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Pt.1 - Introduction



Democritus said that he would
rather discover a single cause than
be the king of Persia
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“Beyond such discarded
fundamentals as ‘matter’ and
‘force’ lies still another fetish
amidst the inscrutable arcana
of modern science, namely
the category of cause and
effect”




What is causality?

 What do you understand when | say :

— smoking lung cancer?



What is (probabilistic) causality?

 What do you understand when | say :

— SMO

King

lung cancer?

N\

If you decide to start smoking, you
will Increase your chances of
getting lUNE cancer (vs. deciding

\.not to sta rt)

J




Why do we need causality?

“Decreasing interest
rates causes a decrease

in unemployment rate”k
E

verything else being equal,
lower interest rates to
decrease unemployment

~N

“High expression of gene X

is increasing the chances Wa
of metastasis’ Design a drug to block

expression of gene X to lower

the chances of metastasis




e We want to know what

Association?

lung cancer

e We have documented the SmOkl ng habits of 10000

people, whether they get Iung cahncer by 60yrs and

whether they have

stains on their

Lung cancer
Smoking Yes No
Yes Yes 100 400
Yes No 100 400
No Yes 1 450
No No 9 8540

Data from
10000
people*

*fictional



Association

e Xand Y are associated

— Observing the value of X may change the
distribution of the (observed) values of Y

— Knowledge of X provides information for Y
— X is predictive for Y
— and vice versa

— Makes no claims about the distribution of VY, if
instead of observing, we intervene on the values
of X



Sampling

e How do you chose 10000 people?
e Randomly selected people from the general public
 |dentically and independently distributed (i.i.d)

* |dentically: sampled from the same population
(distribution)

* Independently: previous samples do not affect what the
future samples will be

e  Other sampling schemes may affect the measured
associations (e.g., case-control studies, experimental
studies, selection bias)



Measuring Association

 Mutual Information (MI) (information theory)

* Association / correlation / effect size (statistic)

— Pearson (linear) correlation, Spearman correlation
for continuous variables

— Cramér’s V for nominal variables
— Many other measures

e Mutual Information

— General measure that assumes knowledge of the
distribution

— Specific parametric choices may make it equivalent
to statistical approaches



Determining Dependency

 MI >0, Association > 0 < Dependency

* Perform a hypothesis testing on the null
assumption that “Association = 0” and obtain
a p-value

— Statistical approaches explicitly address finite
sample estimation problems

* Threshold Mutual Information
— Threshold interpretation depends on sample size



Association is NOT Causality

Yellow Teeth vs Lung Cancer Smoking vs Lung Cancer

M Lung Cancer M Lung Cancer

MRSy A
Yellow Teeth  No Yellow Teeth Smoking No Smoking
Lung cancer
Smoking Yes No
Data from

Yes Yes 100 400 10000
Y N 100 400

= 2 people
No Yes 1 450
No No 9 8540



Association is NOT Causality

* Yellow teeth and lung cancer are associated

* Can | bleach my teeth and reduce the
probability of getting lung cancer?

* |s Smoking really causing Lung Cancer?



BUT

“If A and B are correlated, A

B orB A or they Share
a o

[Hans Reiche nbah] :.?'



All possible models*®

common
cause

o>

Is Smoking Causing Lung Cancer?

common
cause

o>

. Lung . Lung
Smoking Cancer Smoking Cancer
Smoking F——> Lung

Cancer

*assuming:

1. Smoking precedes Lung Cancer

2. No feedback cycles

3. Several hidden common causes can be modeled
by a single hidden common cause



A way to learn causality

1. Take 200 people

2. Randomly split them in and
groups

3. Force control group to smoke, force

treatment group not to smoke
4. Wait until they are 60 years old
5. Measure correlation

[ andomized Control rial]

NIl Id Fisher]



Manipulation

All possible models*®

common
cause

—

common
cause

/\

Smoking

—>

: Lung
Smoking Cancer
Smoking F—> Lung

Cancer

Lung
Cancer




All possible models*®

common
cause

T~

Smoking

Lung
Cancer

Manipulation removes other causes

common
cause

Smoking

—>

Smoking

Lung
Cancer

~

Lung
Cancer




Manipulation removes other causes

All possible models*®

common common
cause cause
} Lung . {\\\\I:n
Smoking Smoking F——> &
Cancer Cancer

Lung
Cancer

Smoking F—>

Association persists
only when
relationship is causal




RCTs are hard

 Can we learn anything from observational
data?



RCTs are hard

 Can we learn anything from observational
data?

“If A and B are correlated, A

B orB A or they Share
a 4




(Un)Conditional (In)dependence

nthe general population: 2.1%



(Un)Conditional (In)dependence

among people who :0.1%
among people who . 20 %

Dep(Smoking, Lung Cancer| )

N—"

M Lung Cancer

Smoking No Smoking



(Un)Conditional (In)dependence

among people with . 1.1%
among people who have : 10.6%

Dep(Yellow Teeth, Lung Cancer|)

\/

M Lung Cancer

e

Yellow Teeth No Yellow Teeth




Conditional (In)dependence

* Lung Cancer among people who AND have : 20%

* Lung Cancer among people who AND have : 20%

* Lung Cancer among people who AND have : 0.01%
* Lung Cancer among people who AND have : 0.01%

M Lung Cancer
Smokers Non Smokers

M Lung cancer

Yellow Teeth No Yellow Teeth Yellow Teeth No Yellow Teeth




Conditional (In)dependence

* Lung Cancer among people who AND have : 20%

* Lung Cancer among people who AND have : 20%

* Lung Cancer among people who AND have : 0.01%
* Lung Cancer among people who AND have : 0.01%

M Lung Cancer
Smokers Non Smokers

M Lung cancer

Yellow Teeth No Yellow Teeth Yellows, Ao Yellow Teeth

Ind(Lung Cancer, Yellow Teeth| Smoking)




Conditioning and Causality

Burglar

Radio

Earthquake

M

\

Call

[example by Judea Pearl]



Conditioning and Causality

[ Burglar ] Earthquake

M

Radio \

ol

Dep(Burglar, Call| Q)



Conditioning and Causality

[ Burglar ] Earthquake

[ Alarm ]

Radio

Ind (Burglar, Call| Alarm)

\

o call

Learning the value of
intermediate and

commaon causes
renders variables

independent



Conditioning and Causality

[ Burglar ] [ Earthquake ]

M

Radio \

Call

Ind (Burglar, Earthquake | J)



Conditioning and Causality

[ Burglar ] [ Earthquake ]

[ Alarm ]

Radio

\

Call

Ind (Burglar, Earthquake | J)



Conditioning and Causality

Learning the value of

[ Burglar ] [ Earthquake ]
common effects
[ Alarm | renders variables
Radio \ dependent

Call

Dep (Burglar, Earthquake| Alarm)



Observing a causal model

Smoking

N

[ Yellow Teeth Lung Cancer

What would you observe?

* Dep(Lung Cancer, Yellow Teeth| )
* Dep(Smoking, Lung Cancer |&)

* Dep(Lung Cancer, Yellow Teeth | )

* Ind(Lung Cancer, Yellow Teeth| Smoking)



Observing a causal model

Smoking

N

[ Yellow Teeth Lung Cancer

What would you observe?

* Dep(Lung Cancer, Yellow Teeth| )
* Dep(Smoking, Lung Cancer |&)

* Dep(Lung Cancer, Yellow Teeth | )

* Ind(Lung Cancer, Yellow Teeth| Smoking)



Observing a causal model

Smoking

N

[ Yellow Teeth Lung Cancer

What would you observe?

