
HELLENIC REPUBLIC
UNIVERSITY OF CRETE

Distributed Computing
Graduate Course

Section 8: Concurrent Pools

Panagiota Fatourou
Department of Computer Science

Concurrent Pools
Definition
• A pool is an object that supports two atomic

operations:
– set(): puts an item in the pool
– get(): removes and returns one of the items of the pool

• A pool may be bounded or unbounded.
– Bounded Pool: holds a limited number of items. This

number is called its capacity.
– Unbounded Pool: can hold any number of items.

Applications
• producer-consumer type of applications

– jobs to perform
– keystrokes to interpret
– purchase orders to execute
– packets to decode, etc.

P.Fatourou, CS586 - Distributed Computing

Concurrent Pools

• Pool methods can be total, partial, synchronous.
– Total: calls do not wait for certain conditions to

become TRUE; so, get() (set()) returns an error code
when the pool is empty (full)

– Partial: calls may wait for conditions to hold.
– Synchronous: waits for another method to overlap its

call interval (i.e., threads rendezvous to exchange
information).

• Fairness
– FIFO -> queue
– LIFO -> stack
– Weaker properties

P.Fatourou, CS586 - Distributed Computing

An Unbounded Total Queue
• A sequential queue of

type T is an ordered
sequence of items of
type T.

• Methods it provides:
– enq(T x): puts item x at one end of the queue, called the tail

(enq() implements put());
– deq() -> T: removes and returns the item at the other end of

the queue, called the head (deq() implements get()).

• One of the nodes of the queue plays always the
role of a sentinel node.

• A deq() method returns an error message if the queue
is empty.

• We use two locks, EnqLock and DeqLock, to ensure that
at most one enqueuer, and at most one dequeuer at a
time can manipulate the nodes of the queue.

head tail

sentinel

P.Fatourou, CS586 - Distributed Computing

An Unbounded Total Queue

void enq(T x) {
 NODE *n = new(NODE);
 n->value = x;
 n->next = NULL;
 lock(TailL);
 Tail->next = n;
 Tail = n;
 unlock(TailL);
}

T deq(void) {
 T result;
 lock(HeadL);
 if (Head->next == NULL)
 result = EMPTY_QUEUE;
 else {
 result = Head->next->value;
 Head = Head->next;
 }
 unlock(HeadL);
 return result;
}

typedef struct node {
 T value; // initially, there is a sentinel node in the queue where

 struct node *next; // Head and Tail point to.

} NODE; // the sentinel is not always the same node

 // initially, HeadL = TailL = FREE

shared NODE * Head, *Tail;

head tail

sentinel

P.Fatourou, CS586 - Distributed Computing

An Unbounded Total Queue

• The algorithm cannot deadlock since each process
acquires only one lock.

• An item is actually enqueued, when the enq() call sets
the last node’s next field to the new node, even
before enq() resets Tail to point to the new node.

• The first and last nodes of the queue are not
necessarily those pointed to by Head and Tail,
respectively!
– the actual first node is the successor of the node pointed to

by Head.
– the actual last node is the last item reachable from the

Head.

P.Fatourou, CS586 - Distributed Computing

An Unbounded Lock-Free Queue

typedef struct node {
T value ;

 struct node *next ;
 } NODE;

typedef struct queue {
 NODE *Head ;
 NODE *Tail ;
} QUEUE ;

 void init(QUEUE *Q) {
 NODE *p = new(NODE) ;
 // sentinel node
 p->next = NULL;
 Q->Head = Q->Tail = p ;
}

• The first node in the queue is a sentinel
 node, whose value is meaningless.

• Init() is called once before the beginning
 of the execution (e.g., by the system).

• Enq() is lazy: it takes steps in two distinct
 steps.

• Threads may need to help one another to
 ensure lock-freedom.

P.Fatourou, CS586 - Distributed Computing

An Unbounded Lock-Free Queue

void enq(QUEUE *Q, T value) {

 NODE *next , *last ;

1. NODE *p = newcell(NODE) ;
2. p->value = value ;
3. p->next = NULL;

4. while (TRUE) { // keep trying until enq() is done

5. last = Q->Tail ; // read Tail

6. next = last->next ; // read next node of last

7. if (last == Q->Tail) { // are last and next consistent?

8. if (next == NULL) { // was Tail pointing to the last node?

9. if (CAS(last->next , next , p) // try to link new node at the end of the list

10. break ;
 }
11. else CAS(Q->Tail, last, next) ; // tail was not pointing to last node; try to advance

 } // if
 } // while
12. CAS(Q->Tail, last, p); // equeue is done -> try to swing Tail to the inserted node

} // Enqueue

Short Description of enq():
1. Create a new node and initialize it (lines 1-3)
2. Locate the last node in the queue (lines 5-6)
3. Call CAS() to append the new node (line 11)
4. Call CAS() to change the queue’s Tail from

the prior last node to the current last node
(line 12).

P.Fatourou, CS586 - Distributed Computing

An Unbounded Lock-Free Queue
boolean deq(QUEUE *Q, T *pvalue) {
 NODE *first, *last, *next;

13. while (TRUE) // keep trying until deq() is done

14. first = Q->Head; // read Head

15. last = Q->Tail; // read Tail

16. next = first->next;
17. if (first == Q->Head) { // are first and next still consistent?

18. if (first == last) { // is queue empty or Tail falling behind?

19. if (next == NULL) // is queue empty?

