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Concurrent Pools 
Definition 
• A pool is an object that supports two atomic 

operations: 
– set(): puts an item in the pool 
– get(): removes and returns one of the items of the pool 

• A pool may be bounded or unbounded. 
– Bounded Pool: holds a limited number of items. This 

number is called its capacity. 
– Unbounded Pool: can hold any number of items. 
 

Applications 
• producer-consumer type of applications 

– jobs to perform 
– keystrokes to interpret 
– purchase orders to execute 
– packets to decode, etc. 
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Concurrent Pools 

• Pool methods can be total, partial, synchronous. 
– Total: calls do not wait for certain conditions to 

become TRUE; so, get() (set()) returns an error code 
when the pool is empty (full) 

– Partial: calls may wait for conditions to hold.  
– Synchronous: waits for another method to overlap its 

call interval (i.e., threads rendezvous to exchange 
information).  

• Fairness 
– FIFO -> queue 
– LIFO -> stack 
– Weaker properties 
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An Unbounded Total Queue 
• A sequential queue of   

type T is an ordered  
sequence of items of 
type T. 

• Methods it provides: 
– enq(T x): puts item x at one end of the queue, called the tail 

(enq() implements put()); 
– deq() -> T:  removes and returns the item at the other end of 

the queue, called the head (deq() implements get()). 

• One of the nodes of the queue plays always the 
role of a sentinel node. 

• A deq() method returns an error message if the queue 
is empty. 

• We use two locks, EnqLock and DeqLock, to ensure that 
at most one enqueuer, and at most one dequeuer at a 
time can manipulate the nodes of the queue.  

head tail 

sentinel 
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An Unbounded Total Queue 
 

void enq(T x) { 
    NODE *n = new(NODE); 
    n->value = x; 
    n->next = NULL; 
    lock(TailL); 
    Tail->next = n; 
    Tail = n; 
    unlock(TailL); 
} 

T deq(void) { 
    T result; 
    lock(HeadL); 
    if (Head->next == NULL)  
         result = EMPTY_QUEUE; 
    else { 
         result = Head->next->value; 
         Head = Head->next; 
    } 
    unlock(HeadL); 
    return result; 
}  

typedef struct node {        
   T value;        // initially, there is a sentinel node in the queue where  

    struct node *next;          // Head and Tail point to. 

} NODE;           // the sentinel is not always the same node 

          // initially, HeadL = TailL = FREE 

shared NODE * Head, *Tail;     

head tail 

sentinel 
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An Unbounded Total Queue 

• The algorithm cannot deadlock since each process 
acquires only one lock. 

• An item is actually enqueued, when the enq() call sets 
the last node’s next field to the new node, even 
before enq() resets Tail to point to the new node. 

• The first and last nodes of the queue are not 
necessarily those pointed to by Head and Tail, 
respectively! 
– the actual first node is the successor of the node pointed to 

by Head. 
– the actual last node is the last item reachable from the 

Head. 
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An Unbounded Lock-Free Queue 

typedef struct node { 
T value ; 

 struct node *next ; 
 } NODE; 
 
typedef struct queue { 
 NODE *Head ; 
 NODE *Tail ; 
} QUEUE ; 
 
 void init(QUEUE *Q) { 
  NODE *p = new(NODE) ; 
                 // sentinel node 
  p->next = NULL; 
  Q->Head = Q->Tail = p ; 
} 

•  The first node in the queue is a sentinel 
   node, whose value is meaningless. 

•  Init() is called once before the beginning  
   of the execution (e.g., by the system).  

•  Enq() is lazy: it takes steps in two distinct 
   steps.  

•  Threads may need to help one another to 
   ensure lock-freedom. 
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An Unbounded Lock-Free Queue 

void enq(QUEUE *Q, T value ) { 

   NODE *next , *last ; 
 
1.    NODE *p = newcell(NODE) ;  
2.    p->value = value ;  
3.    p->next = NULL;  
 
4.     while (TRUE) {   // keep trying until enq() is done 

5.         last = Q->Tail ;    // read Tail 

6.         next = last->next ;   // read next node of last 

7.         if (last == Q->Tail) {  // are last and next consistent? 

8.             if (next == NULL) {  // was Tail pointing to the last node? 

9.                 if (CAS(last->next , next , p)   // try to link new node at the end of the list 

10.         break ; 
                } 
11.            else CAS(Q->Tail, last, next ) ; // tail was not pointing to last node; try to advance 

            } // if 
       } // while 
12.   CAS(Q->Tail, last, p ); // equeue is done -> try to swing Tail to the inserted node 

} // Enqueue 

Short Description of enq(): 
1. Create a new node and initialize it (lines 1-3) 
2. Locate the last node in the queue (lines 5-6) 
3. Call CAS() to append the new node (line 11) 
4. Call CAS() to change the queue’s Tail from 

the prior last node to the current last node 
(line 12). 
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An Unbounded Lock-Free Queue 
boolean deq(QUEUE *Q, T *pvalue) { 
    NODE *first, *last, *next; 
 
13.    while (TRUE)   //  keep trying until deq() is done 

14.        first = Q->Head;            // read Head 

15.        last = Q->Tail;            // read Tail 

16.        next = first->next;    
17.        if (first == Q->Head) {         // are first and next still consistent? 

18.             if (first == last) {          // is queue empty or Tail falling behind? 

19.                    if (next == NULL)         // is queue empty? 