* Dep(Lung Cancer, Yellow Teeth| )
* Dep(Smoking, Lung Cancer |&)

* Dep(Lung Cancer, Yellow Teeth | )

* Ind(Lung Cancer, Yellow Teeth| Smoking)



Observing a causal model

Smoking

N

[ Yellow Teeth Lung Cancer

What would you observe?
* Dep(Lung Cancer, Yellow Teeth| )
* Dep(Smoking, Lung Cancer |&)

* Ind(Lung Cancer, Yellow Teeth |Y)
* Dep(Lung Cancer, Yellow Teeth| Smoking)



Causal Bayesian Networks*

Graph G

[ Smoking ]

Lung Cancer

JPD J

Lung Cancer

Smoking Yes No

Yes Yes 0,01 0,04

Yes No 0,01 0,04

No Yes 0,000045 0,044955
No No 0,000855 0,854145

Assumptions about the nature of causality
connect the graph G with the observed
distribution _J and allow reasoning

*almost there



Conclusions, Pt 1

Association measures the information for Y from
observing the values of X

Causality dictates what will happen if someone
intervenes on (sets) the values of X

Means to measure association and determine
dependency

Conditional Dependency
Major means to determine causality is the RCT

A causal structure implies certain expectations about
properties of the observed distribution (e.g.,
conditional dependencies and independencies)
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Pt.2 — (Causal) Bayesian
Networks



Causal Bayesian Networks*

Graph G

Smoking

Lung Cancer

Smoking

Yes
Yes
No

No

Yes

No

Yes

No

JPD J

Lung Cancer

Yes No
0,01 0,04
0,01 0,04

0,000045 0,044955

0,000855 0,854145

*almost there



Causal Bayesian Networks*

Connecting the graph and the JOINT
probability distribution:

Learning the value of
intermediate and

COMMON causes renders
variables iIndependent

Stems from our intuition about the
nature of causality

Smoking

Yes

Yes

No

No

Yes

No

Yes

No

Lung Cancer

Yes No
0,01 0,04
0,01 0,04

0,000045 0,044955

0,000855 0,854145

Smoking

Lung Cancer




Causal Markov Condition (CMC)

Smoking

Lung Cancer

Smoking

Yes

Yes

No

No

Yes

No

Yes

No

Every variable is independent of its

(descendants in the graph) given its

(parents)

Lung Cancer

Yes No
0,01 0,04
0,01 0,04

0,000045 0,044955

0,000855 0,854145



Causal Markov Condition

Smoking

Lung Cancer

P(Yellow Teeth, Smoking, Lung Cancer)



Causal Markov Condition

Smoking

Lung Cancer

P(Yellow Teeth, Smoking, Lung Cancer) =
P(Smoking) x

P(Yellow Teeth | Smoking ) x

P(Lung Cancer | Smoking, Yellow Teeth)



Causal Markov Condition

Smoking

Lung Cancer

P(Yellow Teeth, Smoking, Lung Cancer) =
P(Smoking) x

P(Yellow Teeth| Smoking) x

P(Lung Cancer| Smoking, YeHowTeeth)



Causal Markov Condition

Smoking

Lung Cancer

P(Yellow Teeth, Smoking, Lung Cancer) =
P(Smoking) x

P(Yellow Teeth| Smoking) x

P(Lung Cancer| Smoking)

P(V) = HP(ViI Pa(Vi))



Causal Bayesian Networks

Graph G D J

Lung Cancer

Smoking
Smoking Yes No
Yes Yes 0,01 0,04
Yes No 0,01 0,04
No Yes 0,000045 0,044955
No No 0,000855 0,854145

Lung Cancer

> Causal Markov Condition



Factorization with the CMC

Smoking P(Smoking) = 0.1

P(Yellow Teeth |Smoking) = 0.5
P(Yellow Teeth | —=Smoking) = 0.05

P(Lung Cancer|Smoking) = 0.2
P(Lung Cancer|—=Smoking) = 0.001

Lung Cancer




Factorization with the CMC

e Assume 1 binary variables, at most k
parents each.

e Using P(V): 2"-1 parameters

* Using []P(Vi| Pa(Vi)) : n*2k-1
parameters



Reasoning with the CMC

Smoking

E
4

Medicine Y

Every variable is
independent of its

Levels of g
Protein X EN Lung

Cancer

given its

EERN

Yellow-stained
Fingers

Fatigue



Reasoning with the CMC

Smoking

E
4

Medicine Y

Lung Cancer is
independent of its

Levels of ZEONE,
Protein X ~" - Lung

Cancer

given its

Yellow-stained
Fingers

Fatigue



Reasoning with the CMC

Smoking

E
4

Medicine Y

Lung Cancer is
independent of its

Levels of P G
Protein X % | Lung

Cancer

given Its

Yellow-stained
Fingers

Fatigue



Reasoning with the CMC

Smoking

] : Medicine Y
Lung Cancer Is =51
independent of any -

variable other than
Fatigue given the

Levels of

Protein X % Lung

Cancer

Yellow-stained
Fingers

Fatigue



Entailed Independencies

Smoking

E
4

Medicine Y

Every variable is
independent of its

Levels of g
Protein X EN Lung

Cancer

given its

EERN

Yellow-stained
Fingers

Fatigue



Entailed Independencies

Smoking

) : Medicine Y
Fatigue is E oz 2

independent of its

Levels of N
Protein X v Lung

Cancer

given its

Yellow-stained
Fingers

Ind(Fatigue, Smoking| Lung Cancer)

Fatigue



Entailed Independencies

Smoking

] ] : Medicine Y
Fatigue Is -

independent of

given

Levels of

Protein X v Lung

Cancer

Yellow-stained
Fingers

P(Fatigue| Smoking, Lung Cancer) =
P(Fatigue| Lung Cancer)

Fatigue



Entailed Independencies

Smoking

. Medicine Y
How about E <
P(Fatigue| Smoking, | =
Levels of Protein X)?

Levels of

Protein X % Lung

Cancer

Yellow-stained
Fingers

Fatigue



Entailed Independencies
P(Fatigue | Smoking, Levels of Protein X) =

P(F |S, X, LC=yes) x P(LC=Yes| S, X) +
P(F|S, X, LC=no) x P(LC=no] S, X) =

P(F|X, LC=yes) x P(LC = Yes| X) +
P(F | X, LC=no) x P(LC= no| X) =

P(Fatigue| Levels of Protein X)



Entailed Independencies

Smoking

Ind(Fatigue, Smoking|
Levels of Protein X) i

Medicine Y

Levels of
Protein X

 What other
independencies are

’ Lung
Cancer

A

entailed by the CMC? .
Yellow-stained
e Do we have to do the Fingers
math?

Fatigue



The d-separation criterion

* An algorithm to determine independencies
that hold in a CBN.

e Let’s try to understand the intuition



Open Paths

[ Burglar ] Earthquake

M

Radio \

ol

Dep(Burglar, Call| Q)

A or a

1S

an OPET path (it
allows information

to flow)



Blocked Paths

Conditioning on
 Burglar | fathavake ] intermediate and
commaon causes

[ Alarm ]

i \ bIOCkS the path
o call

Ind (Burglar, Call| Alarm)



Blocked Paths

A path that goes through

_ Burglar | _Brthawke | 5 common effect is a
M blocked path (no
Radio \ information flows).

Call

Ind (Burglar, Earthquake | J)



Open Paths

However, conditioning

[ Burglar ] [ Earthquake ]

on

[ Alarm ]

OPENS the path

Radio
\ (information flows
=L through the path.)

Dep (Burglar, Earthquake| Alarm)



The d-separation criterion

Medicine Y

 You want to know if S”“°k‘“g
Ind(A, B|Z) is entailed by the E
CMCin a CBN

1. Find the paths from A to B, <
regardless orientation 3

Levels of
Protein X

k ) T

2. If there exists no open path *  Yelowstane

Fingers

conditioned on Z, then Ind(A, B|2)

Fatigue

>|<symb. DSep(A, B|Z)



The d-separation criterion

* You want to know if Smoking
Ind(A, B|2) is entailed by the a <35
CMCin a CBN | -
1. Find the paths from A to B,
regardless orientation o % ooy ST e

Cancer

2. If there exists no open path =y
conditioned on Z Ind(A, B|Z) Vellow-stained

Fingers

3. EIse?>|<>|<

Fatigue

* *symb. DConn(A, B|Z)



Faithfulness

In all CBNs In CBNs

DSep(A, B|Z) = | DSep(A,B|Z) <
Ind(A, B|2) Ind(A, B|Z)



Faithfulness

What does it mean really?