20. return FALSE;
21. CAS(Q->Tail, last, next); // tail is falling behind -> try to advance it

 }
22. else { // no need to deal with Tail

23. *pvalue = next->value; // read value to return

24. if (CAS(Q->Head, first, next)) // try to swing Head to the next node

25. break;
 } // else // deq() is done, so exit loop

 } // if
 } // while
26. return TRUE; // queue was not empty, so deq() suceeded

} // Dequeue

head tail

P.Fatourou, CS586 - Distributed Computing

Figure 10.13: M. Herlihy and N. Shavit, The Art of

Multiprocessor Programming, Morgan Kauffman,

2008

An Unbounded Lock-Free Queue

• An enq() is linearized at the point where the
CAS of line 9 is successfully executed (by the
initiator of enq() or by any of its helpers).

• A deq() is linearized as follows:
– If it returns a value, it is linearized when it

performs a successful CAS at line 24;
– otherwise, it is linearized at line 16.

• Lemma 1: The linearization point of each
operation (enq() or deq()) is within the
execution interval of the operation.

• Proof: It follows by the definition of the
linearization points.

P.Fatourou, CS586 - Distributed Computing

An Unbounded Lock-Free Queue

• Lemma 2: The following properties hold:
1. The list is always connected.
2. Nodes are only inserted after the last node in the list.
3. Nodes are only deleted from the beginning of the list.
4. Head always points to the first node in the list.
5. Tail always point to a node in the linked list.

• Proof: By induction on the number of steps performed. Left as
an exersice!

• Lemma 3: The sequential execution defined by the linearization
points is legal.

• Intuition for the Proof: The linearization point of an operation
reflects the point at which the operation takes effect.

• The queue variables always reflect the state of the queue; they
never enter a transient state in which the state of the queue can
be mistaken.

• Theorem 4: The above algorithm is a linearizable lock-free
implementation of an unbounded queue.

P.Fatourou, CS586 - Distributed Computing

The ABA Problem

head tail

sentinel

A B

Thread 0 Thread 1
boolean deq(Queue *Q, int *pvalue) {
 Node *first, *last, *next;
 while (1) {
 first = Q->Head;
 last = Q->Tail;
 next = first->next;
 if (first == Q->Head) {
 if (first == last) {
 if (next == NULL)
 return FALSE;
 CAS(Q->Tail, last, next);
 }
 else {

 *pvalue = next->value;  B

 if (CAS(Q->Head, first, next)) break;
 }
 return TRUE;  INCORRECT!

deq()

enq(A')

deq()

enq(B’)

 head tail
sentinel

A’ B’

1024 2056

1024 2056

P.Fatourou, CS586 - Distributed Computing

An Unbounded Lock-Free Queue
Implementation

typedef struct
 pointer_with_counter {
 struct node *ptr;
 unsigned int count;
} PointerWithCounter;

struct node {
 T value;
 PointerWithCounter next;
} Node;

struct queue {
 PointerWithCounter Head;
 PointerWithCounter Tail;
} Queue;

void Initialize(Queue *Q) {
1 Node *p = new(Node);
2 p->next.count = 0;
3 p->next.prt = NULL;
4 Q->Head = Q->Tail = <p,0>;
}

P.Fatourou, CS586 - Distributed Computing

An Unbounded Lock-Free
Queue Implementation

void Enqueue(Queue *Q, T value) {
5 Node *p = new(Node); // allocate a new node

6 PointerWithCounter next, last;
7 p->value = value;
8 p->next = <NULL,0>;
9 while (1) {
10 last = Q->Tail; // read Tail.ptr and Tail.count together

12 next = last.ptr->next; // read next.ptr and next.count
14 if (last == Q->Tail) { // are last and next still consistent?
15 if (next.ptr == NULL) { // is last pointing to the last node?
16 if (CAS(last.ptr->next, next, <p,next.count+1>)
17 break; // enqueue is done- > exit loop
 }
18 else CAS(Q->Tail, last, <next.ptr, last.count+1>);
 // Tail was not pointing to the last node->try to advance
 } // if
 } // while
19 CAS(Q->Tail, last, <p, last.count+1>);
 // enqueue is done -> swing Tail to the inserted node
} // Enqueue

typedef struct
 pointer_with_counter {
 struct node *ptr;
 unsigned int count;
} PointerWithCounter;

struct node {
 int value;
 PointerWithCounter next;
} Node;

P.Fatourou, CS586 - Distributed Computing

An Unbounded Lock-Free
Queue Implementation

boolean Dequeue(Queue *Q, T *pvalue) {
 PointerWithCounter first, last, next;
20 while (1) {
21 first = Q->Head; // read Head.ptr and Head.count
22 last = Q->Tail; // read Tail.ptr and Tail.count
23 next = first.ptr->next; // read next.ptr and next.count
24 if (first == Q->Head) { // are first, last, next still consistent?
25 if (first.ptr == last.ptr) { // is queue empty or Tail falling behind?
26 if (next.ptr == NULL) return FALSE;
27 CAS(Q->Tail, last, <next.ptr, last.count+1>); // tail is falling behind;
 // TryAdvance
 }
28 else {
29 *pvalue = next.ptr->value; // read before CAS
30 if (CAS(Q->Head, first, <next.ptr, first.count+1>)) // swing Head to next node
31 break;
 } // else
 } // if
 } // while
// free (first.ptr) -> erroneous since a process may be poised to execute line 23
// this step would then cause a segmentation fault!
33 return TRUE;
} // Dequeue

typedef struct
 pointer_with_counter {
 struct node *ptr;
 unsigned int count;
} PointerWithCounter;

struct node {
 int value;
 PointerWithCounter next;
} Node;

P.Fatourou, CS586 - Distributed Computing

A Synchronous Queue Implementation
Dual Data Structures

Major Ideas - Enqueue()

• If there are no dequeue() requests in the queue:
1. Places a reservation struct in the queue, indicating that the

 enqueuer is waiting for a dequeuer with which to rendezvous

2. Spins on a flag in the reservation struct

• Later, a dequeuer that discovers the reservation struct
of the enqueuer fulfills the request by withdrawing the
enqueuer’s item and setting the flag field of the
enqueuer’s reservation struct.