20.                return FALSE;   
21.                    CAS(Q->Tail, last, next);    // tail is falling behind -> try to advance it 

                  } 
22.             else {          // no need to deal with Tail 

23.                   *pvalue = next->value;  // read value to return 

24.                   if (CAS(Q->Head, first, next))    // try to swing Head to the next node 

25.                  break;  
                  } // else                 //   deq() is done, so exit loop 

            }  // if 
       }  // while 
26.  return TRUE;            // queue was not empty, so deq() suceeded 

} // Dequeue 

head tail 
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An Unbounded Lock-Free Queue 

• An enq() is linearized at the point where the 
CAS of line 9 is successfully executed (by the 
initiator of enq() or by any of its helpers). 

• A deq() is linearized as follows: 
– If it returns a value, it is linearized when it 

performs a successful CAS at line 24; 
– otherwise, it is linearized at line 16. 

• Lemma 1: The linearization point of each 
operation (enq() or deq()) is within the 
execution interval of the operation. 

• Proof: It follows by the definition of the 
linearization points. 
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An Unbounded Lock-Free Queue 

• Lemma 2: The following properties hold: 
1. The list is always connected. 
2. Nodes are only inserted after the last node in the list. 
3. Nodes are only deleted from the beginning of the list. 
4. Head always points to the first node in the list. 
5. Tail always point to a node in the linked list.  

• Proof: By induction on the number of steps performed. Left as 
an exersice! 
 

• Lemma 3: The sequential execution defined by the linearization 
points is legal. 

• Intuition for the Proof: The linearization point of an operation 
reflects the point at which the operation takes effect.  

• The queue variables always reflect the state of the queue; they 
never enter a transient state in which the state of the queue can 
be mistaken. 

• Theorem 4: The above algorithm is a linearizable lock-free 
implementation of an unbounded queue.  
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The ABA Problem 

head tail 

sentinel 

A B 

Thread 0 Thread 1 
boolean deq(Queue *Q, int *pvalue) { 
    Node *first, *last, *next; 
    while (1) { 
       first = Q->Head;  
       last = Q->Tail;  
       next = first->next;  
       if (first == Q->Head) { 
           if (first == last) { 
                  if (next == NULL)  
  return FALSE; 
                  CAS(Q->Tail, last, next);  
           } 
           else { 

                *pvalue = next->value;  B 

 
 
 
 
 
              
               if (CAS(Q->Head, first, next)) break;  
     } 
     return TRUE;   INCORRECT! 

 

 

 

 

 

 

 

 

 

 

 

 

 

deq()  

enq(A') 

deq() 

enq(B’) 

 head tail 
sentinel 

A’ B’ 

1024 2056 

1024 2056 
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An Unbounded Lock-Free Queue 
Implementation 

typedef struct 
    pointer_with_counter { 
 struct node *ptr; 
 unsigned int count; 
} PointerWithCounter; 
 
struct node { 
 T value; 
 PointerWithCounter next; 
} Node; 
 

struct queue { 
 PointerWithCounter Head; 
 PointerWithCounter Tail; 
} Queue; 
 
void Initialize(Queue *Q) { 
1       Node  *p = new(Node);   
2       p->next.count = 0; 
3       p->next.prt = NULL;   
4       Q->Head = Q->Tail = <p,0>; 
} 
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An Unbounded Lock-Free  
Queue Implementation 

void Enqueue(Queue *Q, T value) { 
5    Node *p = new(Node);        // allocate a new node 

6    PointerWithCounter next, last; 
7   p->value = value;                        
8   p->next = <NULL,0>;   
9   while (1) { 
10       last = Q->Tail; // read Tail.ptr and Tail.count together 

12       next = last.ptr->next;   // read next.ptr and next.count 
14       if (last == Q->Tail) {      // are last and next still consistent? 
15             if (next.ptr == NULL) {             // is last pointing to the last node? 
16                     if (CAS(last.ptr->next, next, <p,next.count+1>) 
17                           break;         // enqueue is done- > exit loop 
                } 
18            else CAS(Q->Tail, last, <next.ptr, last.count+1>); 
                    // Tail was not pointing to the last node->try to advance 
           }  // if 
     }   // while 
19 CAS(Q->Tail, last, <p, last.count+1>);  
      // enqueue is done -> swing Tail to the inserted node 
}  // Enqueue 

typedef struct 
    pointer_with_counter { 
 struct node *ptr; 
 unsigned int count; 
} PointerWithCounter; 
 
struct node { 
 int value; 
 PointerWithCounter next; 
} Node; 

P.Fatourou, CS586 - Distributed Computing 



An Unbounded Lock-Free  
Queue Implementation 

boolean Dequeue(Queue *Q, T *pvalue) { 
    PointerWithCounter first, last, next; 
20   while (1) { 
21       first = Q->Head;     // read Head.ptr and Head.count 
22       last = Q->Tail;        // read Tail.ptr and Tail.count 
23       next = first.ptr->next;  // read next.ptr and next.count 
24       if (first == Q->Head) {   // are first, last, next still consistent?   
25            if (first.ptr == last.ptr) {   // is queue empty or Tail falling behind? 
26                  if (next.ptr == NULL) return FALSE; 
27                        CAS(Q->Tail, last, <next.ptr, last.count+1>);  // tail is falling behind; 
              // TryAdvance 
               } 
28           else { 
29                *pvalue = next.ptr->value;    // read before CAS 
30                if (CAS(Q->Head, first, <next.ptr, first.count+1>))  // swing Head to next node 
31                    break; 
               } // else 
           }  // if 
       }  // while 
// free (first.ptr) -> erroneous since a process may be poised to execute line 23 
// this step would then cause a segmentation fault! 
33   return TRUE; 
} // Dequeue 

typedef struct 
    pointer_with_counter { 
 struct node *ptr; 
 unsigned int count; 
} PointerWithCounter; 
 
struct node { 
 int value; 
 PointerWithCounter next; 
} Node; 
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A Synchronous Queue Implementation  
Dual Data Structures 

Major Ideas - Enqueue()  

• If there are no dequeue() requests in the queue: 
1.  Places a reservation struct in the queue, indicating that the  

  enqueuer is waiting for a dequeuer with which to rendezvous 

2. Spins on a flag in the reservation struct 

• Later, a dequeuer that discovers the reservation struct 
of the enqueuer fulfills the request by withdrawing the 
enqueuer’s item and setting the flag field of the 
enqueuer’s reservation struct. 