The causal structure fully determines the
independencies; independencies are not accidental

Infinitesimal perturbations of the probabilities will not
change the independencies (stability)

No independencies due to the particular
parameters of the conditional probability
tables (e.g., associations from different
paths cancelling out)



Faithfulness

Is it realistic?

Assume you are given a graph and you select the
parameters of the conditional probability tables
randomly following a Dirichlet distribution

The probability you get a non-faithful BN are zero
(Lebesque measure is zero)

Helpful to devise efficient asymptotically correct
methods

[Meek, C, UAI 1995]



Faithfulness

Is it realistic?

Too low associations:

— For finite sample, they are not detectable and may lead to
non-faithfulness (for all practical purposes)

Too high correlations (determinism or close-to-
determinism)

— May lead to non-faithfulness

Natural selection may be biasing towards creating non-
faithful distributions in systems in nature (e.g., cells)!



Causal Bayesian Networks

Graph G JPD J
Lung Cancer
Smoking

Smoking Yes No

Yes Yes 0,01 0,04

Yes No 0,01 0,04

No Yes 0,000045 0,044955
No No 0,000855 0,854145

Lung Cancer

1.Causal Markov Condition
2.Faithfulness



Causal Markov Condition (CMC)

Smoking

Lung Cancer

Smoking

Yes
Yes
No
No

Yes
No
Yes

No

Lung Cancer

Yes No
0,01 0,04
0,01 0,04

0,000045 0,044955
0,000855 0,854145

Every variable is independent of its

given its



Causal Markov Condition (CMC)
[Studying} >[ Good Grades ]

Studying causes Good Grades causes more studying (at
a later timel)...

Hard to define without explicitly representing time

If all relations are linear, we can assume we sample
from the distribution of the equilibrium of the system
when external factors are kept constant

— Path-diagrams (Structural Equation Models with no
measurement model part) allow such feedback loops

If there is feedback and relations are not linear, there
may be chaos, literally and metaphorically



Causal Bayesian Networks*

Directed Acyclic Graph G JPD J
Smoking Lung Cancer
Smoking Yellow Yes No
Teeth

Yellow Teeth Yes Yes 0,01 0,04
Yes No 0,01 0,04
No Yes 0,0005 0,0450
No No 0,0004 0,8541

Lung Cancer

1.Causal Markov Condition
2.Faithfulness
3.Acyclicity



Causal Interpretation

Smoking

Yellow Teeth

Lung Cancer

Smoking

Lung Cancer

Smoking

/

Yellow Teeth

Lung Cancer

Smoking

Tar

T-Cell damage

Xk
Tar Increase

T-Cell Damage*

Lung Cancer

*unobserved



Causal Interpretation

Smoking Smoking
/ Tar
Yellow Teeth Yellow Teeth
. T-Cell damage
Lung Cancer Lung Cancer
» - *
. causal relation and conditional  [ncrease
Smoking Lu . _ %
independencies are modeled e
correctly
\ _J

*unobserved



Causal Interpretation

Smoking

Yellow Teeth

Lung Cancer

Smoking

Lung Cancer

Smoking

/ Nicotine Crave

Yellow Teeth

Genotype

Lung Cancer

Genotype* Nicotine Crave
Smoking, Genotype*

Lung Cancer

*unobserved



Causal Interpretation

Smoking

Smoking

Yellow Teeth

Lung Cancer

Smoking

»

LU

\_

C

/ Nicotine Crave

Yellow Teeth

Lung Cancer

Genotype

onditional independencies are

modeled correctly, but NOt
causal relation

L k
Nlcotme Crave

J

X
notype

*unobserved



Causal Sufficiency

Assume what is called Causal Sufficiency

No pair of variables has a latent (unobserved)
common cause

This is a pretty strong assumption

Hidden confounders a major reason why some
people debate we absolutely need
experiments



Causal Bayesian Networks

DAG G

Smoking

Yellow Teeth

Lung Cancer

Smoking

Yes
Yes
No
No

JPD J
Lung Cancer

Yellow Yes No
Teeth
Yes 0,01 0,04
No 0,01 0,04
Yes 0,0005 0,0450
No 0,0004 0,8541

1: Causal Markov Condition

2.Faithfulness

3.Acyclicity
4.Causal Sufficiency



Bayesian Networks

mt like all these

assumptions

( ~

| kind of liked reducing
the parameters of the
distribution



Bayesian Networks

mt like all these

assumptions

( ~

| kind of liked reducing
the parameters of the
distribution

Drop the
Causal part!



Causal Markov Condition (CMC)

Smoking Lung Cancer
Smoking Yes No
Yes Yes 0,01 0,04
Yes No 0,01 0,04
No Yes 0,000045 0,044955
No No 0,000855 0,854145

Lung Cancer

Every variable is independent of its
given its



Markov Condition (MC)

Smoking Lung Cancer
Smoking Yes No
Yes Yes 0,01 0,04
Yes No 0,01 0,04
No Yes 0,000045 0,044955

No No 0,000855 0,854145

Lung Cancer

Every variable is independent of its

given its
(can always be made to hold by adding more edges)



Bayesian Networks

DAG G

Smoking

Yellow Teeth

Lung Cancer

JPD J

Lung Cancer

Smoking  Yellow Yes
Teeth
Yes Yes 0,01
Yes No 0,01
No Yes 0,0005
No No 0,0004
\v
1. Markov Condition

2.Faithfulness
3.Acyclicity

No

0,04
0,04
0,0450
0,8541



Semantics

A

Causal Bayesian Bayesian Networks:
Networks: A gives Unique

A causes B information forB



Using a Bayesian Network

Smoking

1. Factorize the jpd

E Medicine Y
2. Answer questions like: : A

1. P(Lung Cancer| Levels of
Protein X) = ?

Levels of
Protein X

% Lung
Cancer

2. Ind(Smoking, Fatigue |

Levels of Protein X)?

A

Yellow-stained
Fingers

Fatigue



Using a Causal Bayesian Network

1. Factorize the jpd Smokine

2. Answer questions like: ta

1. P(Lung Cancer| Levels of Protein
X)="?

Medicine Y

Levels of
Protein X

Protein X)?

Yellow-
stained

3. What will happen if | design a  Fingers
drug that blocks the function of
protein X (predict effect of Fatigu

interventions)?



A Closer Look at the Assumptions

(Causal) Markov Condition  Connects structure with Can always be made to
effect of interventions hold by adding edges

Faithfulness Required for (relatively) Required for (relatively)
efficient learning efficient learning

Facilitates characterization  Facilitates characterization

of equivalent networks of equivalent networks
Acyclicity Causal-feedback loops Acyclic graphs can still
create problems with the encode all distributions
semantics and reasoning (not restrictive)
Causal Sufficiency Required to causally Not required

interpret an edge



Conclusions, Pt.2

Causal Bayesian Networks quantitatively represent the probabilistic causal
relations among a set of variables

Dependencies and independencies can be read-off the graph using the d-
separation
Typical assumptions:

— Causal Markov Condition

— Faithfulness

— No feedback loops (acyclicity)

— Causal Sufficiency

Bayesian Networks:
— inspired by causality but drop the causal claims
— Thousands of applications
— Fewer restrictive assumptions

— Appropriate when probabilistic reasoning is the goal, not causal reasoning
(predict effect of interventions)
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Pt. 3 - Learning Bayesian
Networks



Subject #

10

11

10000

Smoking

Often the case

Yellowed
Fingers

0

Raw data

Levels of
Protein X
0.23
0.1
0.7
0.92
1.2
1.4
5.4
0.89

0.7
0.56

0.16

3.2

Fatigue

Medicine Y

Lung Cancer



Observing a causal model

Smoking

[ Yellow Teeth

Lung Cancer

What would you observe?

