
HELLENIC REPUBLIC
UNIVERSITY OF CRETE

Distributed Computing
Graduate Course
Section 10: Barriers

Panagiota Fatourou
Department of Computer Science

An application
Graphical Display for a
computer game

Problem
The processes require
synchronization!

Solution
Organize computation in a sequence of phases,

where no thread starts the ith phase until the
others have finished the (i-1)th.

P.Fatourou, CS586 - Distributed Computing

Sequential Code
while (TRUE) {
 prepare(frame);
 display(frame);
}

Code with n concurrent
processes available
Code for pi

while (TRUE) {
 prepare(frame[i]);
 display(frame[i]);
}

An Application

P.Fatourou, CS586 - Distributed Computing

• A barrier is a way of forcing
 asynchronous threads to act almost
 as if they were synchronous.
• When a thread calls the barrier’s
 await() method, it is blocked until
 all n threads have also
 “reached the barrier” (i.e.,
 have also called the await() method).
• Barriers should be fast.

 minimize the duration between when the last thread reaches
the barrier and when the last thread leaves the barrier.

• A thread’s notification time is the interval between when some
thread has detected that all threads have reached the barrier, and
when that specific thread leaves the barrier.

Code with n concurrent
processes available
Code for pi

while (TRUE) {
 prepare(frame[i]);
 wait(barrier);
 display(frame[i]);
}

Barrier Implementations

P.Fatourou, CS586 - Distributed Computing

Is anything wrong with the
implementation on the right?

A Simple Implementation

shared int Count = n; // initial value = n
// a Fetch&Inc/Dec() object with initial value n;

// this object supports also read and write

void await(void) {

 int position = Get&Dec(Count);

 if (position == 1) Count = n;

 else

 while (Count != 0) noop;

}

Sense-Reversing Barrier

Main Ideas
A phase’s sense is a Boolean value:
TRUE for even-numbered phases
and FALSE, otherwise. Each
barrier has a sense field which
indicates the sense of the
currently executing phase.

Additionally, each thread has its
own local variable keeping the
sense of this thread.

Initially, the barrier’s sense is the
complement of the local sense
of all the threads.

P.Fatourou, CS586 - Distributed Computing

struct barrier {
 shared int count;
 // a Fetch&Inc/Dec() object with initial value n
 // this object supports also read and write

 shared boolean sense;
 // initially FALSE;

};

// persistent local varaible of process pi, 1  i  n

boolean mysense = TRUE;

void await(struct barrier *B) {
// code for process pi

 int position = Get&Dec(B->count);
 if (position == 1) {
 B->count = n;
 B->sense = mysense;
 }
 else {
 while (B->sense!= mysense)
 noop;
 }
 mysense = 1-mysense;
}

Combining Tree Barrier
Main Idea

Split a large barrier into a tree of smaller
barriers, and have threads combine
requests going up the tree and distribute
notifications going down the tree.

A tree barrier is characterized by the
number of processes, n, and by the radix
r, which is each node’s number of children.

We assume there are exactly n = rd
processes, where d is the height of the
tree.

Process pi starts at leaf node i/r.

Contention
A tree-structured barrier reduces
memory contention by spreading memory
accesses across multiple barriers.

Latency
It is reduced if it is faster to visit a
logarithmic number of barriers than
decrement a single location.

P.Fatourou, CS586 - Distributed Computing

#typedef r <radix>
typedef struct node {
 shared int count;
 boolean sense;
 struct node *parent;
} NODE;

typedef struct barrier {
 NODE *leaf[rd];
} BARRIER;

int mysense = TRUE;
// persistent local variable of process pi

void await(BARRIER *B) {
 NODE *nd = B->leaf[i/r];
 wait(nd);
 mysense = !mysense;
}

void wait(NODE *nd) {
 int position = Get&Dec(nd->count);
 if (position == 1) {
 if (nd->parent != NULL)
 wait(nd->parent);
 nd->count = r;
 nd->sense = mysense;
 }
 else {
 while (nd->sense !=mysense)
 noop;
 }
}

Combining Tree Barrier

void Build(Barrier *B, NODE *parent,
 int height) {
 static int leaves = 0;

 if (height == 0) {
 B->leaf[leaves++] = parent;
 }
 else {
 for (j = 0; j < r; j++) {
 NODE child = newcell(NODE);
 child->count =r;
 child->parent = parent;
 child->sense = FALSE;
 Build(B,child, height-1);
 }
 }
}

void InitializeBarrier(BARRIER *B) {
 int height = 0;
 while (n > 1) {
 height++; n = n/r;
 }
 root = newcell(NODE);
 root->count =r; root->parent = NULL;
 root->sense = FALSE;
 Build(B, root, height-1);
}

Static Tree Barrier

• Each thread is assigned to a node in a tree.

• The thread at a node waits until all nodes below it in the tree
have finished, and then informs its parent.

• It then spins waiting for the global sense bit to change.

• Once the root learns that its children are done, it toggles the
global sense bit to notify the waiting threads that all threads
are done.

• Completing the barrier requires log(n) steps.

• Notification simply requires changing the global sense bit.

