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Outline and Reading (86.4)

N

& Reachability (86.4.1) }
= Directed DFS ﬁ/
= Strong connectivity

% Transitive closure (86.4.2)
= The Floyd-Warshall Algorithm

# Directed Acyclic Graphs (DAG's) (86.4.4)
= Topological Sorting
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Digraphs

N

€ A digraph is a graph
whose edges are all
directed
= Short for “directed graph”
@ Applications
= One-way streets
= flights
= task scheduling
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Digraph Properties

& A graph G=(V,E) such that

= Each edge goes in one direction:
+ Edge (a,b) goes from a to b, but not b to a.

& If G is simple, m < n(n-1).
& If we keep in-edges and out-edges in separate
adjacency lists, we can perform listing of of

the sets of in-edges and out-edges Iin time
proportional to their size.
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Digraph Application

/0 Scheduling: edge (a,b) means task a must be
completed before b can be started

ics21 ics22 ics23
v

The good life
5
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Directed DFS

N

& \We can specialize the
traversal algorithms (DFS and
BFS) to digraphs by
traversing edges only along
their direction

# In the directed DFS

algorithm, we have four
types of edges

= discovery edges
= back edges
s forward edges
m Cross edges
@ A directed DFS starting at a

vertex s determines the
vertices reachable from s
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/Reachability ﬂ

#DFS tree rooted at v: vertices reachable
from v via directed paths

e
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Strong Connectivity i

#Each vertex can reach all other vertices
/@g\
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Strong Connectivity

N

Algorithm

& Pick a vertex v in G.

€ Perform a DFS from v in G.
= If there’s a w not visited, print “no”.

@ Let G’ be G with edges reversed.
@ Perform a DFS from v in G'.

= If there’'s a w not visited, print “no”.
= Else, print “yes”.

€ Running time: O(n+m).

Directed Graphs




Strongly Connected
Components

N
\J

€ Maximal subgraphs such that each vertex can reach

all other vertices in the subgraph

€ Can also be done in O(n+m) time using DFS, but is
more compllcated (similar to blconnectlwty)

Directed Graphs
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{f,d,e,b}
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Transitive Closure

N

& Given a digraph G, the
transitive closure of G is the
digraph G* such that

s G* has the same vertices
as G

s If G has a directed path
fromu tov (u #v), G*
has a directed edge from
utov

€ The transitive closure
provides reachability
Information about a digraph

Directed Graphs
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Computing the

Transitive Closure

" & We can perform
DFS starting at
each vertex

= O(n(n+m))

If there's a way to get
from A to B and from
B to C, then there's a

way to get from A to C.

®Alternatively ... Use
dynamic programming:
the Floyd-Warshall
Algorithm
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Floyd-Warshall
Transitive Closure

N

jtldea #1: Number the vertices 1, 2, ..., n.

€ ldea #2: Consider paths that use only
vertices numbered 1, 2, ..., k, as

Intermediate vertices:
Uses only vertices numbered 1,...,k
(add this edge if it's not already in)