* Dep(Lung Cancer, Yellow Teeth | )

* Dep(Smoking, Lung Cancer |J)

* Dep(Lung Cancer, Yellow Teeth | D)

* Ind(Lung Cancer, Yellow Teeth| Smoking)

Subject #

©o ~ [e)] (O] H w N (=]

=
o

=
[

10000

Smoking

, P O O KB KB O O Rk R, O

Raw data

Yellow
Teeth

P P O B Rk B O B B R, O

Lung
Cancer

o o o O »r O O o o o o



Learning the network

Constraint-Based Approach Score-Based (Bayesian)

Test

| Find the with the
in _
MaxXimum
data and find a ,
given the
that encodes them
data

(with d-separations)



Learning the network

Constraint-Based Approach Score-Based

*Easier to extend to different *Robust to small samples
types of data (e.g., survival) *Incorporates priors on the
*Easier to extend to networks networks

with latent variables (MAGs) *Better in identifying the edge
*Easier to turn to local (learn orientations (personal

parts of the network) experience)



Learning the network

Constraint-Based Approach Bayesian Approach

*SGS (spirtes, Glymour, & Scheines 2000]
e PC [Spirtes, Glymour, & Scheines 2000]
* TPDA (chengetal., 19971

*CPC [ramsey et al, 2006]

Hybrid
* M M H C [Tsamardinoas et al. 2006]

® CB (provanetal. 1995]
¢ B E N E D I CT [Provan and de Campos 2001]
¢ ECOS [Kaname et al. 2010]

*K2 [Cooper and Herskowitz 1992]

*GBPS [spirtes and Meek 1995]

*GES [Chickering and Meek 2002]

*Sparse Candidate (Friedman et al. 1999

'Optlmal Reinsertion [Moore and Wong
2003]

*REeC [xie, X, Geng, Zhi, JMLR 2008]

*Exact Algorithms [koivisto et al., 2004],
[Koivisto, 2006], [Silander & Myllymaki, 2006]



Learning the Network

Smoking

Yellow Teeth Lung Cancer

Dep(Lung Cancer, Yellow Teeth | )
Dep(Smoking, Lung Cancer | )

Dep(Lung Cancer, Yellow Teeth | )

Ind(Lung Cancer, Yellow Teeth| Smoking)

Smoking

Yellow Teeth Lung Cancer

Dep(Lung Cancer, Yellow Teeth | )
Dep(Smoking, Lung Cancer |J)
Dep(Lung Cancer, Yellow Teeth |J)

Ind(Lung Cancer, Yellow Teeth| Smoking)

Smoking

Yellow Teeth Lung Cancer

Dep(Lung Cancer, Yellow Teeth | <)
Dep(Smoking, Lung Cancer |J)
Dep(Lung Cancer, Yellow Teeth | <)

Ind(Lung Cancer, Yellow Teeth| Smoking)

Smoking

Yellow Teeth Lung Cancer

Dep(Lung Cancer, Yellow Teeth |<)
Dep(Smoking, Lung Cancer |J)
Ind(Lung Cancer, Yellow Teeth | )
Dep(Lung Cancer, Yellow Teeth| Smoking)



Learning the Network

Smoking Smoking
Yellow Teeth Lung Cancer Yellow Teeth Lung Cancer
Dep(Lung Cancer, Yellow Teeth | ) *  Dep(Lung Cancer, Yellow Teeth | )
Dep(Smoking, Lung Cancer | ) *  Dep(Smoking, Lung Cancer |<)
Dep(Lung Cancer, Yellow Teeth | ) *  Dep(Lung Cancer, Yellow Teeth | )
Ind(Lung Cancer, Yellow Teeth| Smoking) * Ind(Lung Cancer, Yellow Teeth| Smoking)
Smoking
Yellow Teeth Lung Cancer

Dep(Lung Cancer, Yellow Teeth | )
Dep(Smoking, Lung Cancer |J)
Dep(Lung Cancer, Yellow Teeth | )

Ind(Lung Cancer, Yellow Teeth| Smoking)



Markov Equivalence

Smoking

N\

Yellow Teeth Lung Cancer

Dep(Lung Cancer, Yellow Teeth | )
Dep(Smoking, Lung Cancer | )
Dep(Lung Cancer, Yellow Teeth | )

Ind(Lung Cancer, Yellow Teeth| Smoking)

Smoking

N

Yellow Teeth Lung Cancer

Dep(Lung Cancer, Yellow Teeth |)
Dep(Smoking, Lung Cancer |J)
Dep(Lung Cancer, Yellow Teeth |)

Ind(Lung Cancer, Yellow Teeth| Smoking)

Smoking

DN

Yellow Teeth Lung Cancer

Dep(Lung Cancer, Yellow Teeth | <)
Dep(Smoking, Lung Cancer |J)
Dep(Lung Cancer, Yellow Teeth | <)

Ind(Lung Cancer, Yellow Teeth| Smoking)

Two networks are [Vlarkov
Equivalent if and only they entail
(by the Markov Condition) the
same set of independencies



Markov Equivalence

Smoking

Yellow Teeth Lung Cancer

Dep(Lung Cancer, Yellow Teeth | )
Dep(Smoking, Lung Cancer | )
Dep(Lung Cancer, Yellow Teeth | )

Ind(Lung Cancer, Yellow Teeth| Smoking)

Smoking

N

Yellow Teeth Lung Cancer

Dep(Lung Cancer, Yellow Teeth |)
Dep(Smoking, Lung Cancer |J)
Dep(Lung Cancer, Yellow Teeth |)

Ind(Lung Cancer, Yellow Teeth| Smoking)

Smoking

v

Yellow Teeth Lung Cancer

Dep(Lung Cancer, Yellow Teeth | <)
Dep(Smoking, Lung Cancer |J)
Dep(Lung Cancer, Yellow Teeth | <)

Ind(Lung Cancer, Yellow Teeth| Smoking)

Two networks are Vlarkov
Equivalent if and only they have

the same edges and the same
v-structures



Markov Equivalence



Markov Equivalence

Ll



Markov Equivalence

* not a v-structure

O



Pattern DAG (PDAG)

* Represents a of
Markov Equivalent DAGs
* Has the as
every other DAG in the
class
* Has only
(arrows) shared by
in the class O



Semantics in PDAGS

A AJ—8]

Either A cCauses B

Or vice versa
A CausesB Both cases fit the
data equally well



The PC Algorithm

* Learning the skeleton:

— |ff there exists no set of variables Z s. t.

Ind(A, B|Z*) A—Bin G’
* Learning v-structures:
—-1fA—C-Band Ind(A, B|Z), CNZ =0,

A>CeBin g

* Perform all other orientations entailed by
acyclicity and the set of v-structures found

*separating set



The PC Algorithm —an example

Ind (A, B | &)

Ind (A, D | C)

Ind (B, D | C)

Begin with the full graph



The PC Algorithm —an example

Ind (A, B | &)

Ind (A, D | C)

Ind (B, D | C)

A and B do not share an
edge
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The PC Algorithm —an example

Ind (A, B | &)

Ind (A, D | C)

Ind (B, D | C)

Remove A—D



The PC Algorithm —an example

Ind (A, B | &)

Ind (A, D | C)

Ind (B, D | C)

B and D do not share an
edge



The PC Algorithm —an example

B Ind (A, B | &)

Ind (A, D | C)

Ind (B, D | C)

Remove B—D



The PC Algorithm —an example

B Ind (A, B | &)

Ind (A, D | C)

Ind (B, D | C)

Skeleton identification
phase is complete



The PC Algorithm —an example

B Ind (A, B | &)

Ind (A, D | C)

Ind (B, D | C)

A—C—B is a possible
v-structure



The PC Algorithm —an example

B)  Ind(AB|Q)

Ind (A, D | C)

