=

l(f('i:“;?\‘*% EAAHNIKH AHMOKPATIA
S\ ‘,_-‘,3‘?;3”

= NMANEMIZTHMIO KPHTHz2

AAyopi10uol ka1 noAunAokoTnTa
Directed Graphs

Iwavvng TOANG
Tunua Emotnung YnoAoyioTwv

N
L/

Directed Graphs 1

Outline and Reading (86.4)

N

& Reachability (86.4.1) }
= Directed DFS ﬁ/
= Strong connectivity

% Transitive closure (86.4.2)
= The Floyd-Warshall Algorithm

Directed Acyclic Graphs (DAG's) (86.4.4)
= Topological Sorting

Directed Graphs 2

Digraphs

N

€ A digraph is a graph
whose edges are all
directed
= Short for “directed graph”
@ Applications
= One-way streets
= flights
= task scheduling

Directed Graphs 3

N

Digraph Properties

& A graph G=(V,E) such that

= Each edge goes in one direction:
+ Edge (a,b) goes from a to b, but not b to a.

& If G is simple, m < n(n-1).
& If we keep in-edges and out-edges in separate
adjacency lists, we can perform listing of of

the sets of in-edges and out-edges Iin time
proportional to their size.

Directed Graphs 4

N

Digraph Application

/0 Scheduling: edge (a,b) means task a must be
completed before b can be started

ics21 ics22 ics23
v

The good life
5

Directed Graphs

Directed DFS

N

& \We can specialize the
traversal algorithms (DFS and
BFS) to digraphs by
traversing edges only along
their direction

In the directed DFS

algorithm, we have four
types of edges

= discovery edges
= back edges
s forward edges
m Cross edges
@ A directed DFS starting at a

vertex s determines the
vertices reachable from s

Directed Graphs

N

/Reachability ﬂ

#DFS tree rooted at v: vertices reachable
from v via directed paths

e

Directed Graphs

. * * e
/’0 o *,
0’000 .
\"
K
-
0000
-
-
-
3

Strong Connectivity i

#Each vertex can reach all other vertices
/@g\

¥

' / 4@

-
Directed Graphs 8

Strong Connectivity

N

Algorithm

& Pick a vertex v in G.

€ Perform a DFS from v in G.
= If there’s a w not visited, print “no”.

@ Let G’ be G with edges reversed.
@ Perform a DFS from v in G'.

= If there’'s a w not visited, print “no”.
= Else, print “yes”.

€ Running time: O(n+m).

Directed Graphs

Strongly Connected
Components

N
\J

€ Maximal subgraphs such that each vertex can reach

all other vertices in the subgraph

€ Can also be done in O(n+m) time using DFS, but is
more compllcated (similar to blconnectlwty)

Directed Graphs

{a,c,0}

————— —

{f,d,e,b}

10

Transitive Closure

N

& Given a digraph G, the
transitive closure of G is the
digraph G* such that

s G* has the same vertices
as G

s If G has a directed path
fromu tov (u #v), G*
has a directed edge from
utov

€ The transitive closure
provides reachability
Information about a digraph

Directed Graphs

N

Computing the

Transitive Closure

" & We can perform
DFS starting at
each vertex

= O(n(n+m))

If there's a way to get
from A to B and from
B to C, then there's a

way to get from A to C.

®Alternatively ... Use
dynamic programming:
the Floyd-Warshall
Algorithm

Directed Graphs 12

Floyd-Warshall
Transitive Closure

N

jtldea #1: Number the vertices 1, 2, ..., n.

€ ldea #2: Consider paths that use only
vertices numbered 1, 2, ..., k, as

Intermediate vertices:
Uses only vertices numbered 1,...,k
(add this edge if it's not already in)