 

Dequeue() works similarly. 
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A Synchronous Queue Implementation  
Dual Data Structures 

Properties 
• Waiting threads can spin on a locally cached flag 
• Reservations are queued in the order they arrive, 

ensuring that requests are fulfilled in the same 
order. 

• The implementation ensures linearizability, since 
each partial method call can be ordered when it is 
fulfilled. 

 
Dual Data Structure  
• The methods take effect in two stages:  

– reservation, and  
– fulfillment.  
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A Synchronous Queue Implementation 
#define ITEM 0 
#define RESERVATION 1 
 
typedef struct node { 
      boolean type; // a struct may represent either an item waiting to be dequeued  
                              // or a reservation waiting to be fulfilled 
   // at any point in time, all nodes of the queue have the same type 
      T value; // value of item  

                        // it changes to NULL when the item is dequeued 
   // when the struct represents a dequeue reservation is NULL 
                              // resets to the response when deq() occurs 
       struct node *next; 
} NODE; 
 
NODE *Head, *Tail; 
 
void InitializeSynchronousQueue(void) {  // executed only once at the beginning of the execution 

     NODE * sentinel = newcell(NODE); 
     sentinel->type = ITEM; 
     sentinel->next = NULL; 
     Head = Tail = sentinel;  
} 
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A Synchronous Queue Implementation 
void enq(T x) { 
 boolean success;    

NODE *last, *first, *next;  
 
NODE *p = newcell(NODE); 

 p->type = ITEM;  p->value = x; p->next = NULL; 
 while (TRUE) {                  // keep trying until enq() is done 
          last = Tail; first = Head;                // read Head and Tail 
      if (last == first  ||  last->type == ITEM) {               // is the queue empty? 
                      // or does it contain only items? 
  next = last->next;                 // read next node of last 
  if (last == Tail) {                 // is last and next still consistent? 
       if (next != NULL)  CAS(Tail, last, next);            // try to advance Tail 
       else if (CAS(last->next, next, p)) {               // try to insert the new item at the end 
   CAS(Tail, last, p);                // try to swing Tail to the inserted node 
   while (p->value == x) noop;               // spin while no rendezvous occur 
   first = Head;                // re-read Head 
   if (p == first->next) CAS(Head, first, p); // am I the first struct in the queue? 
   return; 
       } 
  } 
      } 
      else {   // the queue contains deq reservations to rendezvous 
  next = first->next;  // read next node of first 
  if (last != Tail  ||  first != Head  ||  next == NULL)  // if last & first are not consistent any more  
            continue;  // or if there are no items in the list start from scratch 
  success = CAS(next->value, null, x);  // try to rendezvous 
  CAS(Head, first, next);   // try to advance Head  
  if (success) return;  // if rendezvous successful return TRUE;  
      }    // otherwise false. 
 } 
} P.Fatourou, CS586 - Distributed Computing 



An Unbounded Lock-Free Stack 

• A stack of type T is a collection of 
items of type T. The stack provides two 
operations push(x) and pop() satisfying 
the last-in-first-out property: the last 
item pushed is the first poped. 
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An Unbounded Lock-Free Stack 

#define MIN 5 
# define MAX 15 
 
boolean TryPush(NODE *n) { 
 NODE * oldTop = Top; 
 n->next = oldTop; 
 if (CAS(Top, oldTop, n)) 
  return TRUE; 
 else return FALSE; 
} 
 
void push(DATA x) { 
 NODE *n = newcell(NODE); 
 n->value = x; 
 while (TRUE) { 
  if (tryPush(n)) return; 
  else Backoff(MIN,MAX); 
 } 
} 

NODE *TryPop(void) { 

 NODE *oldTop = Top; 

 NODE * newTop; 

 if (oldTop == NULL)  

           return EMPTY_STACK; 

 newTop = oldTop->next; 

 if (CAS(Top, oldTop, newTop)) 

  return oldTop; 

 else return NULL; 

} 
 

T pop(DATA x) { 

 NODE *rn; 

 while (TRUE) { 

      rn = TryPop();  

           if (rn == EMPTY_STACK)  

                 return EMPTY_STACK; 

      if (rn != NULL)  

      return rn->value; 

      else Backoff(MIN,MAX); 

 } 
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An Unbounded Lock-Free Stack 

• The linearization point of a push() operation is placed 
at the point that the successful CAS of TryPush() 
occurs for this push().  

• The linearization point of a pop() operation that 
returns a value of type T is placed at the point that 
the successful CAS of TryPop() occurs for this Pop(). 

• If the Pop() returns EMPTY_CODE, its linearization 
point is placed at the point that it reads Top in 
TryPop().  

• Theorem: The above algorithm is a linearizable, non-
blocking implementation of an unbounded stack. 
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Elimination 

• The stack implementation scales poorly: 
– operations can proceed only one after the other, ordered by 

successful CAS calls applied to the stack’s top field.  
– Stack’s top field is a source of contention. 

• exponential back-off significantly helps in solving this problem 
 

Main Idea to make the stack parallel 
• if a push() is immediately followed by a pop(), the two 

operations cancel out, and the stack’s state does not 
change.  