—
~~~
_—

Uses only vertices

numbered 1,... k-1 Uses only vertices

numbered 1,...,k-1
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Floyd-Warshall's algorithm
numbers the vertices of G as
Vi, ..., V, and computes a
series of digraphs G, ..., G,
u GO:G
= G, has a directed edge (v, v)
if G has a directed path from
v; to v; with intermediate
vertices in the set {v,, ..., v}

® We have that G, = G*

® In phase k, digraph G, is
computed from G, _,

€ Running time: O(n3),
assuming areAdjacent is O(1)
(e.g., adjacency matrix)

Floyd-Warshall's Algorithm

Algorithm FloydWarshall(G)
Input digraph G
Output transitive closure G* of G
I« 1
for all v € G.vertices()
denote v as v,
< 1+1
G,« G
for k< 1tondo
G, <G, ,
fori« 1ton (i #k)do
forj«< 1ton (] #i,k)do
if G, _,.areAdjacent(v;, v,) A
G, _,.areAdjacent(v,, v;)
iIf =G,.areAdjacent(v;, v;)
G,.insertDirectedEdge(v
return G,

i1vj1

K)

Directed Graphs
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Floyd-Warshall Example

Directed Graphs
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Floyd-Warshall, Iteration 1




Floyd-Warshall, Iteration 2




Floyd-Warshall, Iteration 3




Floyd-Warshall, Iteration 4




Floyd-Warshall, Iteration 5




Floyd-Warshall, Iteration 6




Floyd-Warshall, Conclusion
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Theorem

DAGs and Topological Ordering

A directed acyclic graph (DAG) is a @ e

digraph that has no directed cycles @

A topological ordering of a digraph
IS @ numbering G
Vi, ooV,
of the vertices such that for every e DAG G
edge (v;, V), we have i <]
Example: in a task scheduling Vy Ve

digraph, a topological ordering a
task sequence that satisfies the Vs
precedence constraints

A digraph admits a topological

ordering if and only if it is a DAG Topological

ordering of G
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Topological Sorting

N

& Number vertices, so that (u,v) in E impliesu <v

1 A typical student day
2 3
. C_eat )
study computer sci.

4 5

>

(play)—
write c.s. program 6

9 C_work out>
make cookies
for professors
10
(Sleep> 11

dream about grap}
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lgorithm for Topological Sorting

f

A

@ Note: This algorithm is different than the
one in Goodrich-Tamassia

Method TopologicalSort(G)

He«G I/l Temporary copy of G

n <« G.numVertices()

while H is not empty do
Let v be a vertex with no outgoing edges
Label v« n
Nen-1
Remove v from H

# Running time: O(n + m). How...?
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€® Simulate the algorithm by using
depth-first search

Topological Sorting
Algorithm using DFS

Algorithm topologicalDFS(G)
Input dag G

Output topological ordering of G
n <~ G.numVertices()

for all u € G.vertices()
setLabel(u, UNEXPLORED)
for all e € G.edges()
setLabel(e, UNEXPLORED)
for all v e G.vertices()
if getLabel(v) = UNEXPLORED
topological DFS(G, v)

€ O(n+m) time.

Algorithm topologicalDFS(G, v)

Input graph G and a start vertex v of G

Output labeling of the vertices of G
in the connected component of v

setLabel(v, VISITED)
for all e € G.incidentEdges(v)
if getLabel(e) = UNEXPLORED
W <« opposite(v,e)
if getLabel(w) = UNEXPLORED
setLabel(e, DISCOVERY)
topological DFS(G, w)
else
{e is a forward or cross edge}
Label v with topological number n
Ne<n-1
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‘Topological Sorting Example

Directed Graphs
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.Topological Sorting Example
