
HELLENIC REPUBLIC
UNIVERSITY OF CRETE

Distributed Computing
Graduate Course

Section 9: Safe Memory Reclamation

Panagiota Fatourou
Department of Computer Science

Hazard Pointers
 Main Ideas
• In the vast majority of algorithms for lock-free dynamic

objects, a thread holds only a small number of pointers that may
later be used without further validation for accessing the
contents of dynamic nodes, or as targets of expected values of
ABA-prone atomic comparison primitives.

Methodology
• Associate a number of single-writer multi-reader shared

pointers, called hazard pointers, to each process.
• The number of hazard pointers required for each process

depends on its algorithm.
• For simplicity, assume that this number is a constant K, the

same for all processes.
• The technique is split into two components:

– the algorithm for processing retired nodes
– the extensions to the implementation that should be made in order

to ensure that the conditions to guarantee the safety of memory
reclamation and ABA prevention are met.

P.Fatourou, CS586 - Distributed Computing

Hazard Pointers: Access Hazard – ABA hazard

P.Fatourou, CS586 - Distributed Computing

shared head, tail;
// intially, both point to a dummy node

void enq(T value) {
 NODE *next , *last ;

1. NODE *p = newcell(NODE) ;
2. p->value = value ;
3. p->next = NULL;

4. while (TRUE) {
5. last = tail ;
6. next = last->next ;
7. if (last != tail) continue;
8. if (next != NULL) {
9. CAS(tail, last, next);
10. continue;
11. }
12. if (CAS(last->next , NULL , p)
 break ;
13. } // while
14. CAS(tail, last, p);
} // Enqueue

Identify hazards and hazardous references

1. Lines 2 and 3 are safe (p points to some node
after the execution of line 1)

2. the access on line 6 may be hazardous:

• between the read of tail (line 5) and the
execution of line 6, more nodes may
have been inserted and all nodes,
including the node pointed to by last,
may have been removed (and become
free).

3. Line 7: ABA hazard (the ABA problem could
appear here)

4. Line 9: ABA hazard

5. Line 12 may be hazardous:

• access hazard -> accessing the next
field of last is not safe (since the node
pointed to by last may have been
released)

• ABA hazard

6. Line 14: ABA hazard

The ABA Problem

head tail

sentinel

A B

Thread 0 Thread 1
boolean deq(int *pvalue) {
 Node *first, *last, *next;
 while (1) {
 first = head;
 last = tail;
 next = first->next;
 if (first == head) {
 if (first == last) {
 if (next == NULL)
 return FALSE;
 CAS(tail, last, next);
 }
 else {

 *pvalue = next->value;  B

 if (CAS(head, first, next)) break;
 }
 return TRUE;  INCORRECT!

deq()

enq(A')

deq()

enq(B’)

 head tail
sentinel

A’ B’

1024 2056

1024 2056

P.Fatourou, CS586 - Distributed Computing

Hazard Pointers: Access Hazard – ABA Hazard

P.Fatourou, CS586 - Distributed Computing

boolean deq(QUEUE *Q, T *pvalue) {
 NODE *first, *last, *next;

1. while (TRUE)
2. first = head;
3. last = tail;
4. next = first->next;
5. if (first != head) continue;
6. if (next == NULL)
7. return EMPTY;
8. if (first = last) {
9. CAS(tail, last, next);
10. continue;
 }
11. *pvalue = next->value;
12. if (CAS(head, first, next))

 break;
 } // while
13. return TRUE;
} // Dequeue

Identify hazards and hazardous
references

1. the access on line 4 may be
hazardous:

• between the read of head (line 2)
and the execution of line 4, the
node pointed to by first may
have been removed (and become
free).

2. Line 5: ABA hazard

3. Line 9: ABA hazard

4. Line 11: Access hazard (node pointed
to by next may have been de-
allocated).

5. Line 12: ABA hazard

Application of Hazard Pointers: Methodology

1. Examine the target algorithm as follows:
a. Identify hazards/hazardous references
b. For each distinct hazardous reference, determine the point

where it is created and the last hazard that uses it. During this
period, a hazard pointer needs to be dedicated to that
reference.

c. Compare the periods for all hazardous references, and
determine how many hazard pointers are required for each
process.

2. For each hazardous reference, enhance the algorithm as
follows:
a. write the address of the node that is the target of the

reference to an available hazard pointer.
b. Validate that the node is safe.

• if the validation succeeds, continue normally.
• if not, skip the rest of the execution and follow the path of the

target algorithm when a conflict is detected.

3. Before returning from an operation, release the hazard
pointers that have been used during the execution of the
operation.

4. At carefully chosen points of the execution of the operation,
call RetireNode() to identify that a node has been deleted.