• Cause concurrent pairs of pushes and pops to cancel: 
threads calling push() exchange values with the 
threads calling pop(), without ever modifying the 
stack itself.  
– We then say that the two calls eliminate one another.  
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Elimination 
• Threads eliminate one another through an EliminationArray in 

which threads pick random array entries to try to meet 
complementary calls.  
 
 
 
 
 
 

 
 

 
• The EliminationArray can be used as a backoff scheme on a 

shared lock-free stack.  
– First, each process accesses the lock-free stack. 
– If it fails to complete its operation, it attempts to eliminate it using 

the array instead of simply backing-off.  
– If it fails to eliminate, then it accesses the lock-free stack again. 

• This structure is called Elimination-BackOff Stack. 

P.Fatourou, CS586 - Distributed Computing 

Figure 11.5: M. Herlihy and 

N. Shavit, The Art of 

Multiprocessor 

Programming, Morgan 
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The Elimination BackOff Stack 
Main Ideas 
• Allow threads with pushes and pops to coordinate and cancel 

out. 
• Avoid a situation where an operation (push() or pop()) matches 

with more than one other operations. 
• An exchanger is an object that allows exactly two threads to 

rendezvous and exchange values.  
– The first process that arrives writes its value and spins until a 

second process arrives. 
– The second process detects that the first is waiting, reads its 

value, and “signals” the exchange.  
– Both processes have now read the other’s value, so they can 

return. 
– The call of the first process may timeout, allowing it to leave the 

exchanger. 
• Processes should spin rather than block in the exchanger, since 

we expect them to wait only for very short durations.  
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A Lock-Free Exchanger #define EMPTY  1 
#define WAITING 2 
#define BUSY 3 
 
T exchange(shared <T,int> slot, T myitem, long timeout) {   
    long timeBound = getnanos() + timeout; 
1.    while (TRUE) { 
2.          if (getnanos() > timeBound) return TIMEOUT;  // if it is time for timeout, leave the exchanger 
3.          <youritem, state> = slot; 
4.          switch(state) { 
5.               case EMPTY:  // try to place your item in the slot and set state to WAITING 
6.        if (CAS(slot, <youritem, EMPTY>, <myitem, WAITING>)) { // if this is done successfully 
7.   while (getnanos() < TimeBound) {  // spin until it is time for timeout 
8.    <youritem,state> = slot;   // read slot 
9.    if (state == BUSY) { slot = <null, EMPTY>;     // if the exchange is complete 
10.                  return youritem; } // return the other process’s 

item 
   }  
       // if no other thread shows up 
11.                   if (CAS(slot, <myitem, WAITING>, <null, EMPY>)) {  // reset the state of slot to EMPTY 
12.    return TIMEOUT;  // if this is done successfully, leave the exchanger 
13.         } else {    // some exchanger process must have shown up 
14.    <youritem, state> = slot; // complete the exchange, by reading slot, 
15.    slot = <null, EMPTY>;  // changing slot’s state to EMPTY, 
16.    return youritem;  // and returning the item of the other process 
         } 
        } 
18.        break; 
19.          case WAITING:   // some thread is waiting and slot contains its item 
20.      if (CAS(slot, <youritem, WAITING>, <myitem, BUSY>)) // replace the item with your own 
21.            return youritem;             // and return the item of the other process 
22.      break; 
23.        case BUSY:    // two other threads are currently using the slot 
24.      break;    // the process must retry 
         } // switch 
    } // while 
} 
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• The exchanger implementation allows the inserted 
item to be null. 

Linearization Points 
• For a successful exchange: when the 2nd process to 

arrive changes the state from WAITING to BUSY. 
– At this point both exchange() calls overlap and the exchange 

is committed to be successful 

• For an unsuccessful exchange:  
– If exchange() returns in line 2, then linearization point at 

return.  
– If it returns in line 12, then linearization point at the point 

that the CAS of line 11 is executed. 

• The algorithm is lock-free because overlapping 
exchange() calls with sufficient time to exchange will 
fail only if other exchangers are repeatedly 
succeeding. 

A Lock-Free Exchanger 
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The Elimination Array 
• The EliminationBackoffStack uses an elimination 

array, called exchanger[] with CAPACITY number of 
elements, where CAPACITY is some parameter to the 
algorithm.  

• Each element of the elimination array is a shared 
variable storing a pair <T, state>, where  
state  {EMPTY, WAITING, BUSY}. 

• Each element of exchanger[] is initially <null, EMPTY>. 
 

Code for Accessing the Elimination Array 
T visit(T value, int range, long duration) { 
 int el = randomnumber(range); 
 return (exchange(exchanger[el], value, duration)); 
} 
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The EliminationBackOff Stack 
void push(T x) { 
      int range; 
      long duration; 
 
      NODE *nd = newcell(NODE); 
      nd->value = x; 
 

while (TRUE) { 
 if (tryPush(nd)) return; // if you managed to push x successfully, return 

 else {   // try to use the elimination array, instead of backing-off 

       range = CalculateRange();  // choose the range parameter 

       duration = CalculateDuration(); // choose the duration parameter 

       otherValue = visit(x, range, duration); // call visit with input value as argument 

         if (otherValue == NULL) {   // check whether the value was exchanged with a pop() method 

  RecordSuccess();        // if yes, record success 

  return; 
       } 
       else if (otherValue == TIMEOUT)  // otherwise,  

  RecordFailure();           // record failure 

 } 
      } 
} 
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The Elimination BackOff Stack 