Dequeue() works similarly.

P.Fatourou, CS586 - Distributed Computing

A Synchronous Queue Implementation
Dual Data Structures

Properties
• Waiting threads can spin on a locally cached flag
• Reservations are queued in the order they arrive,

ensuring that requests are fulfilled in the same
order.

• The implementation ensures linearizability, since
each partial method call can be ordered when it is
fulfilled.

Dual Data Structure
• The methods take effect in two stages:

– reservation, and
– fulfillment.

P.Fatourou, CS586 - Distributed Computing

A Synchronous Queue Implementation
#define ITEM 0
#define RESERVATION 1

typedef struct node {
 boolean type; // a struct may represent either an item waiting to be dequeued
 // or a reservation waiting to be fulfilled
 // at any point in time, all nodes of the queue have the same type
 T value; // value of item

 // it changes to NULL when the item is dequeued
 // when the struct represents a dequeue reservation is NULL
 // resets to the response when deq() occurs
 struct node *next;
} NODE;

NODE *Head, *Tail;

void InitializeSynchronousQueue(void) { // executed only once at the beginning of the execution

 NODE * sentinel = newcell(NODE);
 sentinel->type = ITEM;
 sentinel->next = NULL;
 Head = Tail = sentinel;
}
 P.Fatourou, CS586 - Distributed Computing

A Synchronous Queue Implementation
void enq(T x) {
 boolean success;

NODE *last, *first, *next;

NODE *p = newcell(NODE);

 p->type = ITEM; p->value = x; p->next = NULL;
 while (TRUE) { // keep trying until enq() is done
 last = Tail; first = Head; // read Head and Tail
 if (last == first || last->type == ITEM) { // is the queue empty?
 // or does it contain only items?
 next = last->next; // read next node of last
 if (last == Tail) { // is last and next still consistent?
 if (next != NULL) CAS(Tail, last, next); // try to advance Tail
 else if (CAS(last->next, next, p)) { // try to insert the new item at the end
 CAS(Tail, last, p); // try to swing Tail to the inserted node
 while (p->value == x) noop; // spin while no rendezvous occur
 first = Head; // re-read Head
 if (p == first->next) CAS(Head, first, p); // am I the first struct in the queue?
 return;
 }
 }
 }
 else { // the queue contains deq reservations to rendezvous
 next = first->next; // read next node of first
 if (last != Tail || first != Head || next == NULL) // if last & first are not consistent any more
 continue; // or if there are no items in the list start from scratch
 success = CAS(next->value, null, x); // try to rendezvous
 CAS(Head, first, next); // try to advance Head
 if (success) return; // if rendezvous successful return TRUE;
 } // otherwise false.
 }
} P.Fatourou, CS586 - Distributed Computing

An Unbounded Lock-Free Stack

• A stack of type T is a collection of
items of type T. The stack provides two
operations push(x) and pop() satisfying
the last-in-first-out property: the last
item pushed is the first poped.

P.Fatourou, CS586 - Distributed Computing

An Unbounded Lock-Free Stack

#define MIN 5
define MAX 15

boolean TryPush(NODE *n) {
 NODE * oldTop = Top;
 n->next = oldTop;
 if (CAS(Top, oldTop, n))
 return TRUE;
 else return FALSE;
}

void push(DATA x) {
 NODE *n = newcell(NODE);
 n->value = x;
 while (TRUE) {
 if (tryPush(n)) return;
 else Backoff(MIN,MAX);
 }
}

NODE *TryPop(void) {

 NODE *oldTop = Top;

 NODE * newTop;

 if (oldTop == NULL)

 return EMPTY_STACK;

 newTop = oldTop->next;

 if (CAS(Top, oldTop, newTop))

 return oldTop;

 else return NULL;

}

T pop(DATA x) {

 NODE *rn;

 while (TRUE) {

 rn = TryPop();

 if (rn == EMPTY_STACK)

 return EMPTY_STACK;

 if (rn != NULL)

 return rn->value;

 else Backoff(MIN,MAX);

 }

} P.Fatourou, CS586 - Distributed Computing

An Unbounded Lock-Free Stack

• The linearization point of a push() operation is placed
at the point that the successful CAS of TryPush()
occurs for this push().

• The linearization point of a pop() operation that
returns a value of type T is placed at the point that
the successful CAS of TryPop() occurs for this Pop().

• If the Pop() returns EMPTY_CODE, its linearization
point is placed at the point that it reads Top in
TryPop().

• Theorem: The above algorithm is a linearizable, non-
blocking implementation of an unbounded stack.

P.Fatourou, CS586 - Distributed Computing

Elimination

• The stack implementation scales poorly:
– operations can proceed only one after the other, ordered by

successful CAS calls applied to the stack’s top field.
– Stack’s top field is a source of contention.

• exponential back-off significantly helps in solving this problem

Main Idea to make the stack parallel
• if a push() is immediately followed by a pop(), the two

operations cancel out, and the stack’s state does not
change.

• Cause concurrent pairs of pushes and pops to cancel:
threads calling push() exchange values with the
threads calling pop(), without ever modifying the
stack itself.
– We then say that the two calls eliminate one another.

P.Fatourou, CS586 - Distributed Computing

Elimination
• Threads eliminate one another through an EliminationArray in

which threads pick random array entries to try to meet
complementary calls.

• The EliminationArray can be used as a backoff scheme on a

shared lock-free stack.
– First, each process accesses the lock-free stack.
– If it fails to complete its operation, it attempts to eliminate it using

the array instead of simply backing-off.
– If it fails to eliminate, then it accesses the lock-free stack again.

• This structure is called Elimination-BackOff Stack.

