HELLENIC REPUBLIC

?(Z\?\‘ii

st

Distributed Computing

Graduate Course

Section 7: Wait-Free Simulations of
Arbitrary Objects

Panagiota Fatourou
Department of Computer Science

1 The consensus problem cannot be solved using
only read/write registers.

1 Most modern multiprocessors provide some set
of “stronger” hardware primitive for coordination,
like LL/SC or Compare&Swap.

O We investigate the following question:

"Given two types of (linearizable) shared
objects, X and Y, is there a wait-free
simulation of object type Y using only objects
of type X and read/write registers?”

CS586 - Panagiota Fatourou

We will first answer this question for the weaker termination
property called non-blocking (or lock-freedom):

- “Lock-freedom states that there is a finite execution fragment
starting at any point of an admissible execution in which some
high-level operations are pending, at which a process completes
one of the pending operations.”

Lock-freedom is a weaker property than wait-freedom
which states that eventually all processes should complete
their operations.

Lock-freedom allows starvation to occur!

The distinction between wait-free and lock-free
algorithms is similar to the distinction between no-lockout
and no-deadlock algorithms for mutual exclusion.

CS586 - Panagiota Fatourou 3

Alxawithen AL Consensus algorithm for two processors, using a FIFO queue:
code tor processor p;, 2 = 0, 1.

Initially) = (0) and Prefer[t] = L, = 0,1

1 Preferli] = &
2: wval :=deq(Q)
¥ Sfval=0theny =2 /I dequeued the first element, decide on your input
4: else y := Prefer[1 — 1] // decide on other’s input

Algorithm 15.1: H. Attiya & J. Welch, Distributed Computing: Fundamentals, Simulations and Advanced Topics, Morgan Kaufmann, 1998

* The operations supported by a FIFO queue are:
- [enq(Qx), ack(Q)],
- [deq(Q), return(Q.x)],

where x can be any value that can be stored in the
queue (deq(Q) returns L if the queue is empty).

Theorem 1
» Algorithm 1 solves consensus for two processes.

CS586 - Panagiota Fatourou 4

// write your input

Theorem 2

There is no wait-free simulation of a FIFO queue with
read/write objects, for any number of processes.

Proof:

+ If there was a wait-free simulation of FIFO queues
with read/write objects, then there would be a
wait-free consensus algorithm, for two processes,
using only read/write objects.

- This is a contradiction to the FLP resultill

Theorem 3
There is no n-process, wait-free consensus algorithm

using only FIFO queues and read/write objects, if n>
Proof: Using valence arguments as in previous section.

Left as an exerciselll
CS586 - Panagiota Fatourou 5

value Compare&Swap(X: memory address, old, new: value) {
previous = X;
if (previous == old) then X = new;
return previous;

}

Algorithm 2: Consensus algorithm for any number of processors, using
compare&swap: code for processor p;, 0 <1 <n — 1.

Inmitially First = L

1: v :=compare&swap(First,L,x)

2: ifv = L then // this 1s the first compare&swap
. W // decide on your own input
4: elsey:=v // decide on someone else’s input

Algorithm 15.2: H. Attiya & J. Welch, Distributed Computing: Fundamentals, Simulations and Advanced Topics, Morgan Kaufmann, 1998

Theorem 4

+ Algorithm 2 solves consensus for any number of
processes using a single Compare&Swap object.

CS586 - Panagiota Fatourou 6

Atomic objects can be categorized according to a
criterion which is based on their ability to support a
consensus algorithm for a certain number of
processes.

Object type X solves wait-free n-processes
consensus if there exists an asynchronous consensus
algorithm for n processes using only shared objects
of type X and read/write objects.

The consensus number of object type X is n, denoted
CN(X) = n, if nis the largest value for which X solves
wait-free n-processes consensus. The consensus
number is infinity if X solves wait-free n-processes
consenus for every n.

v' The consensus number of any object X is at least 1,
because any object trivially solves wait-free one-
process consensus.

CS586 - Panagiota Fatourou

> For each object type X which is the smallest
value that CN(X) can have?

0 The CN of a read/write register is 1.

d The CN of the following atomic shared
objects is 2: testdset, swap, fetchdadd,
stacks, queues.

[The CN of a Compare&Swap register is «.