Ind (B, D | C)

A—C—B is a v-structure



The PC Algorithm —an example

B)  Ind(AB|Q)

Ind (A, D | C)

Ind (B, D | C)

Orient A>C<&B



The PC Algorithm —an example

Ind (A, B | &)

Ind (A, D | C)

Ind (B, D | C)

A—C—D is a possible
v-structure



The PC Algorithm —an example

Ind (A, B | &)

Ind (A, D | C)

Ind (B, D | C)

A—C—Dis NOT a
v-structure



The PC Algorithm —an example

B Ind (A, B | &)

Ind (A, D | C)

Ind (B, D | C)

Orient C=>D



The PC Algorithm —an example

B Ind (A, B | &)

Ind (A, D | C)

Ind (B, D | C)

Final Output



Considerations

Search strategy for independencies / structure
affects learning quality and efficiency

Determining dependencies or independencies
introduces errors; errors propagate
For a causal interpretation

— Check the sensitivity / confidence of a feature (A
— B) [Tsamardinos, Brown 2008, Friedman]

— Convert the Causal Bayesian Network to a PDAG



Conclusions, Pt.3

Algorithms for learning Bayesian Networks (global) or
parts of networks (local) : decent learning accuracy and
scalability (thousands of variables)

NP-Hard problem [Chickering et al., 1996]
Constraint-Based

— Check for dependencies / independencies
Score-based

— Maximize fitting to the data (score)

— Greedy searches approximate but scalable
— Exact

Still intense research area
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Causal Discovery

Looking deeper into the assumptions
and potential pitfalls



The PC Algorithm —an example

B Ind (A, B | &)

Ind (A, D | C)

Ind (B, D | C)

Final Output



Causal Interpretation

B Ind (A, B | &)

Ind (A, D | C)

Ind (B, D | C)

o)

e |Is A —> C causal?



Causal Interpretation

B Ind (A, B | &)

Ind (A, D | C)

[Unobserved] Ind (B' D | C)

Variable
’_DLI

e |IsA —> C causal?
e What would we observe?



Causal Interpretation

B Ind (A, B | &)

Ind (A, D | C)

Ind (B, D | C)

o)

* |sC—> D causal?
* What would we observe?



Causal Interpretation

Ind (A, B | &)

Ind (A, D | C)

[Unobserved] Ind (B' D | C)

Variable

D

 |sC—> D causal?
e What would we observe?



Causal Interpretation

Ind (A, B | &)

Ind (A, D | C)

[Unobserved] Ind (B' D | C)

Variable

D

 |sC—> D causal?
* What would we observe?



Causal Interpretation

B Ind (A, B | &)

Ind (A, D | C)
C
Unobserved Ind (B' D | C)
Variable
D
* |sC > D causal?

* What would we observe?



[

Unobserved
Variable

™~

Causal Interpretation

Ind (A, B | &)

Ind (A, D | C)

Ind (B, D | C)

What went wrong?

-

Violation of the Causal
Sufficiency Assumption




Latent Common Causes

Ind (A, B | &)

Ind (A,D | &)

Ind (B,C | &)




Latent Common Causes

Ind (A, B | O)
x &

Ind (A,D | &)
(¢ ) Ind(B,C| Q)

Skeleton Identification



Latent Common Causes

Ind (A, B | &)

Ind (A,D | &)

Ind (B, C | &)

Skeleton Identification



Latent Common Causes

Ind (A, B | &)

Ind (A,D | &)

Ind (B, C | &)

A-C-D is a v-structure



Latent Common Causes

Ind (A, B | &)

Ind (A, D | ©)
r Ind (B, C | &)

A-C-D is a v-structure



Latent Common Causes

Ind (A, B | &)

Ind (A,D | &)

Ind (B, C | ©)

B-D-C is a v-structure



Latent Common Causes

Ind (A, B | &)

O

Ind (A,D | &)

,[AD: Ind (B, C | &)

B-D-C is a v-structure



Latent Common Causes

Ind (A, B | &)

(B
Ind (A, D | &)
5 Ind (B, C | ©)

[

Unobserved
Variable

Orientations imply there is a

latent common cause



Latent Common Causes

(A] B

(o

This is not a BN

Ind (A, B | &)

Ind (A,D | &)
Ind (B, C | &)

What went wrong?

-

Violation of the Causal
Sufficiency Assumption




Latent Common Causes

e We can sometimes detect the violation
of causal sufficiency

* |f we're not sure that causal sufficiency
holds, we can’t be sure an edge A= Bis

causal

-

Violation of the Causal
Sufficiency Assumption




Maximal Ancestral Graphs

* Two kind of edges (Mixed Graphs)
— Directed (A—B: A IS an ancestor of B)
— Bi-directed (A<= B : A is not an ancestor of B,
Bis not an ancestor of A)

— Missing edge means no direct causation (the reverse
does not hold though)

* No Directed/ Almost Directed Cycles Allowed



MAGS

Straight-forward edge interpretation:
— Edges declare ancestry or non ancestry
— Missing edge declare no direct causality

If a distribution is faithful toa MAG (DAG), any
marginal of the distribution Is faithful toa MAG
IVI-separation criterion captures independencies

Markov Equivalent MAGS are statistically
indistinguishable



Partially oriented Ancestral Graph

* Represents a class of Markov
Equivalent MAGs

* Hasthe same edges as
every other MAG in the class

« Hasonly orientations

(arrows an tails) shared by all

the MIAGS in the class ;

uncertainties are denoted with
circles

* FCI algorithm can identify the
PAG




Selection Bias

* You want to test whether genotype

[ Lung Cancer ]—[ Genotype X ] X causes Lung Cancer

 Youtake 100 Lung Cancer

patients (cases)
* For every Lung Cancer patient you

add to the survey a NON-Lung
Cancer patient (controls)




Selection Bias

* You want to test whether genotype

[ Lung Cancer ]—[ Genotype X ] X causes Lung Cancer

« Youtake 100 Lung Cancer

patients (cases)
* For every Lung Cancer patient you

add to the survey a NON-Lung

Cancer patient (controls)
from the same hospital

Dep (Genotype X, Lung Cancer| &)



Selection Bias

* You want to test whether genotype

[ Lung Cancer ](—[ Genotype X ] X causes Lung Cancer

« Youtake 100 Lung Cancer

patients (cases)
* For every Lung Cancer patient you

add to the survey a NON-Lung

Cancer patient (controls)
from the same hospital

Dep (Genotype X, Lung Cancer| &)

Genotype X CAUSES Lung
Cancer



Spurious associations due to
experimental design

* You want to test whether genotype
[ Lung Cancer ] [ Genotype X ] X causes Lung Cancer
* You take 100 Lung Cancer

patients (cases)
* For every Lung Cancer patient you

Go to hospital

\ 4 -
[ T ] add to the survey a hon-Lung
= TRUE

Cancer patient (controls)
from the same hospital

Disease

Dep (Genotype X, Lung Cancer| &)

Genotype X CAUSES Lung
Cancer



Selection Bias

[ Lung Cancer ] [ Genotype X ]
. \ 4
Go to hospital [ Heart ]
= TRUE Disease
What went wrong?
(

Violation of the Causal
Markov Condition




[ Lung Cancer ]

Go to hospital

= TRUE

Selection Bias

[ Genotype X ]

Y

[

Heart
Disease

]

(
MAGS can also handle

edges have different semantics

~

selection bias, BUT the

J

What went wrong?