P.Fatourou, CS586 - Distributed Computing

Figure 11.5: M. Herlihy and

N. Shavit, The Art of

Multiprocessor

Programming, Morgan

Kauffman, 2008

The Elimination BackOff Stack
Main Ideas
• Allow threads with pushes and pops to coordinate and cancel

out.
• Avoid a situation where an operation (push() or pop()) matches

with more than one other operations.
• An exchanger is an object that allows exactly two threads to

rendezvous and exchange values.
– The first process that arrives writes its value and spins until a

second process arrives.
– The second process detects that the first is waiting, reads its

value, and “signals” the exchange.
– Both processes have now read the other’s value, so they can

return.
– The call of the first process may timeout, allowing it to leave the

exchanger.
• Processes should spin rather than block in the exchanger, since

we expect them to wait only for very short durations.

P.Fatourou, CS586 - Distributed Computing

A Lock-Free Exchanger #define EMPTY 1
#define WAITING 2
#define BUSY 3

T exchange(shared <T,int> slot, T myitem, long timeout) {
 long timeBound = getnanos() + timeout;
1. while (TRUE) {
2. if (getnanos() > timeBound) return TIMEOUT; // if it is time for timeout, leave the exchanger
3. <youritem, state> = slot;
4. switch(state) {
5. case EMPTY: // try to place your item in the slot and set state to WAITING
6. if (CAS(slot, <youritem, EMPTY>, <myitem, WAITING>)) { // if this is done successfully
7. while (getnanos() < TimeBound) { // spin until it is time for timeout
8. <youritem,state> = slot; // read slot
9. if (state == BUSY) { slot = <null, EMPTY>; // if the exchange is complete
10. return youritem; } // return the other process’s

item
 }
 // if no other thread shows up
11. if (CAS(slot, <myitem, WAITING>, <null, EMPY>)) { // reset the state of slot to EMPTY
12. return TIMEOUT; // if this is done successfully, leave the exchanger
13. } else { // some exchanger process must have shown up
14. <youritem, state> = slot; // complete the exchange, by reading slot,
15. slot = <null, EMPTY>; // changing slot’s state to EMPTY,
16. return youritem; // and returning the item of the other process
 }
 }
18. break;
19. case WAITING: // some thread is waiting and slot contains its item
20. if (CAS(slot, <youritem, WAITING>, <myitem, BUSY>)) // replace the item with your own
21. return youritem; // and return the item of the other process
22. break;
23. case BUSY: // two other threads are currently using the slot
24. break; // the process must retry
 } // switch
 } // while
}

P.Fatourou, CS586 - Distributed Computing

• The exchanger implementation allows the inserted
item to be null.

Linearization Points
• For a successful exchange: when the 2nd process to

arrive changes the state from WAITING to BUSY.
– At this point both exchange() calls overlap and the exchange

is committed to be successful

• For an unsuccessful exchange:
– If exchange() returns in line 2, then linearization point at

return.
– If it returns in line 12, then linearization point at the point

that the CAS of line 11 is executed.

• The algorithm is lock-free because overlapping
exchange() calls with sufficient time to exchange will
fail only if other exchangers are repeatedly
succeeding.

A Lock-Free Exchanger

P.Fatourou, CS586 - Distributed Computing

The Elimination Array
• The EliminationBackoffStack uses an elimination

array, called exchanger[] with CAPACITY number of
elements, where CAPACITY is some parameter to the
algorithm.

• Each element of the elimination array is a shared
variable storing a pair <T, state>, where
state  {EMPTY, WAITING, BUSY}.

• Each element of exchanger[] is initially <null, EMPTY>.

Code for Accessing the Elimination Array
T visit(T value, int range, long duration) {
 int el = randomnumber(range);
 return (exchange(exchanger[el], value, duration));
}

P.Fatourou, CS586 - Distributed Computing

The EliminationBackOff Stack
void push(T x) {
 int range;
 long duration;

 NODE *nd = newcell(NODE);
 nd->value = x;

while (TRUE) {
 if (tryPush(nd)) return; // if you managed to push x successfully, return

 else { // try to use the elimination array, instead of backing-off

 range = CalculateRange(); // choose the range parameter

 duration = CalculateDuration(); // choose the duration parameter

 otherValue = visit(x, range, duration); // call visit with input value as argument

 if (otherValue == NULL) { // check whether the value was exchanged with a pop() method

 RecordSuccess(); // if yes, record success

 return;
 }
 else if (otherValue == TIMEOUT) // otherwise,

 RecordFailure(); // record failure

 }
 }
}

P.Fatourou, CS586 - Distributed Computing

The Elimination BackOff Stack

T pop(void) {
 NODE *returnNode;
 while (TRUE) {
 returnNode = TryPop(); // try to pop

 if (returnNode == EMPTY_STACK) // if stack is empty, return EMPTY_CODE

 return EMPTY_STACK;

 if (returnNode != NULL) // if tryPop() was successful, return the poped value

 return returnNode->value;
 range = CalculateRange(); // choose the range parameter

 duration = CalculateDuration(); // choose the duration parameter

 otherValue = visit(NULL, range, duration); // call visit with input value as argument

 if (otherValue != NULL) { // check whether the value was exchanged with a push() method

 RecordSuccess(); // if yes, record success

 return otherValue;
 }
 else if (otherValue == TIMEOUT) // otherwise,

 RecordFailure(); // record failure

 }
}

P.Fatourou, CS586 - Distributed Computing

The Elimination BackOff Stack
Range of the Elimination Array
• Smaller range -> greater chance of a successful

collision when there are few threads
• Larger range -> lowers the chances of threads waiting

on a busy Exchanger
• If few threads access the array, they should choose

smaller ranges!
• As the number of threads increases, so should the

range!
Dynamic Mechanism to control the range
• Record successful exchanges and timeout failures.
• Shrink the range as the number of failures increases

and vice versa.

