space (similar to the Perceptron)

Arguably, the most important recent discovery in
machine learning

In a nutshell:

map the data to a predetermined very high-
dimensional space via a kernel function

Find the hyperplane that maximizes the margin
between the two classes

If data are not separable find the hyperplane that
maximizes the margin and minimizes the (a weighted
average of the) misclassifications



Support Vector Machines

Three main ideas:

1. Define what an optimal hyperplane is (in way
that can be identified in a computationally
efficient way): maximize margin

2. Extend the above definition for non-linearly
separable problems: have a penalty term for
misclassifications

3. Map data to high dimensional space where it
IS easier to classify with linear decision
surfaces: reformulate problem so that data is
mapped implicitly to this space
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Maximizing the Margin
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Var, IDEA 1: Select the

separating
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margin!
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Why Maximize the Margin?

Intuitively this feels safest.

It seems to be the most robust to the
estimation of the decision boundary.

LOOCV is easy since the model is immune to
removal of any nonsupport-vector datapoints.

Theory suggests (using VC dimension) that is
related to (but not the same as) the
proposition that this is a good thing.

It works very well empirically.



Why Maximize the Margin?

Perceptron convergence theorem (Novikoff 1962):

Let s be the smallest radius of a (hyper)sphere
enclosing the data.

Suppose there Is a w that separates the data, I.e.,
wx>0 for all x with class 1 and wx<O0 for all x with
class -1.

Let m be the separation margin of the data
Let learning rate be 0.5 for the learning rule
W W +7(t, —0,)X,

Then, the number of updates made by the perceptron
learning algorithm on the data is at most (s/m)?



Support Vectors
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Setting Up the Optimization Problem

Var,

The width of the
margin is:

So, the problem is:

2|k
max —
i
st. (w-x+b)>k, vx of class 1

(w-x+b)<—k, Vx of class 2
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Setting Up the Optimization Problem

Var,

There is a scale and
unit for data so that
k=1. Then problem
becomes:

wi
st. (w-x+b)>1, vxofclass 1
(w-x+b) <-1, Vx of class 2
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Setting Up the Optimization Problem

If class 1 corresponds to 1 and class 2 corresponds
to -1, we can rewrite

(W-X +b)>1, Vx. withy, =1
(W-X. +b) <-1, ¥x, withy, =-1
as
y,(w-x +b) =1, VX
So the problem becomes:

2 1 2
max — min —HWH
[w or 2

st.y.(wW-x +b)>1 Vx st.y.(w-x, +b)>1 Vx
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Linear, Hard-Margin SVM
Formulation

Find w,b that solves
1 2
min —||W||
2

st.y.(w-x +b)>1, Vx

Problem is convex so, there is a unique global
minimum value (when feasible)

There is also a unique minimizer, i.e. weight and b
value that provides the minimum

Non-solvable if the data is not linearly separable
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Solving Linear, Hard-Margin SVM

Quadratic Programming

QP is a well-studied class of optimization
algorithms to maximize a quadratic
function of some real-valued variables
subject to linear constraints.

Very efficient computationally with modern
constraint optimization engines (handles
thousands of constraints and training
Instances).
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Support Vector Machines

Three main ideas:

1. Define what an optimal hyperplane is (in way
that can be identified in a computationally
efficient way): maximize margin

2. Extend the above definition for non-linearly
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IS easier to classify with linear decision
surfaces: reformulate problem so that data is
mapped implicitly to this space

15



Support Vector Machines

Three main ideas:

1. Define what an optimal hyperplane is (in way
that can be identified in a computationally
efficient way): maximize margin

2. Extend the above definition for non-linearly
separable problems: have a penalty term for
misclassifications

3. Map data to high dimensional space where it
IS easier to classify with linear decision
surfaces: reformulate problem so that data is
mapped implicitly to this space

16



Non-Linearly Separable Data

Var,

Find hyperplane that
minimize bgth [|w||
and the number of
misclassifications:
||w||+C*#errors

Problem: NP-
complete

Plus, all errors are
treated the same
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Non-Linearly Separable Data

Var,

Minimize
||w||+C*{digfance of
error points from
their desired place}

Allow some
instances to fall
within the margin,
but penalize them
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Non-Linearly Separable Data

Var,

Introduce slack
variables ¢&

Allow some
Instances to fall
within the margin,
but penalize them

19



Formulating the Optimization Problem

Constraints becomes :