-

Violation of the Causal
Markov Condition




Collinearity and Determinism



Disappearing Associations



Measurement Error



Observing an XOR function

P(ANT)=0.25 = P(A)*P(T)
P(AN—T)=0.25=P(A )*P(T)
P(—wA NT)=0.25=P(— A )*P(T)

P(-A N—T)=025=P(=A)*P(—=T)

T =A XOR B 0O 0 025 O

P(A NT) =P(A)*P(T)



Observing an XOR function

P(ANT)=0.25 = P(A)*P(T)
P(AN—T)=0.25=P(A )*P(T)
P(—wA NT)=0.25=P(— A )*P(T)

P(-A N—T)=025=P(=A)*P(—=T)

T =A XOR B 0O 0 025 O

P(A NT) =P(A)*P(T)



Observing an XOR function

A B O 1
T =A XOR B 0O 0 025 O
o 1 0 0.25
1 0 0 0.25
1 1 025 O
Dep(A, T| D) Ind(A, T|<)

P(ANT)=0.25 = P(A )*P(T)
P(AN—T)=0.25=P(A)*P(T) - P(ANT) =P(A)*P(T)
P(wA N T)=0.25=P(— A )*P(T)




Example

Dataset measuring X, ¥, W Dataset measuring X, Z W
PAG G, PAG G,
J={X, W [Y)} J={X,W | 2Z)}

* Find a single causal model on {X, Y, Z W} that
is consistent with both independence models



Solutions to the Example
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Proof-of-Concept INCA Predictions

——————————————

- ~
g ~
s N

’
~So -
_______

e |f
—J;={(X, W | Y) }in dataset D,
— ), ={{(X, W | Z)}in dataset D,
* Then
— Predict Y and Z are associated —(Y L Z)



Making It Work on Real Data

1.0riginal Dataset

3.FindX, ¥y WinD,and X, Z, W, in
D, such that the FTR applies

D

2.SplittoD,, D,and D,
containing different samples

)

Association?



Datasets Employed

Name Reference # istances | # vars | Group Size | Vars type | Scient. domain
Covtype Blackard and Dean (1999) 581012 55 55 N/O Agricultural
Read Guvenir and Uysal (2000) 681 26 26 N/C/O Business

Infant-mortality Aliferis et al. (2010) 5337 83 83 N Clinical study
Compactiv Alcala-Fdez et al. (2009) 8192 22 22 C Computer science
Gisette Aliferis et al. (2010) 7000 5000 50 C Digit recognition
Hiva Guyon et al. (2006) 4229 1617 50 N Drug discovering
Breast—Cancer Aliferis et al. (2010) 286 17816 50 C Gene expression
Lymphoma Aliferis et al. (2010) 237 7399 50 C Gene expression
Wine Cortez et al. (2009) 4898 12 12 C Industrial
Insurance-C Elkan (2001) 9000 84 84 N/O Insurance
Insurance-N Elkan (2001) 9000 86 86 N/O Insurance
p53 Danziger et al. (2009) 16772 5408 50 C Protein activity
Ovarian Aliferis et al. (2010) 216 2190 50 C Proteomics
C&C Frank and Asuncion (2010) 1994 128 128 C Social science
ACPJ Aliferis et al. (2010) 15779 28228 50 C Text mining
Bibtex Tsoumakas et al. (2010) 7395 1995 50 N Text mining
Delicious Tsoumakas et al. (2010) 16105 1483 50 N Text mining
Dexter Aliferis et al. (2010) 600 11035 50 N Text mining
Nova Aliferis et al. (2010) 1929 12709 50 N Text mining
Ohsumed Aliferis et al. (2010) 5000 14373 50 C Text mining




Performance Metric

e Ground truth is unknown

* Accuracy

— The percentage of p-values < 0.05

* May include false positives and exclude false
negatives in the calculation



Accuracy att =0.05

Accuracy att=0.05

08

06—

0.4~

02

[}

0.8

06—

0.4

02

Predicting Dependencies: FTR vs
Random

ILILLLLLL

Covtype Read Infant-Mortality Compactiv Gigette Hiva Breast-Cancer Lymphoma YWine Insurance-C

‘ - testing rule B F-ndom Guess

1L

Insurance-M Crarian ACRJ Bibtex Delicious DE}{ter Mova DOhsumed



Number of Predictions

Dataset Full testing rule | Min. testing rule | Transit. rule
Covtype 222 42978 h8518
Read 0 27 5025
Infant-Mortality 22 9870 8663
Compactiv 135 763 4134
Gisette 423 74223 261095
Hiva 554 167799 305901
Breast-Cancer 1833 597652 1688313
Lymphoma 7712 1182824 1112963
Wine 4 84 466
Insurance-C 1839 HTT18 60695
Insurance-N 226 34344 56615
p53 46647 2469957 2516926
Ovarian 539165 2107067 2248459
C&C 99241 536785 351557
ACPJ 0 547 31556
Bibtex 1 15975 85640
Delicious 856 78502 187456
Dexter 0 8 752
Nova 0 676 17807
Ohsumed 0 157 10139
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Success Stories



Feature Selection from a Bayesian
Network Perspective

* Find the set of variables that are
(collectively/multivariately) the most
predictive of your target

— Shouldn’t they be “related” to the target? How
exactly?

— How do you measure how predictive they are?
— How do you find them?



Feature Selection As a Solution to
High-Dimensional Analysis

* Reduce the number of required observed
quantities (variables/features) to build a
predictive/diagnostic model

* Definition: Select the variable subset of
minimal size with the maximal predictive or
diagnostic, classification power for target
variable T




Causality and Feature Selection

* “Relevant” variables provide A

information for T: Dep(X; T | &) /\

e “Redundant” variables are

B C D
“relevant” but don’t provide any
additional information given the
F T H

selected variables :

* Crude definition of “relevancy” X /\
and “redundancy” but often

used | J



Causality and Feature Selection

Markov Blanket is unique in
Faithful networks A

Relevant: any variable X with a /
directed path toor from T
B C D
Redundant: a relevant variable
that is made d-separated from T
given the selected variables
E F T H

Non relevant variables maybe in

the Markov Blanket (required

for optimal selection), e.g., H

What is redundant depends on | J

the selected variables



Causality and Feature Selection

The smallest subset with the optimal predictive power is the
set of

* Parents (direct causes)
e Children (direct effects)
* Spouses (direct causes of the direct effects)

of the target variable (to predict) in the network that fits the data

This set is called the Markov Blanket of the target
The Markov Blanket is unique in Faithful distributions

Connections among Bayesian Networks, Markov Blanket, Feature
Selection, Relevant Variable, and more

— [Tsamardinos, Aliferis, Al&Stats 2003]



Causality and Feature Selection

* The Markov Blanket of T is: A
e Parents (direct causes)
e Children (direct effects) /\
* Spouses (direct causes

B C D
of the direct effects)
in the causal network \
E F T H

 Knowing the values of the
Markov Blanket variables X
renders knowledge of the

values of all other variables | J
superfluous



Causal-Based Feature Selection

* |dentify the Markov Blanket of the target using
methods based on causal theories

* Use the Markov Blanket variables to build the
final predictive or diagnostic models

* Design efficient and accurate algorithms that
identify the MB without having to learn the

whole network

— Max-Min Markov Blanket, [Tsamardinos, Aliferis, Statnikov, KDD
2003]

— HITON [Aliferis, Tsamardinos, Statnikov, AMIA 2003]
— General framework and extended evaluation
 [Aliferis, Statnikov, Tsamardinos, et. al. IMLR 2010 ]



Method Reference

No feature selection

RFE (recursive feature elimination SVM-based method) (Guyon etal.,, 2002)

UAF-KruskalWallis-SVM (univariate ranking by Kruskal-Wallis statistic (Statnikov et al., 2005a; Hollander and Wolfe, 1999)

and feature selection with SVM backward wrapper)

UAF-Signal2Noise-SVM (univariate ranking by signal-to-noise statistic (Guyon et al., 2006b; Stat;ggg)etalv 20053; Furey et al.,

and feature selection with SVM backward wrapper)

UAF-Neal-SVM (univariate ranking by Radford Neal's statistic and feature Chapter 101n (Guyon et al., 20062)

selection with SVM backward wrapper)

Random Forest Varia b|e SE'ECtiOI’\ (RFVS) (Diaz-Uriarte and Alvarez de Andres, 2006; Breiman,
2001)

LARS-Elastic Net (LARS-EN) (zou and Hastie, 2005)

RELIEF (Wlth backwa rd Wrapping by SVM) (Kononenko, 1994; Kira and Rendell, 1992)

LO-norm (Weston et al., 2003)

Forward Stepwise Selection (Caruana and Freitag, 1954)

Koller-Sahami (with backward wrapping by SVM) (Koller and Sahami, 1996)

IAMB (Tsamardinos and Aliferis, 2003; Tsamardinos et al.,
2003a)

K2MB (Cooper et al., 1997; Cooper and Herskovits, 1992)

BLCD-MB (Mani and Cooper, 2004)

FAST_'AMB (Yaramakala and Margaritis, 2005)

HITON-PC (semi-interleaved) Novel algorithm




Num.