[There exists a hierarchy of object types
based on their CN.

v' It has been proved that there are object
types with CN = m, for each value of m>0.

CS586 - Panagiota Fatourou

Theorem 5
If CN(X) = m and CN}Y) = n>m, then there is no wait-free simulation
of ¥ with X and read/write objects in a system with more than m
processes.

Proof: Assume, by the way of contradiction, that there is a wait-free
implementation of Y from objects of type X and read/write
registers in a system with k > m processes.

Denote | = min{k,n}. Note that | > m.

We arque that there exists a wait-free |-processes consensus
algorithm using objects of type X and read/write objects.

Since | < n, there exists a wait-free |-processes consensus algorithm,
A, using objects of type Y and read/write objects.

We can obtain another algorithm A’ by replacing each type Y object
with a wait-free simulation of it using objects of type X and
read/write registers.

A'is a wait-free |-processes consensus algorithm using objects of
’%ype X and read/write objects = CN(X) > | > m.
his is a contradiction!

CS586 - Panagiota Fatourou 9

Corollary 6

* There is no wait-free simulation of any object
with consensus number greater than 1 using
read/write objects.

Corollary 7

* There is no wait-free simulation of any object
with consensus humber greater than 2 using
FIFO queues and read/write objects for an
asynchronous system of more than 2
processes.

CS586 - Panagiota Fatourou 10

+ Anobject is universal if it, fogether with read/write objects,
wait-free simulates any other object.

We will prove that:

- Any object X whose consensus number is n is universal in a
system of at most n processes.

Note: This does not imply that X is universal in any system with
m > n processes!

Main Ideas

- We present a universal algorithm for wait-free simulating any
object in a system of n processes using only n-processes
consensus objects and read/write objects.

+ An n-processes consensus object Obj is a data structure that
allows n processes to solve consensus. It provides a single
operation [decide (obj,in), return(Obj, out)],where in
and out are taken from some domain of values.

- The set of operation sequences consists of all sequences of
operations in which all out values are equal to some in value.

CS586 - Panagiota Fatourou 11

M

ain Ideas

We represent the object as a shared linked list, which contains
the ordered sequence of operations applied to the object.

To apply an operation to the object, a process has to thread it
at the head of the linked list.

A ComparedSwap object, called Head, is used to manage the
head of the list.

An operation is represented by a shared record of type opr
with the following components:
- inv: the operation invocation including its parameters;

- new-state: the new state of the object, after applying the
operation;

- response: the response of the operation, including its return value;
- before: a pointer to a record of the previous operation on the
object.
The initial value of the object is represented by a special anchor
record, of type opr, with The new-state field equal to the initial
state of the object.

CS586 - Panagiota Fatourou 12

\ anchor
mv j o 1nv Hv=1
new state | | new-state g —| new-state=initial
]“LSD{)HSL .l response (> \ rc‘;ponsc-L |
| it T st Bsaye L N |
) = S —— =
lt,f_()_ru _ bufore.___/ L before=_1)

Figure 15.4: H. Attiya & J. Welch Distributed Compu‘rmg Fundamentals, Simulations and Advanced TOplCS Morgan Kaufmann, 1998

Algorithm 3: A non-blocking universal algorithm using Compare&Swap:
code for process p;, 0 < i < n-1,

Initially Head points to the anchor record;

1. when /nvoccurs:

2. allocate a new opr record pointed to by point with point—inv = inv,

3 repeat

4 h := Head!

5. point »new-state, point —response .= apply(inv, h —»new-state);
6 point —before := h;

7 until Compare&Swap(Head, A, point) = A;

8 enable the output indicated by point —>response; // operation response

CS586 - Panagiota Fatourou 13

Theorem 8

Algorithm 3 is a non-blocking universal algorithm for n
processes.

Proof

The desired linearization is derived from the ordering of
operations in the linked list. So, proving linearizability is
straightforward.

The algorithm is non-blocking.

- If a process does not succeed in threading its operation in the
linked list, it must be that the Compare&Swap operation executed
by some other process has threaded its operation in the list.

The algorithm is not wait-free since the same process might
repeatedly succeed to thread its operation, locking all other
processes out of access to the shared object.