P.Fatourou, CS586 - Distributed Computing

The Elimination BackOff Stack

Linearizability
• Any successful push() and pop() that completes by

accessing the lock-free stack can be linearized at the
point of its LockFreeStack access.

• Any pair of eliminated push() and pop() can be linearized
when they “collide”.
– The operations completed through elimination do not affect the

linearizability of those completed in the LockFreeStack,
because they could have taken effect in any state of the
LockFreeStack, and having taken effect, the state of the
LockFreeStack would not have changed.

Performance
• Comparable to LockFreeStack at low loads. Why?
• What happens as the load increases?

P.Fatourou, CS586 - Distributed Computing

Shared Lists

A simple sorted linked-list

P.Fatourou, CS586 - Distributed Computing

Synchronization Problems when Accessing
Shared Lists

Insertion of node with key 20 and concurrent deletion of node with key 30
in the list

Concurrent deletion of nodes with keys 10 and 30 from the list

P.Fatourou, CS586 - Distributed Computing

Linked Lists
Coarse-Grained Synchronization
• Take a sequential implementation of the operation, add a lock, and ensure that

each operation starts by acquiring the lock and ends by releasing it.

Fine-grain Synchronization
• Split the object into several independently synchronized components and ensure

that operations interfere only when trying to access the same component at the
same time.

Optimistic Synchronization
• Search without acquiring any locks. If the operation finds the sought-after

component, it locks that component, and then validates (i.e., it checks whether
the component is still reachable from the beginning of the list, and that it has
not changed).

– it is good only if validation succeeds more often than it fails.

Lazy Synchronization
• “Postpone the hard work for later”: removing an element of a data structure can

be split in two phases:
– logically remove the element by marking it
– physically remove the element by unlinking it from the rest of the data structure

Nonblocking Synchronization
• Eliminate locks entirely, relying on built-in atomic operations such as CAS or

LL/SC for synchronization.

P.Fatourou, CS586 - Distributed Computing

Linked Lists

• A set supports the following three operations:
– insert(int key, T x): insert x of type T to the set;

returns TRUE if x is inserted and FALSE if x is
already in the set

– delete(int key): delete key from the set; returns
TRUE if key is deleted, and FALSE if key is not in
the set

– search(int key): search for key and return TRUE if
it is in the set and FALSE otherwise.

• An operation is called successful if it returns
TRUE and unsuccessful if it returns FALSE.

P.Fatourou, CS586 - Distributed Computing

Linked Lists
• We implement a set as a

linked list of nodes.
• The list contains regular

nodes and two sentinel
nodes, called head and tail,
that point to the first and
last element of the list,
respectively.

• Sentinel nodes are never
inserted or deleted; the
key of head is MININT
and the key of tail is
MAXINT.

• The list is sorted in key
order.

• Each process p uses two
pointers, currp and predp to
traverse the list; currp
points to the current node
accessed in the list and
predp to its previous node.

typedef struct node {
 T value;
 int key;
 NODE *next;
} NODE;
shared Lock lc; // initially, free

shared NODE *head, *tail;
// initially, head points to a dummy node with key
// equal to MININT and tail points to a dummy
// node with key equal to MAXINT

boolean search(int key) {
 NODE *curr; boolean result;

 lock(lc);
 curr = head;
 while (curr->key < key)
 curr = curr->next;
 if (key == curr->key) result = TRUE;
 else result = FALSE;
 unlock(lc);
 return result;
} P.Fatourou, CS586 - Distributed Computing

Linked Lists – Coarse Grained Synchronization
boolean insert(int key, T x) {
// code for process p
 Node *pred, *curr;
 boolean result;

 lock(lc);
 pred = head;
 curr = pred->next;
 while (curr->key < key) {
 pred = curr;
 curr = curr->next;
 }
 if (key == curr->key) result = FALSE;
 else {
 NODE *node = newcell(NODE);
 node->next = curr;
 node->value = x; node->key = key;
 pred->next = node;
 result = TRUE;
 }
 unlock(lc);
 return result;
}

boolean delete(int key) {
 // code for process p
 Node *pred, *curr;
 boolean result;

 lock(lc);
 pred = head;
 curr = pred->next;
 while (curr->key < key) {
 pred = curr;
 curr = curr->next;
 }
 if (key == curr->key) {
 pred->next = curr->next;
 result = TRUE;
 }
 else result = FALSE;
 unlock(lc);
 return result;
}

P.Fatourou, CS586 - Distributed Computing

Linked Lists – Coarse Grained Synchronization

• The algorithm is obviously correct.
– The linearization point for each operation is placed

at the point that the operation acquired the lock.

• The implementation satisfies the same
progress condition as the lock implementation
it employs.

• If contention is low, the performance of the
algorithm is ok.

• If contention is high, the algorithm performs
poorly since parallelism is restricted.
– processes are delayed waiting for one another.

P.Fatourou, CS586 - Distributed Computing

Linked Lists – Fine Grained Synchronization

• Each node is associated with its
own lock.

• As a process traverses the list,
it locks each node when it first
visits it, and then at some later
point it may release the lock.

• Locks are acquired as follows:
– While holding the lock of the

node pointed to by predp, acquire
the lock of the node pointed to
by currp, and then release the
lock of the node pointed to by
predp.

– This is called hand-over-hand
locking or lock coupling.

• It is not safe to unlock predp
before acquiring the lock to currp
since currp may have been
deleted until its lock is acquired.

• To avoid deadlocks, the locks
should be acquired in the same
order by each process.