Dataset name Domain variable Num. Target Reference
s samples
Infant . . L . i
~ Clinical 86 5,337 Died within the first year (Maniand Cooper,
Mortality 1999)
Ohsumed Text 14,373 5,000 Relevant to neonatal diseases | (Joachims, 2002)
ACPJ_ Etiology | Text 28,228 | 15,779 | Relevant to etiology gﬁpgggg)naphongs ot
Gene
Lymphoma expressi | 7,399 227 3-year survival: dead vs. alive | (Rosenwald et al., 2002)
on
Digit NIPS 2003 Feature
Gisette recogniti | 5,000 7,000 Separate 4 from 9 Selection Challenge
on (Guyon et al., 2006a)
Relevant to corporate NIP5 2003 Feature
Dexter Text 19,999 600 s P Selection Challenge
acquisitions (Guyon et al., 2006a)
Ponderosa pine vs. Wl 2006
Sylva Ecology 216 14,394 P Performance Prediction

everything else

Challenge




Dataset

Num.

Num.

name Domain variables samples Target Reference
2::::“— Proteomics 2,190 216 Cancer vs. normals (Conrads et al., 2004)
. Drug . .
Thrombin : 139,351 | 2,543 | Binding to thrombin KDD Cup 2001
discovery
Breast_ Gene . 17,816 286 Estrogen-receptor positive (Wang et al., 2005)
Cancer expression (ER+) vs. ER-
o WCCI 2006
Hiva Drug 1,617 | 4,229 | Activity to AIDSHIV performance
discovery infection Prediction Challenge
s WCCI 2006
Nova Text 16,069 | 1,929 | >eparate politics from performance
religion topics Prediction Challenge
Bankruptcy | Financial 147 7,063 | Personal bankruptcy (Foster and Stine,

2004)




Results Overview

* Compactness
— HITON-PC wins (statistically significantly) 20 cases
— HITON-PC ties (non statistically significant result) 16 cases

— HITON-PC loses (statistically significantly) 6 cases
» with significance loss of predictive power of the other methods

* Predictive Power
— HITON-PC wins (statistically significantly) 9 cases
— HITON-PC ties (non statistically significant result) 33 cases
— HITON-PC loses (statistically significantly) 1 case

* Time Efficiency

— Thrombin dataset with> 100,000 features HITON-PC requires 10 to
52 minutes single-CPU time and less than 3 hours when
parameters are automatically optimized by cross-validation



Extensions to Survival Analysis

Causal-based variable selection extended for survival data, where
censorship of patients is possible

Compared against most other methods in the field (filtering,
forward selection, Bayesian variable selection, etc.)

Each algorithm coupled with several regressors

Statistically significantly the best performing algorithm against all
algorithms that reduce the model to less than 20 variables

[Lagani, Tsamardinos, Bioinformatics (2010)]

Extensions to other types of data (temporal) are under investigation



Predicting causal effects in large-scale
systems from observational data

What will happen if you knock down Gene X?

Gene A | Gene B | Gene X
1 0.1 0.5 1.2
2 0.56 2.32 0.7
n 7 0.4 2.4

[I\/Iaathius et al., Nature Methods, 2010]



Predicting causal effects in large-scale
systems from observational data

What will happen if you knock down Gene X?

|ntervention calculus when DAG is Absent

1. Learn equivalence class of DAGs

2. For every DAG G in the equivalence find Pay (G)

3. Causal effect C; of Xon Vin DAG Gis

1. 0,if Ve Pa, (G)
2. coefficient of X in V~X + Pa, (G), otherwise

4. Causal effect C of X on V is the minimum of all CG

Gene A | Gene B | Gene X
1 0.1 0.5 1.2
2 0.56 2.32 0.7
n 7 0.4 2.4



Predicting causal effects in large-scale
systems from observational data

IDA Evaluation

Experimental
Data*

l

Observational
Data

l

Rank causal effects

Take top M percent

Apply IDA.

Take top C genes

\/

Compare

Rosetta Compendium data:

* 5,361 genes
e 234 single-gene deletion mutants®



Predicting causal effects in large-scale
systems from observational data

IDA Evaluation

Experimental Observational
Data* Data
Rank causal effects Apply IDA.
Take top M percent Take top (| genes

\/

How often do (I and
M match?

Rosetta Compendium data:

* 5,361 genes
e 234 single-gene deletion mutants®



Predicting causal effects in large-scale
systems from observational data

Xa

£

Xy

X3

ey

[Example from Maathuis et al, 2009]



Predicting causal effects in large-scale
systems from observational data
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Predicting causal effects in large-scale
systems from observational data

X, X,
/
X, X, Y
XzH)% XzH)% XZHXS XZH)%
3 S S g B o Sy W [ S B, M g By
Pa1(Gl)= {@} Pal(G2)= {Xz} Pa1(Gg)= {Xz} Pa1(G4)= {Xz}
Regress Y on X, Regress Y on X, and X, Regress Y on X, and X,
v P v

C, c, G C,



Predicting causal effects in large-scale
systems from observational data

XZ X3
/
X, X, Y
X, H X X, H X3 X, H X X H X3
3 S S g B o Sy W [ S B, M g By
Pa1(Gl)= {@} Pal(G2)= {Xz} Pa1(Gg)= {Xz} Pa1(G4)= {Xz}
Regress Y on X, Regress Y on X, and X, Regress Y on X, and X,
v P v
C, c, G, C,

C=min{C,C,,C;C,}



Predicting causal effects in large-scale
systems from observational data
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An integrative genomics approach to infer causal
associations between gene expression and disease

Causal Inference with the use of genetic variation

* DNA variation —gene expression «— phenotype.

 DNA variation used to identify susceptible loci for
phenotypic traits (QTLs).

[Schadt et al., Nature Genetics, 2005]



An integrative genomics approach to infer causal
associations between gene expression and disease

Causal Inference with the use of genetic variation
* DNA variation —gene expression «— phenotype.

 DNA variation used to identify regions in DNA
susceptible for phenotypic traits (QTLS).

— \

Use gene expression as a
phenotypic trait caused by genetic

\variation (identify eQ.TLs ).




An integrative genomics approach to infer causal
associations between gene expression and disease

L &

The expression of a gene (R)
and a complex trait (C) are
correlated with a common
QTL (L).