Disadvantages ®
The algorithm uses Compare&Swap instead of consensus objects
It is not wait-free
It uses an unbounded amount of space

CS586 - Panagiota Fatourou 14

1st Effort
Replace the Compare&Swap object with a consensus object.

Problem 1

A consensus object an be used only once; after the first process wins the
consenslus and threads its operation, the consensus object will always return the
same value.

Solution
A consensus object is associated with each record of the linked list.

We replace the before field with a field called after, which is a consensus
object pointing o the next operation applied to the object.

Problem 2
How can each process locate the record at the head of the list?
Solution

HfGVﬁ e?ch process maintain a pointer to the last record it has seen at the head
of the list.

These pointers are kept in a shared array called Head.
This information might be stale!

Squence numbers are also used so that later operations get higher sequence
numbers.

CS586 - Panagiota Fatourou 15

Figure 15.5: H. Attiya & J.
Welch, Distributed Computing:
Fundamentals, Simulations and

Head | | |, | P e o Moo
__///\5__________%% B A,,/_ _____ _____z_mchor
r o scéq } — m:&scq e (__‘._%L_:q:l—-\
| inv inv inv=_ |
i m,v»«t‘m,«l(' '_ “new-state]w;ﬂ_ J_\ __?1_§E—sl.ate:initia]
response | 1 response 7)| response=L
| after J —JWF B _J | - \—-if:’ - after J

Algorithm 4: A non-blocking universal algorithm using consensus objects:
code for process p;, 0 < i ¢ n-1,
Initially Head[j] points fo the anchor record, forall j, 0 < j<n-1;
when /nvoccurs: // operation invocation, including parameters
allocate a new opr record pointed to by point with point—inv = inv,
for j:=0ton-1do // find record with highest sequence number
if (Head[j]—»seq > Head[i] —seq) then Head]i] := Head[j]
repeat
win .= decide(Head|i] —after, poinf), // try to thread your record
win —»seq = Head[i] —»seq + 1
win —new-state, win —response = apply(win—inv, Head[i]->new-state);
Head[i] := win, // point to the record at the head of the list
until win = point,
enable the output indicated by point —»response, // operation response

DSV NOOAwWNS

CS586 - Panagiota Fatourou 16

Showing linearizability is straightforward (in a way
similar to the previous algorithm).

For each configuration C, in an execution g, let:
max-head(C) = max{Head[i]—»>seq | 0 <i < n-1}

For each i, Head[i]—>seq is monotonically non-
decreasing during a.

Properties of the Algorithm

The algorithm is non-blocking.

- If a process p; performs an unbounded number of steps, then
max-head is not bounded. So, other processes succeed in
threading their operations to the list.

The algorithm is not wait-free.

CS586 - Panagiota Fatourou 17

We use the method of helpin% qccordin?. to which each process helps
other processes to perform their operations and not being locked out
from accessing the data structure.

Problem 1
How do we know which processes are trying to apply an operation to the
object?

Solution

Keep an additional shared array Announce[0..n-1], the ith entry,
Announe[i], of which is a pointer to the record that p; is currently
trying to thread in the list.

Problem 2

How to choose the process to help in a way that guarantees that this
process will succeed in applying its operation?

Solution

A priori’r¥ scheme is used, and a priority is given, for each sequence
humber, To some process that has a pending operation.

Priority is given in a round-robin way:
- If p; has a pending operation, then it has priority in applying the kth
operation where k = i mod n.

CS586 - Panagiota Fatourou 18

Algorithm 5: A wait-free universal algorithm using consensus objects;
code for process pi, 0 < i ¢ n-1.
Initially Head[j] and Announce[j] point to the anchor record, for all j, 0 < j < n-1;
1. when /avoccurs: // operation invocation, including parameters
2. allocate a new opr record pointed to by Announcefi]
with Announce[i]—»inv := invand Announce[i] —seq =0
for ji=0ton-1do // find record with highest sequence number
if (Head[j]—»seq > Head[i] —seq) then Head|i] := Head[j]
while (Announcel[i] —seg = 0) do
priority := (Head[i] —seg+1) mod n,
if (Announcelpriority] —seq = 0) then point := Announce/priority]
else point .= Announce(i];
win := decide(Head|[i] —after, point); // try to thread your record
win —new-state, win —response .= apply(win—inv, Head|[i]->new-state);
win->seq = Head[i]->seq +1,
Head|i] := win; /7 point to the record at the head of the list

SERLXINS O AW

13. enable the output indicated by win —response; // operation response

Theorem 10

There exists a wait-free simulation of any object for n processes using only
n-processes consensus objects and read/write objects. The step
complexity of the algorithm is O(n).