P.Fatourou, CS586 - Distributed Computing

Hazard Pointers
Applications

P.Fatourou, CS586 - Distributed Computing

void enq(T value) { // code for process pi

 NODE *next , *last ;

1. NODE *p = newcell(NODE) ;
2. p->value = value ;
3. p->next = NULL;

4. while (TRUE) {
5. last = tail ;
 *hp[i][0] = last;
 if (last != tail) continue;
6. next = last->next ;
7. if (last != tail) continue;
8. if (next != NULL) {
9. CAS(tail, last, next);
10. continue;
11. }
12. if (CAS(last->next , NULL , p)
 break ;
13. } // while
14. CAS(tail, last, p);
15.*hp[i][0] = NULL;
} // Enqueue

boolean deq(QUEUE *Q, T *pvalue) {
// code for process pi

 NODE *first, *last, *next;
1. while (TRUE)
2. first = head;
 *hp[i][0] = first;
 if (head != first) continue;
3. last = tail;
4. next = first->next;
 *hp[i][1] = next;
5. if (first != head) continue;
6. if (next == NULL) {
 *hp[i][0] = *hp[i][1] = NULL;
7. return EMPTY;
 }
8. if (first = last) {
9. CAS(tail, last, next); continue;
 }
11. *pvalue = next->value;
12. if (CAS(head, first, next)) {
 RetireNode(first);

 break;
 }
 } // while
 *hp[i][0] = *hp[i][1] = NULL;
13. return TRUE;
} // Dequeue

Hazard Pointers

• Each process pi uses two persistent local variables,
rlisti, and rcounti. These are used to maintain a
private list of retired nodes.

• RetireNode() by process pi
– Insert the retired node into the list of retired nodes of

process pi

– Whenever the size of the list of retired nodes reaches a
threshold R, call find-hazard() to get a list of the nodes that
are currently hazardous.

• Scan() by process pi
– Scan the HP array for non-null values. Each non-null value is

inserted in a local list, called plist.
– Check each node in rlist, whether it is included in the plist.

• If no, the node can be de-allocated (no hazard pointer points to
it)

• If yes, the node is returned in the rlist to be checked again
next time.

Hazard Pointers

P.Fatourou, CS586 - Distributed Computing

Shared and private structures
used by the algorithm

NODE **Hp[n][K];
// initialize each element of HP to some
// pointer address using newcell() (the
// first K such pointers are the hazard
// pointers of p0,, etc.) Each of these
// memory cells contain NULL, initially.

// persistent private variables
int rcounti = 0;
List rlisti; // list of retired nodes

void RetireNode(NODE *node) {
// code for process pi

 push(rlisti, node);
 rcounti++;
 if (rcounti >= R) Scan();
}

void Scan(void) { // code for process pi

 // Stage 1: Scan HP list and insert
 // non-null values in plist

 init(plist);// plist is a temporary list

 for (i = 0; i < n; i++) {
 for (j = 0; j < K; j++) {
 hptr = *HP[i][j];
 if (hptr != NULL)
 insert(plist, hptr);
 }
 }
 // 2nd stage: search plist

 move all items of rlisti to tmplist;
 rcounti = 0;
 node = pop(tmplist);
 while (node != NULL) {
 if (lookup(plist, node)) {
 push(rlisti, node);
 rcounti++;
 } else PrepareForReuse(node);
 }
 node = pop(tmplist);
}

2024

2058

3056

3060

1128

1132

NULL

NULL

NULL

NULL

NULL

NULL

{

{

{

p0

p1

p2

1128

1132

2024

2052

3056

3060

Bibliography

These slides are based on material that
appears in the following paper:

• Maged M. Michael, “Hazard Pointers:
Safe Memory Reclamation for Lock-
Free Objects”, IEEE Trans. Parallel
Distrib. Syst. 15(6): 491-504 (2004)

End of Section

Financing
• The present educational material has been developed as part of

the educational work of the instructor.

• The project “Open Academic Courses of the University of
Crete” has only financed the reform of the educational material.

• The project is implemented under the operational program
“Education and Lifelong Learning” and funded by the European
Union (European Social Fund) and National Resources

Notes

Licensing Note
• The current material is available under the Creative Commons Attribution-

NonCommercial-NoDerivs 4.0[1] International license or later International
Edition. The individual works of third parties are excluded, e.g. photographs,
diagrams etc. They are contained therein and covered under their conditions of
use in the section «Use of Third Parties Work Note».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

• As Non-Commercial is defined the use that:

 Does not involve direct or indirect financial benefits from the use of the work for the
distributor of the work and the license holder

 Does not include financial transaction as a condition for the use or access to the work

 Does not confer to the distributor and license holder of the work indirect financial
benefit (e.g. advertisements) from the viewing of the work on website

• The copyright holder may give to the license holder a separate license to use the
work for commercial use, if requested.

Reference Note

Copyright University of Crete , Panagiota Fatourou 2015. Panagiota
Fatourou. «Distributed Computing. Section 9: Safe Memory
Reclamation». Edition: 1.0. Heraklion 2015. Available at:
https://opencourses.uoc.gr/courses/course/view.php?id=359.

Preservation Notices

Any reproduction or adaptation of the material should
include:

• the Reference Note

• the Licensing Note

• the declaration of Notices Preservation

• the Use of Third Parties Work Note (if is available)

together with the accompanied URLs.