—
~~~
_—

Uses only vertices

numbered 1,... k-1 Uses only vertices

numbered 1,...,k-1

Directed Graphs 13



‘F\

Floyd-Warshall's algorithm
numbers the vertices of G as
Vi, ..., V, and computes a
series of digraphs G, ..., G,
u GO:G
= G, has a directed edge (v, v)
if G has a directed path from
v; to v; with intermediate
vertices in the set {v,, ..., v}

® We have that G, = G*

® In phase k, digraph G, is
computed from G, _,

€ Running time: O(n3),
assuming areAdjacent is O(1)
(e.g., adjacency matrix)

Floyd-Warshall's Algorithm

Algorithm FloydWarshall(G)
Input digraph G
Output transitive closure G* of G
I« 1
for all v € G.vertices()
denote v as v,
< 1+1
G,« G
for k< 1tondo
G, <G, ,
fori« 1ton (i #k)do
forj«< 1ton (] #i,k)do
if G, _,.areAdjacent(v;, v,) A
G, _,.areAdjacent(v,, v;)
iIf =G,.areAdjacent(v;, v;)
G,.insertDirectedEdge(v
return G,

i1vj1

K)

Directed Graphs

14




Floyd-Warshall Example

Directed Graphs

15




Floyd-Warshall, Iteration 1




Floyd-Warshall, Iteration 2




Floyd-Warshall, Iteration 3




Floyd-Warshall, Iteration 4




Floyd-Warshall, Iteration 5




Floyd-Warshall, Iteration 6




Floyd-Warshall, Conclusion




N

®

&

Theorem

DAGs and Topological Ordering

A directed acyclic graph (DAG) is a @ e

digraph that has no directed cycles @

A topological ordering of a digraph
IS @ numbering G
Vi, ooV,
of the vertices such that for every e DAG G
edge (v;, V), we have i <]
Example: in a task scheduling Vy Ve

digraph, a topological ordering a
task sequence that satisfies the Vs
precedence constraints

A digraph admits a topological

ordering if and only if it is a DAG Topological

ordering of G
Directed Graphs 23




Topological Sorting

N

& Number vertices, so that (u,v) in E impliesu <v

1 A typical student day
2 3
. C_eat )
study computer sci.

4 5

>

(play)—
write c.s. program 6

9 C_work out>
make cookies
for professors
10
(Sleep> 11

dream about grap}

Directed Graphs 24




lgorithm for Topological Sorting

f

A

@ Note: This algorithm is different than the
one in Goodrich-Tamassia

Method TopologicalSort(G)

He«G I/l Temporary copy of G

n <« G.numVertices()

while H is not empty do
Let v be a vertex with no outgoing edges
Label v« n
Nen-1
Remove v from H

# Running time: O(n + m). How...?

Directed Graphs 25




N

€® Simulate the algorithm by using
depth-first search

Topological Sorting
Algorithm using DFS

Algorithm topologicalDFS(G)
Input dag G

Output topological ordering of G
n <~ G.numVertices()

for all u € G.vertices()
setLabel(u, UNEXPLORED)
for all e € G.edges()
setLabel(e, UNEXPLORED)
for all v e G.vertices()
if getLabel(v) = UNEXPLORED
topological DFS(G, v)

€ O(n+m) time.

Algorithm topologicalDFS(G, v)

Input graph G and a start vertex v of G

Output labeling of the vertices of G
in the connected component of v

setLabel(v, VISITED)
for all e € G.incidentEdges(v)
if getLabel(e) = UNEXPLORED
W <« opposite(v,e)
if getLabel(w) = UNEXPLORED
setLabel(e, DISCOVERY)
topological DFS(G, w)
else
{e is a forward or cross edge}
Label v with topological number n
Ne<n-1

Directed Graphs 26




N

‘Topological Sorting Example