A

Var, y(W-x +b)>1-&, Vx

£ 20

Objective function
penalizes for
misclassified instances
and those within the
margin

min-_wf +C 3¢

C trades-off margin width
and misclassifications 20



Linear, Soft-Margin SVMs

min Z|w[f +C Y (-, +b) 21-, v
2 | & =0
Algorithm tries to maintain &; to zero while maximizing
margin

Notice: algorithm does not minimize the number of
misclassifications (NP-complete problem) but the sum of
distances from the margin hyperplanes

Other formulations use &2 instead

As C—oo, we get closer to the hard-margin solution
Hard-margin decision variables = m+1, #constraints = n
Soft-margin decision variables = m+1+n, #constraints=2n
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Robustness of Soft vs Hard Margin

SVMs

Var,

) Var,
W-¥+b=0

Soft Margin SVN

Hard Margin SVN
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Soft vs Hard Margin SVM

Soft-Margin always have a solution
Soft-Margin is more robust to outliers
Smoother surfaces (in the non-linear case)

Hard-Margin does not require to guess the
cost parameter (requires no parameters at
all)
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Support Vector Machines

Three main ideas:

1. Define what an optimal hyperplane is (in way
that can be identified in a computationally
efficient way): maximize margin
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Disadvantages of Linear Decision
Surfaces

Var,

Var 26



Advantages of Non-Linear Surfaces

Var,
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Linear Classifiers in High-
Dimensional Spaces

Var,
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Find function ®(x) to map to
a different space
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Mapping Data to a High-Dimensional
Space

* Find function ®(x) to map to a different space, then
SVM formulation becomes:

. 1 2 st y,(w-®d(x)+b)>1-¢,, VX
m|n2||w|| +CZ§ ‘o

« Data appear as ®(x), weights w are now weights in
the new space

« Explicit mapping expensive if ®(x) is very high
dimensional

« Solving the problem without explicitly mapping the
data is desirable
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The Dual of the SVM Formulation

Original SVM formulation

n inequality constraints min EHWHZ i nga_
n positivity constraints wb 2 — !
n number of £ variables

st yi(w-®d(x)+b)>1-&, VX
& 20

The (Wolfe) dual of this

problem 1
one equality constraint rr;'n 5 Z“ia,— YiY; (D(X;) - CD(X,- ) — Zai
N positivity constraints h] i

n number of a variables
(Lagrange multipliers) s.t. C2o 20, VX

Objective function more ZO" y. =0
complicated =

NOTICE: Data only appear
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The Kernel Trick

O(x;) - O(x;): means, map data into new space, then
take the inner product of the new vectors

We can find a function such that: K(x; , X;) = ®(x;) -
®(x;) easily computable

Then, we do not need to explicitly map the data into
the high-dimensional space to solve the optimization
problem (for training)

How do we classify without explicitly mapping the
new instances? Turns out

sgn(wx +b) =sgn(D_ &, y;K (%, X) +b)
wherebsolves «;(y; > y;K(x,%;)+b-1) =0,

forany jwithO<a; <C
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Examples of Kernels

Assume we measure two guantities, e.g. expression

level of genes TrkC and SonicHedghog (SH) and we
use the mapping:

. 2 2
D < XTrkC’ XSH >—> {XTrkC 1 XSH ! \/EXTrkC XSH J XTrkC’ XSH ’1}
Consider the function:

K(x-z)=(x-z+1)°
We can verify that:
D(x)- D(2) =

2 2 2 2 _
X L T Xsylgy + 2XTrkCXSHZTrkCZSH + Xrrke Zrre T XspZsy 1=

TrkC  TrkC

= (XrncZrne + XsuZsn +1)° = (X-2+1)* = K(x,2)
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Polynomial and Gaussian Kernels

K(x,2)=(x-z+1)"

Is called the polynomial kernel of degree p.

For p=2, if we measure 7,000 genes using the kernel once
means calculating a summation product with 7,000 terms then
taking the square of this number

Mapping explicitly to the high-dimensional space means
calculating approximately 50,000,000 new features for both
training instances, then taking the inner product of that (another
50,000,000 terms to sum)

In general, using the Kernel trick provides huge computational
savings over explicit mapping!