Why delete() must acquire two locks.
Why hand-over-hand locking is required.

typedef struct node {
 T value; int key; Lock lock; NODE *next;
} NODE;

boolean search(int key) {
 NODE *curr, *pred; boolean result;

 lock(head->lock);
 pred = head;
 curr = pred->next;
 lock(curr->lock);
 while (curr->key < key) {
 unlock(pred->lock);
 pred = curr;
 curr = curr->next;
 lock(curr->lock);
 }
 if (key == curr->key) result = TRUE;
 else result = FALSE;
 unlock(pred->lock); unlock(curr->lock);
 return result;
} P.Fatourou, CS586 Distributred Computing

P.Fatourou, CS586 - Distributed Computing

Linked Lists – Fine Grained Synchronization

boolean insert(int key, T x) { // code for process p
 Node *pred, *curr; boolean result;

 lock(head->lock);
 pred = head;
 curr = pred->next;
 lock(curr->lock);
 while (curr->key < key) {
 unlock(pred->lock);
 pred = curr;
 curr = curr->next;
 lock(curr->lock);
 }
 if (key == curr->key) result = FALSE;
 else {
 NODE *node = newcell(NODE);
 node->next = curr;
 node->value = x; node->key = key;
 pred->next = node;
 result = TRUE;
 }
 unlock(pred->lock);
 unlock(curr->lock);
 return result;
}

boolean delete(int key) {
 // code for process p
 Node *pred, *curr;
 boolean result;

 lock(head->lock);
 pred = head;
 curr = pred->next;
 lock(curr->lock);
 while (curr->key < key) {
 unlock(pred->lock);
 pred = curr;
 curr = curr->next;
 lock(curr->lock);
 }
 if (key == curr->key) {
 pred->next = curr->next;
 result = TRUE;
 }
 else result = FALSE;
 unlock(pred->lock);
 unlock(curr->lock);
 return result;
}

P.Fatourou, CS586 - Distributed Computing

Linked Lists – Fine Grained Synchronization

Linearizability
• A successful insert(k, x) is linearized when the node

with the next higher key is locked.
• An unsuccessful insert(k, x) is linearized when the

node with key k is locked.
• Similar rules apply for delete.
• Linearization points for search -> when the node with

key k (if any) or with the next higher key (if not) is
locked.

Progress
• The algorithm is starvation-free, assuming that all

individual locks are starvation-free.
– Deadlock is not possible.
– If a process p attempts to lock head, it eventually succeeds.
– Eventually, all locks held by other processes will be released

and p will manage to lock predp and currp.

P.Fatourou, CS586 - Distributed Computing

Linked Lists – Optimistic Synchronization

Main Ideas
• Search without acquiring

locks
• Lock the nodes found
• Confirm that the locked

nodes are correct.
– Use some form of validation.
– Guarantee freedom from

interference.

typedef struct node {
 T d;
 int key;
 Lock lock;
 NODE *next;
} NODE;
shared NODE *head, *tail;

boolean search(int key) {
 NODE *curr; boolean result;

 while (TRUE) {
 pred = head; curr = pred->next;
 while (curr->key < key) {
 pred = curr; curr = curr->next;
 }
 lock(pred->lock); lock(curr->lock);
 if (validate(pred, curr) == TRUE) {
 if (key == curr->key) result = TRUE;
 else result = FALSE;
 return_flag = 1;
 }
 unlock(pred->lock); unlock(curr->lock);
 if (return_flag) return result;
 }
}

boolean validate(NODE *pred, NODE *curr) {
 NODE *tmp = head;

 while (tmp->key <= pred->key) {
 if (tmp == pred) {
 if (pred->next == curr) return TRUE;
 else return FALSE;
 }
 tmp = tmp->next;
 }
 return FALSE;
}

P.Fatourou, CS586 - Distributed Computing

Linked Lists – Optimistic Synchronization
boolean insert(int key, T x) { // code for process p
 Node *pred, *curr;
 boolean result;
 boolean return_flag = 0;

 while (TRUE) {
 pred = head; curr = pred->next;
 while (curr->key < key) {
 pred = curr;
 curr = curr->next;
 }
 lock(pred->lock); lock(curr->lock);
 if (validate(pred, curr) == TRUE) {
 if (key == curr->key) {
 result = FALSE; return_flag = 1;
 }
 else {
 NODE *node = newcell(NODE);
 node->next = curr;
 node->value = x; node->key = key;
 pred->next = node;
 result = TRUE; return_flag = 1;
 }
 }
 unlock(pred->lock); unlock(curr->lock);
 if return_flag) return result;
 }
}

boolean delete(int key) {
 // code for process p
 Node *pred, *curr;
 boolean result; boolean return_flag = 0;

 while (TRUE) {
 pred = head; curr = pred->next;
 while (curr->key < key) {
 pred = curr;
 curr = curr->next;
 }
 lock(pred->lock); lock(curr->lock);
 if (validate(pred, curr)) {
 if (key == curr->key) {
 pred->next = curr->next;
 result = TRUE;
 }
 else result = FALSE;
 return_flag = 1;
 }
 unlock(pred->lock); unlock(curr->lock);
 if (return_flag == 1) return result;
 }
}

P.Fatourou, CS586 - Distributed Computing

Linked Lists – Optimistic Synchronization
• Validation is necessary.
• Each operation may

traverse nodes that
have been deleted
from the list.
If a process follows
the next fields
of deleted nodes,
it will eventually return to some node of the list.

• Garbage collection should be done with care.
• The algorithm is not starvation-free, even if all nodes’

locks are starvation-free.
• The implementation works well if the cost of traversing

the list twice without locking is significantly less than the
cost of traversing the list once with locking.

• Search() requires to get locks 

P.Fatourou, CS586 - Distributed Computing

Figure 9.15: M. Herlihy and N. Shavit, The Art of Multiprocessor

Programming, Morgan Kauffman, 2008

Linked Lists – Lazy Synchronization
Main Ideas
• We add in each node a

boolean marked field which
indicates whether this node
is in the set.