#typedef r <radix>
typedef struct node {
 int children;
 int count;
 struct node *parent;
} NODE;

int mysense=TRUE; // persistent local variable of pi

void await(BARRIER *B) { // code for pi
 NODE *nd = B->node[i];
 wait(nd);
}

void wait(NODE *nd) { // code for pi
 while (nd->count > 0) noop;
 nd->count = nd->children;
 if (nd->parent == NULL)
 B->sense = !B->sense;
 else {
 Get&Dec(nd->parent->count);
 while (B->sense != mysense) noop;
 }
 mysense = !mysense;
}

typedef struct barrier {
 boolean sense;
 NODE *node[n]; // we assume n = rd -1

} BARRIER;

void InitializeBarrier(BARRIER *B) {
 int height = 0;
 while (n > 1) { height++; n = n/r; }
 Build(B, NULL, height);
 B->sense = FALSE;
}
void Build(Barrier *B,NODE *parent, int height) {
 static int nodes = 0;
 NODE *nd = newcell(NODE);
 nd->parent = parent;
 if (height == 0) {
 nd->count = nd->children = 0;
 B->node[nodes++] = nd;
 }
 else {
 nd->count = nd->children = r;
 B->node[nodes++] = nd;
 for (j = 0; j < r; j++) {

 Build(B, nd, height-1);
 }
 }
}

Static Tree Barrier

Termination Detection Barriers
• Work-stealing Schedulers

– Each thread has its own pool of tasks and works on one of them.
– If the pool of a thread becomes empty the thread tries to steal

some task from the pool of some other processor.
• How can the processes determine termination?
• Each thread is either active or inactive.
• As long as some thread is active, other threads may become

active (although they were inactive) by stealing work from this
thread.

• Detecting that the computation as a whole has terminated is the
problem of determining that at some instant in time there are
no longer active threads.

• A termination detection barrier provides operations
setActive(v) and isTerminated().
– Each thread calls setActive(true) to notify the barrier when it

becomes active, and setActive(false) to notify the barrier when it
becomes inactive.

– The isTerminated() operation returns TRUE if and only if all
threads had become at some earlier instant.

Termination Detection Barriers
• The barrier encompasses a

Fetch&Inc/Dec() object
initialized to n.

• Each thread that becomes active
performs Fetch&Dec() on this
object, and each thread that
becomes inactive performs
Fetch&Inc().

• The computation is deemed to
have terminated, when the object
has the value 0.

Safety Property
• If isTerminated() returns TRUE,

then the computation really has
terminated.

Liveness Property
• If the computation terminates,

then isTerminated() eventually
returns TRUE.

shared int Count = n;
// a Fetch&Inc/Dec object

void setActive(boolean active) {
 if (active) Fetch&Dec(Count);
 else Fetch&Inc(Count);
}

boolean isTerminated(void) {
 return (Count == 0);
}

Termination Detection Barriers
void run() {

 setActive(true);

 task = popBottom(queue[i]);

 while (TRUE) {

 while (task != NULL) {

 run the task;

 task = popBottom(queue[i]);

 }

 setActive(false);

 while (task == NULL) {

 int victim = choose a random integer in range;

 if (! isEmpty(queue[victim])) {

 setActive(TRUE);

 task = popTop(queue[victim]);

 if (task == NULL) setActive(false);

 }

 if (isTerminated()) return;

 }

 }

}

Bibliography

These slides are based on material that
appears in the following book:

• M. Herlihy and N. Shavit, The Art of
Multiprocessor Programming, Morgan
Kauffman, 2008 (Chapter 17)

End of Section

Financing
• The present educational material has been developed as part of

the educational work of the instructor.

• The project “Open Academic Courses of the University of
Crete” has only financed the reform of the educational material.

• The project is implemented under the operational program
“Education and Lifelong Learning” and funded by the European
Union (European Social Fund) and National Resources

Notes

Licensing Note
• The current material is available under the Creative Commons Attribution-

NonCommercial-NoDerivs 4.0[1] International license or later International
Edition. The individual works of third parties are excluded, e.g. photographs,
diagrams etc. They are contained therein and covered under their conditions of
use in the section «Use of Third Parties Work Note».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

• As Non-Commercial is defined the use that:

 Does not involve direct or indirect financial benefits from the use of the work for the
distributor of the work and the license holder

 Does not include financial transaction as a condition for the use or access to the work

 Does not confer to the distributor and license holder of the work indirect financial
benefit (e.g. advertisements) from the viewing of the work on website

• The copyright holder may give to the license holder a separate license to use the
work for commercial use, if requested.

Reference Note

Copyright University of Crete , Panagiota Fatourou 2015. Panagiota
Fatourou. «Distributed Computing. Section 10: Barriers». Edition:
1.0. Heraklion 2015. Available at:
https://opencourses.uoc.gr/courses/course/view.php?id=359.

Preservation Notices

Any reproduction or adaptation of the material should
include:

• the Reference Note

• the Licensing Note

• the declaration of Notices Preservation

• the Use of Third Parties Work Note (if is available)

together with the accompanied URLs.