An integrative genomics approach to infer causal
associations between gene expression and disease

Q C Causal model




An integrative genomics approach to infer causal
associations between gene expression and disease

Causal model

<|

Reactive model




An integrative genomics approach to infer causal
associations between gene expression and disease

0 C Causal model

—
<|q>— C| —— Reactive model

o """" C Independent model




An integrative genomics approach to infer causal
associations between gene expression and disease

R>— ¢ p(L) x P(R]L) x P(C|R)

—
<R>— C <IP(L)><P(C|L)><P(R|C)
o """" C P(L) x P(R|L) x P(C|R, L)




An integrative genomics approach to infer causal
associations between gene expression and disease

* 111 mice from segregated population

e Expression of 23,574 genes (R)

* Genotyped at 139 microsatellite markers. (L)
 Omental Fat Pad Mass trait (C)



An integrative genomics approach to infer causal
associations between gene expression and disease

1. Identify loci susceptible for disease
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1. Identify loci susceptible for disease
* 4QTLs
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2. ldentify gene expression traits correlated with
the disease
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* 440 genes
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An integrative genomics approach to infer causal
associations between gene expression and disease

1. Identify loci susceptible for disease
* 4QITLs

2. ldentify gene expression traits correlated with the
disease
* 440 genes

3. ldentify genes with eQTLs that coincide with the QTLs
* 113 genes, 267 eQTLs
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2. ldentify gene expression traits correlated with the
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* 440 genes
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An integrative genomics approach to infer causal
associations between gene expression and disease

1. Identify loci susceptible for disease
* 4QITLs

2. ldentify gene expression traits correlated with the
disease
* 440 genes

3. ldentify genes with eQTLs that coincide with the QTLs
* 113 genes, 267 eQTLs

4. |dentify genes that support causal models

5. Rank genes by causal effect
Top-ranked genes are

the strongest causal
candidates



An integrative genomics approach to infer causal
associations between gene expression and disease

1. Identify loci susceptible for disease
* 4QITLs

2. ldentify gene expression traits correlated with the
disease
* 440 genes

3. ldentify genes with eQTLs that coincide with the QTLs
* 113 genes, 267 eQTLs

4. |dentify genes that support causal models

5. Rank genes by causal effect

4 top-ranked genes were
experimentally validated



An integrative genomics approach to infer causal
associations between gene expression and disease

1. Identify loci susceptible for disease
* 4QITLs

2. ldentify gene expression traits correlated with the
disease
* 440 genes

3. ldentify genes with eQTLs that coincide with the QTLs
* 113 genes, 267 eQTLs

4. |dentify genes that support causal models

5. Rank genes by causal effect
One of them ranked 152

out of the 440 based on
mere correlation



Causal Protein-Signaling Networks Derived
from Multiparameter Single-Cell Data

L
?Zap70 VAV

K&\» Lk/g/% B v,

PLC
S5 e

PIP2)

\
. : MAPKKK MAPKKK Mek1/2)
* Protein Signaling Pathaways 1 1 iy
resemble Causal Bayesian Networks — M&47 MEf"" &rkd/2
* Use Causal Bayesian Networks learning gng (p38)
to reconstruct a Protein Signaling
pathway

[K. Sachs, et al. Science , (2005)]



Stimulations and perturbations

/ Activators

1. a-CD3

2. a-CD28

3. ICAM-2
4. PMA

5. B2cAMP

Inhibitors

6. 606976

7. AKT inh | l

8. Psitect MEK4/7 MEK3/6
9. U0126

\ 10, LY294002 / @‘l") @

MAPKKK




T-Lymphocyte Data

Conditions (multi-well 12
[forma’r) J [ Color Flow Cytometry ]
perturbgation a >

erturbation b

00
o g ' .
'..o oo
: o q

d

perturbation n o
= Primary human T-Cells = 9 phosphoproteins, 2
phospolipids

= 9 conditions

= (6 Specific interventions) " 600 cells per condition

= 5400 data-points



Inferred Network

() Phospho-Proteins

O Phospho-Lipids
O Perturbed in data




How well did we do?
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How well did we do?
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@ ———Expected Pathway
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How well did we do?

() Phospho-Proteins

O Phospho-Lipids
D Perturbed in data

———Expected Pathway
Reported

Reversed

= = = Missed

= 15/17 Classic
= 17/17 Reported
= 3 Missed
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Teloc Evotntag

IXEI \KO [l PAMMA
@AIAMH KAl AIA BIOY MABHEH =% EznA
révdyon gTnv uowwvia Tne yvionc | ol o,
of E=] - Jovswopyo yo o ovinsés |
KEYMATON, MOAITIZMOY ' l

YMHPEZIA
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YNoYP:

Evpuwm
Evpwnaixé Kovunvixé Tapeio

aikn Evwon

Me ) ouyxpnparodéton g ENAadac xat ¢ Evpwnaiknc Evwong



Xpnuatodotnon

To TopOV eKMALOEVUTLIKO UALKO £XEL avartuxOel ota mAaiola Tou
ekmaldeuTIKOU £pyou Tou dLdaokovta.

To £pyo «Avolkta Akadnpaika Madnipata oto MoveniotALo

Kpntneg» €xeL xpnuatodotrnost povo tn avadlapopdwon tou
eKTIALOEVTIKOU UALKOU.

To £pyo vAoroleital oto Aaiclo tou Emyelpnotoakou MpoypAapuatog
«Ekmaiidevon kot Ata Blou Mabnon» kal cuyxpnuatodoteitol ano tnv

Evpwrnaikn Evwon (Evpwmaiko Kowwviko Tapeio) kat oo €Bvikolg
OPOUC.

EMNIXEIPHEIAKO NMPOIPAMM
EKIMAIAEYZH KAI AIA BIOY MAGHZH Ez rIA

E [ <": Y np6ypuppa yia t avmutn

YNOYPFEIO MAIAEIAL KAl GPHIKEYMATAQON

EvpwmaikiEvwon EI!AIKH YMHPEIIA AIAXEIPIZHE
Evpwmnaiké Kowvwviké Tapeio

Me ) ouyxpnuarodoétnon tng EAAadag kat tng Evpwnaiknig Evwong
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2 NUELW LT



>nuelwpa adetodotnonc (1)

e To nmapov UALKO SLatiBetal pe Toug 6pouc TNE adelag
xpnonc Creative Commons Avadopa, Mn Eunopikn Xpnon,
Oxt Napaywyo Epyo 4.0 [1] N petayeveotepn, AteBvng
Exkdoon. Efalpouvrtol ta aUTOTEAN £pya TPLTWV TL.Y.
dwtoypadiec, Staypappata K.A.1., TO oMol
ETIEPLEXOVTOL OE QUTO Kall Ta omola avadepovtat padl He
TOUC OPOUC XPAONC TOUC OTO «ZnUeilwpa Xpnonc Epywv

Tpitwv». ‘@@@@\

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/
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>nuelwpa adetodotnonc (2)

* (c Mn Epmopikn opiletal n xpnon:
— 1tovu Sev epAaUBAVEL AUECO 1) EUUECO OLKOVOLLLKO ODEAOC aTtoO
TNV Xprion Tou €pyou, ylo to Slavopea Tou £€pyou Kot adelodoxo
— 1tov dev epAaBAaveL olkovouLkr) cuvaAlayrn wg npoinobeon yla
n xprnion N npoofaon oto £pyo
— 1tovu dev poomopilel oTo SLaVOUEN TOU EPYOU

Kol abel060X0 EUUECO OLKOVOULKO O0deAoC (m.x. dtadnuioelg) amnod
TNV tpooAr) Tou €pyou o€ SLAOLKTUAKO TOTIO

* O dkaloUxocC pmopel va apexeLl otov adelodoxo EexwplLotn
adeLa val XPNOLUOTIOLEL TO £PYO VLA EUTTOPLKN XPNoN,
epooov auto tou {ntnOel.



>NUELlwpa Avadopac

Copyright Mavenotnuio Kpntng, lwavvng Toapapdivog 2015.
«Mnxavikn MaBnon. Introduction to causal discovery».
‘Ekdoon: 1.0. HpakAeglo 2015. AtaBeotpo amo tn SIKTuakKn
dtevBuvon:

https://opencourses.uoc.gr/courses/course/view.php?id=362.



Alatnpnon ZNUELWHATWY

Ornoladnmnote avamnapaywyn n dtackeur tou VALkou Ba
TPETIEL VO CUUTIEPLAAPAVEL:

" 10 2Znueiwpa Avadopadg

" 70 2Znueiwpa Adslodbotnong

" tn 6NAwon Alatipnong ZNUELWHATWV

" 1o 2nueiwpa Xpnong Epywv Tpitwv (epocov umadpyel)

noll e Touc cuVoOEVOUEVOUC UTIEPCUVOECOUC.