• Traversals do not lock and do
not validate.

• Insert() locks the target’s
predecessor and adds the
new node.

• Delete is realized in two
steps:
– mark the node as deleted
– physically remove the node

typedef struct node {
 T d;
 int key;
 boolean marked;
 Lock lock;
 NODE *next;
} NODE;
shared NODE *head, *tail;

boolean search(int key) {
 NODE *curr;
 boolean result;

 curr = head;
 while (curr->key < key)
 curr = curr->next;
 if (curr->marked !=TRUE
 && key==curr->key)
 return TRUE;
 else return FALSE;
}

boolean validate(NODE *pred, NODE *curr) {
 if (pred->marked == FALSE &&
 curr->marked === FALSE &&
 pred->next == curr) return TRUE;
 else return FALSE;

}
P.Fatourou, CS586 - Distributed Computing

Linked Lists – Lazy Synchronization
boolean insert(int key, T x) { // code for process p
 Node *pred, *curr;
 boolean result;
 boolean return_flag = 0;

 while (TRUE) {
 pred = head; curr = pred->next;
 while (curr->key < key) {
 pred = curr;
 curr = curr->next;
 }
 lock(pred->lock); lock(curr->lock);
 if (validate(pred, curr) == TRUE) {
 if (key == curr->key) {
 result = FALSE; return_flag = 1;
 }
 else {
 NODE *node = newcell(NODE);
 node->next = curr;
 node->value = x; node->key = key;
 pred->next = node;
 result = TRUE; return_flag = 1;
 }
 }
 unlock(pred->lock); unlock(curr->lock);
 if return_flag) return result;
 }
}

boolean delete(int key) {
 // code for process p
 Node *pred, *curr;
 boolean result; boolean return_flag = 0;

 while (TRUE) {
 pred = head; curr = pred->next;
 while (curr->key < key) {
 pred = curr;
 curr = curr->next;
 }
 lock(pred->lock); lock(curr->lock);
 if (validate(pred, curr)) {
 if (key == curr->key) {
 curr->marked = TRUE;
 pred->next = curr->next;
 result = TRUE;
 }
 else result = FALSE;
 return_flag = 1;
 }
 unlock(pred->lock); unlock(curr->lock);
 if (return_flag == 1) return result;
 }
}

P.Fatourou, CS586 - Distributed Computing

Linked Lists – Lazy Synchronization

• We say that an item is in the set, if, and only if it is referred to
by an unmarked reachable node.

• Lemma: Any unmarked reachable node remains reachable even if
its predecessor is logically or physically deleted.

• Insert() and delete() are not starvation-free since list traversals
may be arbitrarily delayed by ongoing modifications.

Linearization Points
• Insert():

– Successful: when pred->next changes to point to node.
– Unsuccessful: at the point that it acquires the lock to curr for the

last time.
• Delete()

– Successful: when the mark is set.
– Unsuccessful: at the point that it acquires the lock to curr for the

last time.
• Search()

– Successful: when an unmarked matching node is found.
– Unsuccessful: Can we linearize an unsuccessful search when it

detects that the node it is looking for is marked?

P.Fatourou, CS586 - Distributed Computing

Linked Lists – Lazy Synchronization

An unsuccessful search() is linearized at the earlier of the following
points:

1. the point where a removed matching node, or a node with key
greater than the one being searched is found, and

2. the point immediately before a new matching node is inserted to
the list.

P.Fatourou, CS586 - Distributed Computing

Figure 9.21: M. Herlihy and N. Shavit,

The Art of Multiprocessor

Programming, Morgan Kauffman,

2008

Linked Lists – Non-blocking Synchronization

typedef struct node {
 int key;
 struct node *next;
} NODE;

NODE *head *tail;

void InitializeList() {
 head = newcell (NODE);
 tail = newcell (NODE);
 head->next = tail;
 head->key = MININT;
 tail->next = NULL;
 tail->key = MAXINT;
}

Main Ideas

• The node’s next and marked fields are
 treated as a single atomic unit:
 any attempt to update the next field
 when the marked field is TRUE will fail.

• Implement the marked field by “stealing”
 a bit from the next pointer.

get_unmarked_reference(NODE *r)
// checks if r is marked. If yes, it returns
// the unmarked version f r. If no, it returns r

get_marked_reference(NODE *r)
// checks if r is marked. If yes, it returns r;
// otherwise, it returns the marked version of r.

is_marked_reference(NODE *r)
// returns TRUE if r is marked; FALSE otherwise

 None of these routines changes the value of the pointer!

P.Fatourou, CS586 - Distributed Computing

Non-blocking
Synchronization

NODE *search (int search_key, NODE **left_node) {
NODE *left_node_next, *right_node;
search_again:
 do {
(1) NODE *t = head;
(2) NODE *t_next = head->next;
(3) do {
(4) if (!is_marked_ref(t_next)) {
(5) (*left_node) = t;
(6) left_node_next = t_next;

 }
(7) t = get_unmarked_ref(t_next);
(8) if (t == tail) break;
(9) t_next = t->next;
(10) } while (is_marked_ref (t_next) || (t->key < search_key)); /*B1*/

(11) right_node = t;
(12) if (left_node_next == right_node) { // notice that if left_node_next were marked,

 // this condition would evaluate to FALSE
(13) if (is_marked_ref (right_node->next))
(14) goto search_again; /* G1 */
(15) else return right_node; /* R1 */
(16) }
(17) if (CAS (&(left_node->next), left_node_next, right_node)) { /* C1 */
 // notice that if left_node_next were marked, this CAS would be unsuccessful
(17) if (is_marked_ref(right_node->next))
(19) goto search_again; /* G2 */
(20) else return right_node; /* R2 */
(20) } // if
 } while (TRUE); /* B2 */
} // search P.Fatourou, CS586 - Distributed Computing

Non-blocking Synchronization

List where nodes with keys 5, 35, 40, 75 are marked

The previous list after the execution of search(70).