Directed Graphs

27




.Topological Sorting Example

28




.Topological Sorting Example

29




.Topological Sorting Example

30




.Topological Sorting Example

31




.Topological Sorting Example

32




.Topological Sorting Example

33




.Topological Sorting Example

34




.Topological Sorting Example

35




.Topological Sorting Example

36




TeAoc EvoTnTac

EMIXEIPHIIAKO MPOFPAMMA Ezn
EKMAIAEYEH KAl AIA BIOY MAGHEH — w%

T : - 2007-2013
=m
YNOYPIEIO NAIAEIAL & GPHEKEYMATON. NOAITIEMOY & ABAHTIZMOY  EYPONAIKO KOINONIKO TAMEIO
EvpumdikiEvwon EI!AIKH YMHPEZIA AIAXEIPIIHE

Eupuwnaiké Korvenis Tapeis
. Me tn ouyxpnuatodétnon g EAAadag ka g Evpwnaixrg Evwang

OO




XpnuatodoTnon

To napov eknaldeuTiko UAIKO €€l avanTuxOei oTa nAaioia Tou
eknal®euTIKOU €pyou Tou O10AoKovTa.

To €pyo «Avoikta Akadnuaika Maénuarta oTo MavenioTnuIo
KpnTnc» £xel xpnuaTtodoTnoel Jovo Tn avadiauopPpwan Tou
eKNal®euUTIKOU UAIKOU.

To epyo uhonoieiTal oTo nAaioio Tou Enixeipnoiakou MpoypappaTtog
«Eknaideuon kai Aia Biou Maénon» kai ouyxpnuatodoTEiTal ano
TNV Eupwnaikn 'Evwon (Eupwnaiko Koivwviko Taueio) kar ano
£0vIKOUC NOpouC.

EMIXEIPHEIAKO NMPOIPAMMA

*

R EKMAIAEYZH KAI AlA BIOY MAGHZH / Ez nA

x ™ ErLEVIYEN STV UOYWVid TNE YVWON 2007-2013
* 5 Kk E“ npéypappa ya tv avdntuén

YONOYPFEIO MAIAEIAZ KAl BPHIKEYMATQON EYPanAiko KOINQONIKO TAMEIO

Evpwnaikn ‘Evwon EIAIKH YIMHPEZIA AIAXEIPIZHZX

E 6 K 5 Tauei
vpUnAo Tolvivie@ THES Mme N ouyxpnpatodotnon tn¢ EAAGdag kat tn¢g Evpwnaikig ‘Evwong

*
*




2NUEIWUATA



2NUEiwpa adeiodoTnong

« To napov UAIKO OlaTiBeTal HE TOug opouq TN¢ adesiac xpnong Creative Commons
Avacpopa Mn Epnopikn Xpnon, Oxi I'Iapaywyo Epyo 4.0 [1] N psmysvsmspn,
Alsevnq 'Ekdoon. EEcupOUVTcu Td CIUTOTE)\r] epya TpITO)V Mn.x. cpo)Toypacplsq,
6|aypa|JuaTa K.A.M, T0 onoia sunsplsxowm O€ QuTO Kal Ta onoia ava(pspovml
padi pe Touc OpouC xpncnq TOUC 0TO «Znueiwpa Xpnong ‘Epywv Tpitwv».

©OS0)

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

« Q¢ Mn Eunopikn opileTal n xpnon:
— nou Ogv nNePIAAPBAVEI AUETO 1 EYUETO OIKOVOUIKO OPEAOC anod TNV XPnon Tou £pyou,
yia To dlavopuEa Tou £pyou kal adelodoxo

— nou 0ev nepIAapBavel oikovopikn ouvaliayn wc npolndBeaon yia Tn xpnon n
npooBacn oTo £pYo

— nou 0ev npoonopilel oTo SlIAVOUEa TOU £pyou Kal adelodOX0 EPHETO OIKOVOUIKO OPENOC
(n.x. dlapnuioceic) anod TV NPoBoAr Tou Epyou o€ 01adIKTUAKO TOMO

« O dikalouxoc unopei va napexel otov adelodoxo EExwpioTn adeia va XpnoIUOonoIEi
TO £PYO YIA EUMOPIKN XpNon, EPOoov auTto Tou {NTNOEI.



>nueiwpa Avagopdc

Copyright Maveniotnuio Kpntnc, Iwavvnc ToAANg 2015. «AAyopiBuol
kal noAunAokotnTa. Directed Graphs». 'Ekdoon: 1.0. HpakAgio 2015.
AlaB@eoipo ano tn dikTuakn dleubuvon:

https://opencourses.uoc.gr/courses/course/view.php?id=368



https://opencourses.uoc.gr/courses/course/view.php?id=368

AlaTnpnon ZNUEIWUATWV

OnoladnnoTe avanapaywyn n dl1aokeun Tou UAIkoU Ba npenel va
oupnepIAaupavelr:

= TO Znueiwpa Avagopdac

= TO Znueiwpa AdeiodoTnoNG
= TN ONAWoN AIaTrpNonNg ZNUEIWPATWV
= TO 2nueiwpa Xpnonc Epywv Tpitwv (EpOocov unapxel)

uadi e TOUC OUVOOEUOPEVOUC UNEPOUVOETIOUC.