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.Topological Sorting Example
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.Topological Sorting Example

30




.Topological Sorting Example
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.Topological Sorting Example
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.Topological Sorting Example
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.Topological Sorting Example
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.Topological Sorting Example
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.Topological Sorting Example
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TeAoc EvoTnTac

EMIXEIPHIIAKO MPOFPAMMA Ezn
EKMAIAEYEH KAl AIA BIOY MAGHEH — w%

T : - 2007-2013
=m
YNOYPIEIO NAIAEIAL & GPHEKEYMATON. NOAITIEMOY & ABAHTIZMOY  EYPONAIKO KOINONIKO TAMEIO
EvpumdikiEvwon EI!AIKH YMHPEZIA AIAXEIPIIHE

Eupuwnaiké Korvenis Tapeis
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XpnuatodoTnon

To napov eknaldeuTiko UAIKO €€l avanTuxOei oTa nAaioia Tou
eknal®euTIKOU €pyou Tou O10AoKovTa.

To €pyo «Avoikta Akadnuaika Maénuarta oTo MavenioTnuIo
KpnTnc» £xel xpnuaTtodoTnoel Jovo Tn avadiauopPpwan Tou
eKNal®euUTIKOU UAIKOU.

To epyo uhonoieiTal oTo nAaioio Tou Enixeipnoiakou MpoypappaTtog
«Eknaideuon kai Aia Biou Maénon» kai ouyxpnuatodoTEiTal ano
TNV Eupwnaikn 'Evwon (Eupwnaiko Koivwviko Taueio) kar ano
£0vIKOUC NOpouC.

EMIXEIPHEIAKO NMPOIPAMMA

*

R EKMAIAEYZH KAI AlA BIOY MAGHZH / Ez nA

x ™ ErLEVIYEN STV UOYWVid TNE YVWON 2007-2013
* 5 Kk E“ npéypappa ya tv avdntuén

YONOYPFEIO MAIAEIAZ KAl BPHIKEYMATQON EYPanAiko KOINQONIKO TAMEIO

Evpwnaikn ‘Evwon EIAIKH YIMHPEZIA AIAXEIPIZHZX

E 6 K 5 Tauei
vpUnAo Tolvivie@ THES Mme N ouyxpnpatodotnon tn¢ EAAGdag kat tn¢g Evpwnaikig ‘Evwong

*
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2NUEIWUATA



2NUEiwpa adeiodoTnong

« To napov UAIKO OlaTiBeTal HE TOug opouq TN¢ adesiac xpnong Creative Commons
Avacpopa Mn Epnopikn Xpnon, Oxi I'Iapaywyo Epyo 4.0 [1] N psmysvsmspn,
Alsevnq 'Ekdoon. EEcupOUVTcu Td CIUTOTE)\r] epya TpITO)V Mn.x. cpo)Toypacplsq,
6|aypa|JuaTa K.A.M, T0 onoia sunsplsxowm O€ QuTO Kal Ta onoia ava(pspovml
padi pe Touc OpouC xpncnq TOUC 0TO «Znueiwpa Xpnong ‘Epywv Tpitwv».

©OS0)

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

« Q¢ Mn Eunopikn opileTal n xpnon:
— nou Ogv nNePIAAPBAVEI AUETO 1 EYUETO OIKOVOUIKO OPEAOC anod TNV XPnon Tou £pyou,
yia To dlavopuEa Tou £pyou kal adelodoxo

— nou 0ev nepIAapBavel oikovopikn ouvaliayn wc npolndBeaon yia Tn xpnon n
npooBacn oTo £pYo

— nou 0ev npoonopilel oTo SlIAVOUEa TOU £pyou Kal adelodOX0 EPHETO OIKOVOUIKO OPENOC
(n.x. dlapnuioceic) anod TV NPoBoAr Tou Epyou o€ 01adIKTUAKO TOMO

« O dikalouxoc unopei va napexel otov adelodoxo EExwpioTn adeia va XpnoIUOonoIEi
TO £PYO YIA EUMOPIKN XpNon, EPOoov auTto Tou {NTNOEI.



>nueiwpa Avagopdc

Copyright Maveniotnuio Kpntnc, Iwavvnc ToAANg 2015. «AAyopiBuol
kal noAunAokotnTa. Directed Graphs». 'Ekdoon: 1.0. HpakAgio 2015.
AlaB@eoipo ano tn dikTuakn dleubuvon:

https://opencourses.uoc.gr/courses/course/view.php?id=368



https://opencourses.uoc.gr/courses/course/view.php?id=368

AlaTnpnon ZNUEIWUATWV

OnoladnnoTe avanapaywyn n dl1aokeun Tou UAIkoU Ba npenel va
oupnepIAaupavelr:

= TO Znueiwpa Avagopdac

= TO Znueiwpa AdeiodoTnoNG
= TN ONAWoN AIaTrpNonNg ZNUEIWPATWV
= TO 2nueiwpa Xpnonc Epywv Tpitwv (EpOocov unapxel)

uadi e TOUC OUVOOEUOPEVOUC UNEPOUVOETIOUC.