T pop(void) { 
       NODE *returnNode; 
       while (TRUE) { 
 returnNode = TryPop();  // try to pop 

 if (returnNode == EMPTY_STACK) // if stack is empty, return EMPTY_CODE 

       return EMPTY_STACK;  

 if (returnNode != NULL)   // if tryPop() was successful, return the poped value 

       return returnNode->value; 
 range = CalculateRange();  // choose the range parameter 

 duration = CalculateDuration(); // choose the duration parameter 

 otherValue = visit(NULL, range, duration); // call visit with input value as argument 

   if (otherValue != NULL) {   // check whether the value was exchanged with a push() method 

       RecordSuccess();        // if yes, record success 

       return otherValue; 
 } 
 else if (otherValue == TIMEOUT)  // otherwise,  

       RecordFailure();           // record failure 

       } 
} 
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The Elimination BackOff Stack 
Range of the Elimination Array 
• Smaller range -> greater chance of a successful 

collision when there are few threads 
• Larger range -> lowers the chances of threads waiting 

on a busy Exchanger 
• If few threads access the array, they should choose 

smaller ranges! 
• As the number of threads increases, so should the 

range! 
Dynamic Mechanism to control the range 
• Record successful exchanges and timeout failures. 
• Shrink the range as the number of failures increases 

and vice versa.  
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The Elimination BackOff Stack 

Linearizability 
• Any successful push() and pop() that completes by 

accessing the lock-free stack can be linearized at the 
point of its LockFreeStack access. 

• Any pair of eliminated push() and pop() can be linearized 
when they “collide”. 
– The operations completed through elimination do not affect the 

linearizability of those completed in the LockFreeStack, 
because they could have taken effect in any state of the 
LockFreeStack, and having taken effect, the state of the 
LockFreeStack would not have changed. 

Performance 
• Comparable to LockFreeStack at low loads. Why? 
• What happens as the load increases? 
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Shared Lists 

A simple sorted linked-list 
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Synchronization Problems when Accessing 
Shared Lists 

Insertion of node with key 20 and concurrent deletion of node with key 30  
in the list  

Concurrent deletion of nodes with keys 10 and 30 from the list 
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Linked Lists 
Coarse-Grained Synchronization 
• Take a sequential implementation of the operation, add a lock, and ensure that 

each operation starts by acquiring the lock and ends by releasing it. 
 

Fine-grain Synchronization 
• Split the object into several independently synchronized components and ensure 

that operations interfere only when trying to access the same component at the 
same time. 
 
 

Optimistic Synchronization 
• Search without acquiring any locks. If the operation finds the sought-after 

component, it locks that component, and then validates (i.e., it checks whether 
the component is still reachable from the beginning of the list, and that it has 
not changed). 

– it is good only if validation succeeds more often than it fails. 
 

Lazy Synchronization 
• “Postpone the hard work for later”: removing an element of a data structure can 

be split in two phases: 
– logically  remove the element by marking it 
– physically remove the element by unlinking it from the rest of the data structure 

 

Nonblocking Synchronization 
• Eliminate locks entirely, relying on built-in atomic operations such as CAS or 

LL/SC for synchronization. 
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Linked Lists 

• A set supports the following three operations: 
– insert(int key, T x): insert x of type T to the set; 

returns TRUE if x is inserted and FALSE if x is 
already in the set 

– delete(int key): delete key from the set; returns 
TRUE if key is deleted, and FALSE if key is not in 
the set 

– search(int key): search for key and return TRUE if 
it is in the set and FALSE otherwise. 

• An operation is called successful if it returns 
TRUE and unsuccessful if it returns FALSE. 
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Linked Lists 
• We implement a set as a 

linked list of nodes. 
• The list contains regular 

nodes and two sentinel 
nodes, called head and tail, 
that point to the first and 
last element of the list, 
respectively. 

• Sentinel nodes are never 
inserted or deleted; the 
key of head is MININT 
and the key of tail is 
MAXINT. 

• The list is sorted in key 
order. 

• Each process p uses two 
pointers, currp and predp to 
traverse the list; currp 
points to the current node 
accessed in the list and 
predp to its previous node. 

typedef struct node { 
 T value; 
 int key; 
 NODE *next; 
} NODE; 
shared Lock lc;   // initially, free 

shared NODE *head, *tail;  
// initially, head points to a dummy node with key  
// equal  to MININT and tail points to a dummy  
// node with key  equal to MAXINT 

boolean search(int key) { 
     NODE *curr; boolean result; 
 

     lock(lc); 
     curr = head; 
     while (curr->key < key)  
 curr = curr->next;  
     if (key == curr->key) result = TRUE; 
     else result = FALSE; 
     unlock(lc); 
     return result; 
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Linked Lists – Coarse Grained Synchronization 
boolean insert(int key, T x) { 
// code for process p 
     Node *pred, *curr;  
     boolean result; 
 
     lock(lc); 
     pred = head; 
     curr = pred->next; 
     while (curr->key < key) { 
 pred = curr; 
 curr = curr->next;  
     } 
     if (key == curr->key) result = FALSE; 
     else { 
          NODE *node = newcell(NODE); 
          node->next = curr;  
          node->value = x; node->key = key; 
          pred->next = node; 
          result = TRUE; 
     } 
     unlock(lc); 
     return result; 
} 

boolean delete(int key) { 
    // code for process p 
    Node *pred, *curr; 
    boolean result; 
 
    lock(lc); 
     pred = head; 
     curr = pred->next; 
     while (curr->key < key) { 
 pred = curr; 
 curr = curr->next;  
     } 
     if (key == curr->key) { 
 pred->next = curr->next; 
 result = TRUE; 
     } 
     else result = FALSE; 
     unlock(lc); 
     return result; 
} 
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Linked Lists – Coarse Grained Synchronization 

• The algorithm is obviously correct. 
– The linearization point for each operation is placed 

at the point that the operation acquired the lock. 