CS586 - Panagiota Fatourou 19

Theorem

There exists a wait-free implementation of any object for n processes,
using only n-processes consensus objects and read/write objects. Each
process completes any operation within O(n) of its own steps,
regardless of the behavior of other processes.

Proof
-+ Let C; be the 15" configuration at which p; has expressed its interest to
execute an operation op;.

For each configuration C, max-head(C) is the maximum sequence number
of any entry in the Head array. So, max-head(C) continuously increases.

Let C, be the first configuration after C; at which it holds that
max-head(C,) mod n = i-I"and let C; be the first configuration after C,
at which it holds that max-head(C;) mod n = i+1. The operation of
process p; has been inserted in the linked list by Cs.

Theorem

Any object X with CN(X) = n is universal in a system with at most n
processes.

CS586 - Panagiota Fatourou 20

There are two types of memory unboundedness in the
algorithm:
- the number of records used to represent an object;

- the values of the sequence numbers grow linearly, without
bgqnd, with the number of operations applied to the simulated
object.

We describe a mechanism to control the first type of
unboundedness.

Basic Idea

Recycle the records used for the representation of
the object.

- Each process maintains a pool of records belonging to it;

- for eaclh operation, the process takes some free records from
Its pool;

- A record can be reclaimed if no process is going to access it.

Difficulty

Which of the records already threaded on the list will
not be accessed anymore and can be recycled?

CS586 - Panagiota Fatourou 21

Consider some record r threaded on the list, belonging to
process p;, with sequence number k.

Let p; be a process that may access r.

l'I'hen, p;'s record is threaded with sequence number k+n or
ess.

The processes that may access r are the processes whose
records are threaded as numbers k+1, k+2, ..., k+n on the list.

- Note: These records do not necessarily belong to n different
processes but may represent several operations by the same
process.

We add to opr an array, released/!1.n]of binary variables.

IBce}‘or'e a record is used, all entries of released/]are set to
alse.

If a record has been threaded as nhumber k on the list, then
released|r] = true means that the process whose record was
threaded as number k+r on the list has completed its
operation.

When a process's record is threaded as number k', it sets
released/r] = true in record kK'-r, forr=1,..n.

When released/r] = true for all r=1..,n, then the record can
be recycled.

CS586 - Panagiota Fatourou 22

Algorithm 5: A bounded-space, wait-free universal algorithm with using consensus
objects; code for process p;, O < i ¢« n-1.

Initially Head[j] and Announce[j] point to the anchor record, for all j, 0 < j < n-1;

1. when /nvoccurs: // operation invocation, including parameters
2. let point point to a record in Poo/such that
point—released[1] = ... = point—released[n] = true

and set point—invto inv,
3 for ri=1to ndo point—released|r] := false;
4 Announcefi] := point;
5 for j .= Oto n-1do // find record with highest sequence number
6 if (Head[j]—»seg > Head[i] —»seq)then Head[i] := Head|[j]
7 while (Announce[i]—»seg = 0) do
8 priority := (Head[i] —»seg+1) mod n,
9 if (Announce[priority] —»seq = 0) then point := Announce[priority]
10 else point .= Announce(i];
11 win := decide(Head|[i]—after, point); // try to thread your record
12 win—before := Head[i]:
13 win —new-state, win —response := apply(win—inv, Head|[iJ->new-state),
14 win —»seq := Head|[i] —»seq +1; // point to the record at the head of the list
15, Head[i] := win;

16. temp .= Announceli] —»before;

17 forr:=1tondo //go to n records before
18 if (temp /= anchor) then

19, before-temp := temp—before,

20. temp—released][r] := true, // release record

21 temp := before-temp:

) 23
22. enable the output indicated by Announcef[i]—»response; // operation response

The universal algorithms described so far assumed that
operations on the simulated object are deterministic.

Given the current state of the object and the invocation (the
oger'a‘rion to be applied and its parameters), the next state of the
object, as well as the return value of the operation, are unique.