Another commonly used Kernel is the Gaussian (maps to a
dimensional space with number of dimensions equal to the

number of training cases): K(X, Z) — exp (_HX B ZH / 202)
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The Mercer Condition

Is there a mapping ®(x) for any symmetric
function K(x,z)? No

The SVM dual formulation requires
calculation K(x; , X;) for each pair of training
instances. The array G; = K(x; , x;) Is called
the Gram matrix

There Is a feature space ®(x) when the
Kernel is such that G is always semi-positive
definite (Mercer condition)
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Support Vector Machines

Three main ideas:

1. Define what an optimal hyperplane is (in way
that can be identified in a computationally
efficient way): maximize margin

2. Extend the above definition for non-linearly
separable problems: have a penalty term for
misclassifications

3. Map data to high dimensional space where it
IS easler to classify with linear decision
surfaces: reformulate problem so that data is
mapped implicitly to this space
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Other Types of Kernel Methods

SVMs that perform regression
SVMs that perform clustering

v-Support Vector Machines: maximize margin while
bounding the number of margin errors

Leave One Out Machines: minimize the bound of the
leave-one-out error

SVM formulations that take into consideration
difference in cost of misclassification for the different
classes

Kernels suitable for sequences of strings, or other
specialized kernels
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Variable Selection with SVMs

Recursive Feature Elimination
Train a linear SVM

Remove the variables with the lowest weights (those
variables affect classification the least), e.g., remove
the lowest 50% of variables

Retrain the SVM with remaining variables and repeat
until classification is reduced

Very successful

Other formulations exist where minimizing the
number of variables is folded into the optimization
problem

Similar algorithm exist for non-linear SVMs

Some of the best and most efficient variable selection
methods
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Comparison with Neural Networks

Neural Networks

Hidden Layers map to lower
dimensional spaces

Search space has multiple
local minima

Training is expensive
Classification extremely
efficient

Requires number of hidden
units and layers

Very good accuracy in
typical domains

SVMSs

Kernel maps to a very-high
dimensional space

Search space has a unique
minimum

Training is extremely
efficient

Classification extremely
efficient

Kernel and cost the two
parameters to select

Very good accuracy in
typical domains

Extremely robust
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Why do SVVMs Generalize?

Even though they map to a very high-
dimensional space

They have a very strong bias in that space

The solution has to be a linear combination of
the training instances

Large theory on Structural Risk Minimization
providing bounds on the error of an SVM

Typically the error bounds too loose to be of
practical use
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MultiClass SVMSs

One-versus-all

Train n binary classifiers, one for each class against all other
classes.

Predicted class is the class of the most confident classifier
One-versus-one

Train n(n-1)/2 classifiers, each discriminating between a pair
of classes

Several strategies for selecting the final classification based
on the output of the binary SVMs

Truly MultiClass SVMs
Generalize the SVM formulation to multiple categories

More on that in the nominated for the student paper award:
“Methods for Multi-Cateqgory Cancer Diagnhosis from Gene
Expression Data: A Comprehensive Evaluation to Inform
Decision Support System Development”, Alexander Statnikov,
Constantin F. Aliferis, loannis Tsamardinos
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Conclusions

SVMs express learning as a mathematical
program taking advantage of the rich theory
In optimization

SVM uses the kernel trick to map indirectly to
extremely high dimensional spaces

SVMs extremely successful, robust, efficient,
and versatile while there are good theoretical
Indications as to why they generalize well
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XpNuUoToooTnom

To TTapoVv eKTTAIOEUTIKO UAIKO £XEI avaTITUXBEi oTa TTAQiOIO TOU
EKTTAIOEUTIKOU £pyouU TOU OIOACKOVTA.

To €pyo «AvolkTa Akadnuaika Madnuara oTo

MavemoTApio KpATNG» £XEI XPNUATOOOTHOEI HOVO TN
aAvadIaANOPPWON TOU EKTTAIOEUTIKOU UAIKOU.

To €pyo uAoTTolEiTal OTO TTAQiOIO ToUu ETTiXEIpnoiakou
[Mpoypdupatog «EkmTaideuon kai Aia Biou Madnon» kai
ouyxpnuMatodorteital atro Tnv Eupwtraikn ‘Evwon (Eupwtraiko
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Me tn cuyxpnuarodotnon tng EAMaSag kat tng Evpwnaikng Evwong
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AlaTr)pnon ZNUEIOUATOV
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uadi ue TOUC CUVOOEUOMEVOUC UTTEPOUVOECUOUG.