• The implementation satisfies the same 
progress condition as the lock implementation 
it employs.  

• If contention is low, the performance of the 
algorithm is ok. 

• If contention is high, the algorithm performs 
poorly since parallelism is restricted. 
– processes are delayed waiting for one another. 
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Linked Lists – Fine Grained Synchronization 

• Each node is associated with its 
own lock. 

• As a process traverses the list, 
it locks each node when it first 
visits it, and then at some later 
point it may release the lock. 

• Locks are acquired as follows: 
– While holding the lock of the 

node pointed to by predp, acquire 
the lock of the node pointed to 
by currp, and then release the 
lock of the node pointed to by 
predp. 

– This is called hand-over-hand 
locking or lock coupling. 

• It is not safe to unlock predp 
before acquiring the lock to currp 
since currp may have been 
deleted until its lock is acquired. 

• To avoid deadlocks, the locks 
should be acquired in the same 
order by each process. 

Why delete() must acquire two locks. 
Why hand-over-hand locking is required. 

typedef struct node { 
       T value; int key; Lock lock; NODE *next; 
} NODE; 
 
boolean search(int key) { 
     NODE *curr, *pred; boolean result; 
 
     lock(head->lock); 
     pred = head; 
     curr = pred->next; 
     lock(curr->lock); 
     while (curr->key < key) { 
                unlock(pred->lock); 
                pred = curr; 
                curr = curr->next;  
                lock(curr->lock); 
     } 
     if (key == curr->key) result = TRUE; 
     else result = FALSE; 
     unlock(pred->lock); unlock(curr->lock); 
     return result; 
} P.Fatourou, CS586 Distributred Computing 
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Linked Lists – Fine Grained Synchronization 

boolean insert(int key, T x) { // code for process p 
     Node *pred, *curr; boolean result; 
 
     lock(head->lock); 
     pred = head; 
     curr = pred->next; 
     lock(curr->lock); 
     while (curr->key < key) { 
                unlock(pred->lock); 
 pred = curr; 
                curr = curr->next;  
 lock(curr->lock); 
     } 
     if (key == curr->key) result = FALSE; 
     else { 
          NODE *node = newcell(NODE); 
          node->next = curr;  
          node->value = x; node->key = key;  
          pred->next = node; 
          result = TRUE; 
     } 
     unlock(pred->lock); 
     unlock(curr->lock); 
     return result; 
} 

boolean delete(int key) { 
    // code for process p 
    Node *pred, *curr; 
    boolean result; 
 
    lock(head->lock); 
     pred = head; 
     curr = pred->next; 
     lock(curr->lock); 
     while (curr->key < key) { 
 unlock(pred->lock); 
 pred = curr; 
               curr = curr->next;  
 lock(curr->lock); 
     } 
     if (key == curr->key) { 
 pred->next = curr->next; 
 result = TRUE; 
     } 
     else result = FALSE; 
     unlock(pred->lock); 
     unlock(curr->lock); 
     return result; 
} 
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Linked Lists – Fine Grained Synchronization 

Linearizability 
• A successful insert(k, x) is linearized when the node 

with the next higher key is locked. 
• An unsuccessful insert(k, x) is linearized when the 

node with key k is locked. 
• Similar rules apply for delete. 
• Linearization points for search -> when the node with 

key k (if any) or with the next higher key (if not) is 
locked. 

Progress 
• The algorithm is starvation-free, assuming that all 

individual locks are starvation-free.  
– Deadlock is not possible. 
– If a process p attempts to lock head, it eventually succeeds.  
– Eventually, all locks held by other processes will be released 

and p will manage to lock predp and currp. 
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Linked Lists – Optimistic Synchronization 

Main Ideas 
• Search without acquiring 

locks 
• Lock the nodes found 
• Confirm that the locked 

nodes are correct. 
– Use some form of validation. 
– Guarantee freedom from 

interference. 

typedef struct node { 
 T d; 
 int key; 
 Lock lock; 
 NODE *next; 
} NODE;   
shared NODE *head, *tail;  

boolean search(int key) { 
     NODE *curr; boolean result; 
 
     while (TRUE) { 
         pred = head; curr = pred->next; 
         while (curr->key < key) { 
 pred = curr; curr = curr->next; 
         } 
         lock(pred->lock); lock(curr->lock); 
         if (validate(pred, curr) == TRUE) { 
             if (key == curr->key) result = TRUE; 
             else result = FALSE; 
             return_flag = 1; 
         } 
         unlock(pred->lock); unlock(curr->lock); 
         if (return_flag) return result; 
     } 
} 

boolean validate(NODE *pred, NODE *curr) { 
    NODE *tmp = head; 
     
    while (tmp->key <= pred->key) { 
       if (tmp == pred)  { 
            if (pred->next == curr) return TRUE; 
            else return FALSE; 
       } 
       tmp = tmp->next; 
    } 
    return FALSE; 
} 
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Linked Lists – Optimistic Synchronization 
boolean insert(int key, T x) {      // code for process p 
     Node *pred, *curr;  
     boolean result;  
     boolean return_flag = 0; 
 
     while (TRUE) { 
         pred = head;   curr = pred->next; 
         while (curr->key < key) { 
 pred = curr; 
                curr = curr->next;  
         } 
         lock(pred->lock); lock(curr->lock); 
         if (validate(pred, curr) == TRUE) { 
              if (key == curr->key) {  
                  result = FALSE; return_flag = 1; 
              } 
              else { 
                  NODE *node = newcell(NODE); 
                  node->next = curr;  
                  node->value = x; node->key = key;  
                  pred->next = node; 
                  result = TRUE; return_flag = 1; 
              } 
         } 
         unlock(pred->lock); unlock(curr->lock); 
         if return_flag) return result; 
    } 
} 