- Example of non-deterministic object: an object representing an
unordered set with a choose operation returning an arbitrary
element of the set.

Main Ideas on How to Handle Non-Determinism

If we leave the new-state and response fields of the opr record
as read/write objects, it is possible to get inconsistencies as
different processes write new (and possibly different) values
for the new-state of the response fields.

Solution
- We modify the opr record type so that the new state and response
value are stored jointly in a single consensus object.

* We replace the simple writing of new-state and response fields with a
decide operation of the consensus object, using as input the local
computation of a new state and response (using applyg.

CS586 - Panagiota Fatourou 24

Relaxation of Liveness Condition

* The new condition is probabilistic, i.e., it
requires operations to terminate only with
high probability.

* In this way, randomized wait-free simulations
of shared objects are defined.

» Randomized consensus objects can be
implemented from read/write registers.

- Thus:

- there are randomized wait-free simulations of any
object from read/write objects, and

- there is no hier'ar'ch?/ of objects if termination has
to be guaranteed only with high probability.

CS586 - Panagiota Fatourou 25

These slides are based on material that
appears in the following books:

+ H. Attiya & J. Welch, Distributed
Computing: Fundamentals, Simulations

and Advanced Topics, Morgan Kaufmann,
2004 (Chapter 15)

* M. Herlihy, Wait-Free Synchronization,
ACM Transactions on Programming
Languages and Systems, 13(1): 124-149,
1991

CS586 - Panagiota Fatourou 26

End of Section

EMIXEIPHIIAKO NMPOTPAMMA
&) EKTAIAEYEH KAl S BOY MAGHEH S EZMNA
b sresvdugn geny Wotvwvia Tne JVwan 2007'20]3
=] Jwomons a o st]
YNIOYPTEIO MAIAEIAZ & BPHIKEYMATON, NOAITIEMOY & ABAHTIEMOY EvPonalio KOINONIKD TAMEID
E {ikn 'E EIAIKH YNHPEIIA AIAXEIPILHL
BY NC ND opAmcic Eveon

Me tn ouyxpnpatodétnan tne EAAaSag kai e Evpwmalikic Eviwong

The present educational material has been developed as part of
the educational work of the instructor.

The project "Open Academic Courses of the University of
Crete" has only financed the reform of the educational material.

The project is implemented under the operational program
"Education and Lifelong Learning” and funded by the European
Union (European Social Fund) and National Resources

EMIXEIPHLIAKO TPOTPAMMA
e EKMAIAEYZH KAI AlA BIOY MAGHZH A Ez "A

* *
* *
* *

(4

enévdyon aTny Uotvwvia Tne yvien

YNOYPFEIO MAIAEIAL KAI BPHIKEYMATON
EvpwnaikiEvwon EI!AIKH YMHPEZIA AIAXEIPIZHE

Evpwnaiko Kowwviké Tapeio

i

* ok

Me t ouyxpnuarodotnon Tng EAAadag kan tn¢ Evpuwmaikng Evwong

Notes

« The current material is available under the Creative Commons
Attribution-NonCommercial-NoDerivs 4.0[1] International license or
later International Edition. The individual works of third parties are
excluded, e.g. photographs, diagrams etc. They are contained therein and
covered under their conditions of use in the section «Use of Third

Parties Work Note».
(©0e)

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

« As Non-Commercial is defined the use that:

= Does not involve direct or indirect financial benefits from the use of the
work for the distributor of the work and the license holder

= Does not include financial transaction as a condition for the use or access to
the work

= Does not confer to the distributor and license holder of the work indirect
financial benefit (e.g. advertisements) from the viewing of the work on
website

« The copyright holder may give to the license holder a separate license to
use the work for commercial use, if requested.

Copyright University of Crete , Panagiota Fatourou 2015. Panagiota
Fatourou. «Distributed Computing. Section 7: Wait-Free
Simulations of Arbitrary Objects». Edition: 1.0. Heraklion 2015.
Available at:

https://opencourses.uoc.gr/courses/course/view.php?id=359.

Any reproduction or adaptation of the material should
include:

« the Reference Note

« the Licensing Note

« the declaration of Notices Preservation

« the Use of Third Parties Work Note (if is available)
together with the accompanied URLs.