P.Fatourou, CS586 - Distributed Computing

Non-blocking Synchronization

• The search() ensures that the following conditions
hold for left_node and right_node:

1. the key of the left_node must be less than the search key
and the key of the right_node must be greater than or
equal to the search key.

2. left_node and right_node must be unmarked
3. right_node must be the immediate successor of left_node.

• Condition 1 holds since otherwise the search() would
have ended earlier.

• To show that the other two conditions hold, we
consider the following cases:

– Search() returns on line 15: The conditions were TRUE
when line 9 was executed.

– Search() returns on line 20: The conditions were TRUE
when line 17 was executed.

P.Fatourou, CS586 - Distributed Computing

Non-blocking Synchronization

boolean ListInsert (int key)
{
(21) NODE *new = newcell(NODE); new->key = key;
(22) NODE *right_node, *left_node;
 do {
(23) right_node = search (key, &left_node);
(24) if ((right_node != tail) && (right_node->key == key))
(25) return FALSE;
(26) new_node->next = right_node;
(27) if (CAS (&(left_node->next), right_node, new_node))
(28) return TRUE;
(29) } while (TRUE);
}

P.Fatourou, CS586 - Distributed Computing

Non-blocking Synchronization

List after the execution of line 6 of insert(17).

List after the completion of insert(17).

List where nodes with keys 5, 35, 40, 75 are marked

List after the execution of search (line 3).

P.Fatourou, CS586 - Distributed Computing

Non-blocking Synchronization
boolean ListDelete (int key)
 {
(30) NODE *right_node, *right_node_next, *left_node;
 do {
(31) right_node = search (search_key, &left_node);
(32) if ((right_node == tail) || (right_node->key != search_key))
(33) return false;
(34) right_node_next = right_node->next;
(35) if (!is_marked_reference(right_node_next))
(36) if(CAS(&(right_node.next),right_node_next,
 get_marked_reference(right_node_next)))
(37) break;
(38) } while (true);
(39) if (!CAS (&(left_node->next), right_node, right_node_next))
(40) right_node = search (right_node->key, &left_node);
(41) return TRUE;
}

•An item is in the set if and only if it is an unmarked
reachable node.

P.Fatourou, CS586 - Distributed Computing

Non-blocking Synchronization

List after the execution of line 2 of delete

List after the marking of the node

List after the physical deletion of the node

P.Fatourou, CS586 - Distributed Computing

Non-blocking Synchronization

• As each thread traverses the list, it
cleans up the list by physically removing
any marked nodes it encounters.

P.Fatourou, CS586 - Distributed Computing

Non-blocking Synchronization

Linearization Points
• Let opi,m be the mth operation
 by pi, and let di,m the last
 configuration at which the
 conditions of search() are
 satisfied during the execution
 of opi,m.
• If opi,m is a Find() or an unsuccessful Insert() or Delete(), we linearize

it at di,m.
– Successful Find and Unsuccessful Insert: at that point, the right node was

unmarked and contained the search key.
– Unsuccessful Find or Unsuccessful Delete: at that point the left and right

nodes were unmarked and contained keys strictly-less than and strictly-
greater than the search key.

• If opi,m is a successful update:
– Let ui,m be the configuration at which the CAS of opi,m inserts a node or opi,m

logically deletes a node. We insert the linearization point of opi,m at this
configuration.

boolean ListFind(int key) {
(42) NODE *right_node, *left_node;
(43) right_node = search(key, &left_node);
(44) if (right_node == tail ||
 right_node->key != key)
(45) return FALSE;
(46) else return TRUE;
}

P.Fatourou, CS586 - Distributed Computing

Bibliography

These slides are based on material that appears
in the following book and paper:

• M. Herlihy and N. Shavit, The Art of
Multiprocessor Programming, Morgan
Kauffman, 2008 (Chapters 9, 10, 11)

• Timothy L. Harris, “A Pragmatic
Implementation of Non-blocking Linked-
Lists”, 15th International Symposium on
DIStributed Computing (DISC’01), pp. 300-
314, 2001.

End of Section

Financing
• The present educational material has been developed as part of

the educational work of the instructor.

• The project “Open Academic Courses of the University of
Crete” has only financed the reform of the educational material.

• The project is implemented under the operational program
“Education and Lifelong Learning” and funded by the European
Union (European Social Fund) and National Resources

Notes

Licensing Note
• The current material is available under the Creative Commons Attribution-

NonCommercial-NoDerivs 4.0[1] International license or later International
Edition. The individual works of third parties are excluded, e.g. photographs,
diagrams etc. They are contained therein and covered under their conditions of
use in the section «Use of Third Parties Work Note».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

• As Non-Commercial is defined the use that:

 Does not involve direct or indirect financial benefits from the use of the work for the
distributor of the work and the license holder

 Does not include financial transaction as a condition for the use or access to the work

 Does not confer to the distributor and license holder of the work indirect financial
benefit (e.g. advertisements) from the viewing of the work on website

• The copyright holder may give to the license holder a separate license to use the
work for commercial use, if requested.

Reference Note

Copyright University of Crete , Panagiota Fatourou 2015. Panagiota
Fatourou. «Distributed Computing. Section 8: Concurrent Pools».
Edition: 1.0. Heraklion 2015. Available at:
https://opencourses.uoc.gr/courses/course/view.php?id=359.

Preservation Notices

Any reproduction or adaptation of the material should
include:

• the Reference Note

• the Licensing Note

• the declaration of Notices Preservation

• the Use of Third Parties Work Note (if is available)

together with the accompanied URLs.