boolean delete(int key) { 
    // code for process p 
    Node *pred, *curr; 
    boolean result; boolean return_flag = 0; 
 
    while (TRUE) { 
          pred = head;  curr = pred->next; 
          while (curr->key < key) { 
 pred = curr; 
               curr = curr->next;  
          } 
          lock(pred->lock); lock(curr->lock); 
          if (validate(pred, curr)) { 
               if (key == curr->key) { 
      pred->next = curr->next; 
      result = TRUE; 
 } 
               else result = FALSE; 
               return_flag = 1; 
          } 
          unlock(pred->lock); unlock(curr->lock); 
          if (return_flag == 1) return result; 
     } 
}   
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Linked Lists – Optimistic Synchronization 
• Validation is necessary. 
• Each operation may  

traverse nodes that  
have been deleted  
from the list.  
If a process follows  
the next fields  
of deleted nodes,  
it will eventually return to some node of the list. 

• Garbage collection should be done with care. 
• The algorithm is not starvation-free, even if all nodes’ 

locks are starvation-free.  
• The implementation works well if the cost of traversing 

the list twice without locking is significantly less than the 
cost of traversing the list once with locking. 

• Search() requires to get locks  
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Figure 9.15: M. Herlihy and N. Shavit, The Art of Multiprocessor 
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Linked Lists – Lazy Synchronization 
Main Ideas 
• We add in each node a 

boolean marked field which 
indicates whether this node 
is in the set. 

• Traversals do not lock and do 
not validate. 

• Insert() locks the target’s 
predecessor and adds the 
new node. 

• Delete is realized in two 
steps: 
– mark the node as deleted 
– physically remove the node 

typedef struct node { 
 T d; 
 int key; 
 boolean marked; 
 Lock lock; 
 NODE *next; 
} NODE;   
shared NODE *head, *tail;  

boolean search(int key) { 
     NODE *curr;  
     boolean result; 
 
     curr = head; 
     while (curr->key < key)  
 curr = curr->next; 
     if (curr->marked !=TRUE  
                          && key==curr->key)  
         return TRUE; 
     else return FALSE; 
} 

boolean validate(NODE *pred, NODE *curr) { 
     if (pred->marked == FALSE &&  
          curr->marked === FALSE &&  
          pred->next == curr) return TRUE; 
     else return FALSE; 

} 
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Linked Lists – Lazy Synchronization 
boolean insert(int key, T x) {      // code for process p 
     Node *pred, *curr;  
     boolean result;  
     boolean return_flag = 0; 
 
     while (TRUE) { 
         pred = head;   curr = pred->next; 
         while (curr->key < key) { 
 pred = curr; 
                curr = curr->next;  
         } 
         lock(pred->lock); lock(curr->lock); 
         if (validate(pred, curr) == TRUE) { 
              if (key == curr->key) {  
                  result = FALSE; return_flag = 1; 
              } 
              else { 
                  NODE *node = newcell(NODE); 
                  node->next = curr;  
                  node->value = x; node->key = key;  
                  pred->next = node; 
                  result = TRUE; return_flag = 1; 
              } 
         } 
         unlock(pred->lock); unlock(curr->lock); 
         if return_flag) return result; 
    } 
} 

boolean delete(int key) { 
    // code for process p 
    Node *pred, *curr; 
    boolean result; boolean return_flag = 0; 
 
    while (TRUE) { 
          pred = head;  curr = pred->next; 
          while (curr->key < key) { 
 pred = curr; 
               curr = curr->next;  
          } 
          lock(pred->lock); lock(curr->lock); 
          if (validate(pred, curr)) { 
               if (key == curr->key) { 
      curr->marked = TRUE; 
      pred->next = curr->next;  
      result = TRUE; 
  } 
               else result = FALSE; 
               return_flag = 1; 
          } 
          unlock(pred->lock); unlock(curr->lock); 
          if (return_flag == 1) return result; 
     } 
}   
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Linked Lists – Lazy Synchronization 

• We say that an item is in the set, if, and only if it is referred to 
by an unmarked reachable node. 

• Lemma: Any unmarked reachable node remains reachable even if 
its predecessor is logically or physically deleted. 

• Insert() and delete() are not starvation-free since list traversals 
may be arbitrarily delayed by ongoing modifications. 

Linearization Points 
• Insert():  

– Successful: when pred->next changes to point to node. 
– Unsuccessful: at the point that it acquires the lock to curr for the 

last time. 
• Delete() 

– Successful: when the mark is set. 
– Unsuccessful: at the point that it acquires the lock to curr for the 

last time. 
• Search() 

– Successful: when an unmarked matching node is found. 
– Unsuccessful: Can we linearize an unsuccessful search when it 

detects that the node it is looking for is marked?  
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Linked Lists – Lazy Synchronization 

An unsuccessful search() is linearized at the earlier of the following 
points: 

1. the point where a removed matching node, or a node with key 
greater than the one being searched is found, and 

2. the point immediately before a new matching node is inserted to 
the list. 
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Linked Lists – Non-blocking Synchronization 

typedef struct node { 
             int key; 
         struct node *next; 
} NODE; 
 
 

NODE *head *tail; 
 

void InitializeList() { 
        head = newcell (NODE); 
        tail = newcell (NODE); 
        head->next = tail; 
        head->key = MININT; 
        tail->next = NULL; 
        tail->key = MAXINT; 
} 

Main Ideas 

• The node’s next and marked fields are  
  treated as a single atomic unit: 
  any attempt to update the next field  
  when the marked field is TRUE will fail. 

• Implement the marked field by “stealing”  
  a bit from the next pointer. 

get_unmarked_reference(NODE *r)  
// checks if r is marked. If yes, it returns  
// the unmarked version f r. If no, it returns r 

get_marked_reference(NODE *r) 
// checks if r is marked. If yes, it returns r;  
// otherwise, it returns the marked version of r.  

is_marked_reference(NODE *r)  
// returns TRUE if r is marked; FALSE otherwise 
 

 None of these routines changes the value of the pointer! 
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Non-blocking  
Synchronization 

NODE *search (int search_key, NODE **left_node) {  
NODE *left_node_next, *right_node;  
search_again:  
          do {  
(1)          NODE *t = head;  
(2)          NODE *t_next = head->next;  
(3)          do {  
(4)                 if (!is_marked_ref(t_next))  {  
(5)               (*left_node) = t;  
(6)               left_node_next = t_next;  

              }  
(7)         t = get_unmarked_ref(t_next);  
(8)         if (t == tail) break;  
(9)         t_next = t->next;  
(10)         } while (is_marked_ref (t_next) || (t->key < search_key));       /*B1*/  
 
(11)         right_node = t;  
(12)         if (left_node_next == right_node) {          // notice that if left_node_next were marked,  

                                                                                     // this condition would evaluate to FALSE 
(13)                 if (is_marked_ref (right_node->next))   
(14)                       goto search_again;      /* G1 */ 
(15)                 else return right_node;      /* R1 */ 
(16)          } 
(17)          if (CAS (&(left_node->next), left_node_next, right_node)) {  /* C1 */ 
    // notice that if left_node_next were marked, this CAS would be unsuccessful 
(17)                 if (is_marked_ref(right_node->next))  
(19)                          goto search_again;     /* G2 */ 
(20)                else return right_node;      /* R2 */ 
(20)         } // if 
         } while (TRUE);        /* B2 */ 
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Non-blocking Synchronization 

List where nodes with keys 5, 35, 40, 75  are marked 

The previous list after the execution of search(70).  
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Non-blocking Synchronization 

• The search() ensures that the following conditions 
hold for left_node and right_node: 

1. the key of the left_node must be less than the search key 
and the key of the right_node must be greater than or 
equal to the search key. 

2. left_node and right_node must be unmarked 
3. right_node must be the immediate successor of left_node. 

• Condition 1 holds since otherwise the search() would 
have ended earlier.  

• To show that the other two conditions hold, we 
consider the following cases: 

– Search() returns on line 15: The conditions were TRUE 
when line 9 was executed. 

– Search() returns on line 20: The conditions were TRUE 
when line 17 was executed. 
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Non-blocking Synchronization 

boolean ListInsert (int key)  
{  
(21)        NODE *new = newcell(NODE);  new->key = key; 
(22)        NODE *right_node, *left_node;  
            do {  
(23)  right_node = search (key, &left_node);  
(24)  if ((right_node != tail) && (right_node->key == key))  
(25)   return FALSE;  
(26)  new_node->next = right_node;  
(27)  if (CAS (&(left_node->next), right_node, new_node))  
(28)   return TRUE;  
(29) } while (TRUE);   
}  
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Non-blocking Synchronization 

List after the execution of line 6 of insert(17).  

List after the completion of insert(17).  

List where nodes with keys 5, 35, 40, 75  are marked 

List after the execution of search (line 3).  
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Non-blocking Synchronization 
boolean ListDelete (int key) 
 {  
(30)       NODE *right_node, *right_node_next, *left_node;  
            do {  
(31)  right_node = search (search_key, &left_node);  
(32)  if ((right_node == tail) || (right_node->key != search_key))  
(33)   return false;  
(34)  right_node_next = right_node->next;  
(35)  if (!is_marked_reference(right_node_next))  
(36)                     if(CAS(&(right_node.next),right_node_next,                  
                                            get_marked_reference(right_node_next)))  
(37)                        break;  
(38)       } while (true);  
(39)     if (!CAS (&(left_node->next), right_node, right_node_next))  
(40)    right_node = search (right_node->key, &left_node);  
(41)     return TRUE;  
}  

•An item is in the set if and only if it is an unmarked  
reachable node. 
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Non-blocking Synchronization 

List after the execution of line 2 of delete  

List after the marking of the node  

List after the physical deletion of the node 
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Non-blocking Synchronization 

• As each thread traverses the list, it 
cleans up the list by physically removing 
any marked nodes it encounters.  
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Non-blocking Synchronization 

Linearization Points 
• Let opi,m be the mth operation 
     by pi, and let di,m the last  
     configuration at which the 
     conditions of search() are  
     satisfied during the execution  
     of opi,m. 
• If opi,m is a Find() or an unsuccessful Insert() or Delete(), we linearize 

it at di,m. 
– Successful Find and Unsuccessful Insert: at that point, the right node was 

unmarked and contained the search key. 
– Unsuccessful Find or Unsuccessful Delete: at that point the left and right 

nodes were unmarked and contained keys strictly-less than and strictly-
greater than the search key. 

• If opi,m is a successful update: 
– Let ui,m be the configuration at which the CAS of opi,m inserts a node or opi,m 

logically deletes a node. We insert the linearization point of opi,m at this 
configuration. 

 

boolean ListFind(int key) { 
(42)    NODE *right_node, *left_node; 
(43)   right_node = search(key, &left_node); 
(44)     if (right_node == tail ||  
                                        right_node->key != key)  
(45)            return FALSE; 
(46)     else return TRUE; 
} 
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