=

l(f('i:“;?\‘*% EAAHNIKH AHMOKPATIA
S\ ‘,_-‘,3‘?;3”

= NMANEMIZTHMIO KPHTHz2

AAyopi10uol ka1 noAunAokoTnTa
NP-Completeness

Iwavvng TOANG
Tunua Emotnung YnoAoyioTwv

\V

NP-Completeness

11 13 21 23 31 33

/4

NP-Completeness

Outline and Reading

P and NP (§13.1)
= Definition of P
= Definition of NP
= Alternate definition of NP

N

& NP-completeness (§13.2)

= Definition of NP-hard and NP-complete
= The Cook-Levin Theorem

NP-Completeness

N

Running Time Revisited

@ Input size, n
= TO be exact, let /7 denote the number of bits in a nonunary
encoding of the input
@ All the polynomial-time algorithms studied so far in this
course run in polynomial time using this definition of
iInput size.

= Exception: any pseudo-polynomial time algorithm

NP-Completeness 3

N

Dealing with Hard Problems

#\What to do when we find a problem
that looks hard...

<

I couldnt find a polynomial-time algorithm;
I guess I'm too dumb.

NP-CompIeteness (cartoon inspired by [Garey-Johnson, 79]) 4

N

Dealing with Hard Problems

#Sometimes we can prove a strong lower
bound... (but not usually)

=

I couldn’t find a polynomial-time algorithm,
because no such algorithm exists!

NP-CompIeteness (cartoon inspired by [Garey-Johnson, 79]) §

N

Dealing with Hard Problems

®NP-completeness let’s us show

I couldnt find a polynomial-time algorithm,

but neither could all these other smart people.
NP-CompIeteness (cartoon inspired by [Garey-Johnson, 79]) g

Polynomial-Time

Decision Problems

N

@ To simplify the notion of “hardness,” we will
focus on the following:
= Polynomial-time as the cut-off for efficiency

= Decision problems: output is 1 or 0 (“yes” or "no”)
+ Examples:
» Does a given graph G have an Euler tour?
+ Does a text T contain a pattern P?

» Does an instance of 0/1 Knapsack have a solution with
benefit at least K?

* Does a graph G have an MST with weight at most K?

NP-Completeness 7

%

N

Problems and Languages

_

€ A language L is a set of strings defined over some
alphabet 2

€ Every decision algorithm A defines a language L
= L is the set consisting of every string x such that A outputs

“yes” on input x.
= We say “A accepts x" in this case
+ Example:

» If A determines whether or not a given graph G has an
Euler tour, then the language L for A is all graphs with
Euler tours.

NP-Completeness

N

The Complexity Class P

€ A complexity class is a collection of languages

@ P is the complexity class consisting of all languages
that are accepted by polynomial-time algorithms

@ For each language L in P there is a polynomial-time
decision algorithm A for L.
s If n=|x|, for x in L, then A runs in p(n) time on input x.
= The function p(n) is some polynomial

NP-Completeness

The Complexity Class NP &li

& We say that an algorithm is non-deterministic if it
uses the following operation:
= Choose(b): chooses a bit b
= Can be used to choose an entire string y (with |y| choices)

€ We say that a non-deterministic algorithm A accepts
a string x if there exists some sequence of choose
operations that causes A to output “yes” on input x.

€ NP is the complexity class consisting of all languages
accepted by polynomial-time non-deterministic
algorithms.

NP-Completeness 10

NP example

| N

N

® Problem: Decide if a graph has an MST of weight K

€ Algorithm:
1. Non-deterministically choose a set T of n-1 edges
2. Test that T forms a spanning tree
3. Test that T has weight at most K

€ Analysis: Testing takes O(n+m) time, so this
algorithm runs in polynomial time.

NP-Completeness 11

The Complexity Class NP
Aélternate Definition

NP

€ We say that an algorithm B verfies the acceptance
of a language L if and only if, for any x in L, there
exists a certificate y such that B outputs “yes” on
input (X,y).

@ NP is the complexity class consisting of all languages
verified by polynomial-time algorithms.

& We know: P is a subset of NP.
€ Major open question: P=NP?
& Most researchers believe that P and NP are different.

NP-Completeness 12

NP

NP example (2)

N

® Problem: Decide if a graph has an MST of weight K

€ \Verification Algorithm:
1. Use as a certificate, y, a set T of n-1 edges

2. Test that T forms a spanning tree
3. Test that T has weight at most K

€ Analysis: Verification takes O(n+m) time, so this
algorithm runs in polynomial time.

NP-Completeness 13

Equivalence of the

Two Definitions &li

N

@ Suppose A is a non-deterministic algorithm

€ Let y be a certificate consisting of all the outcomes of the
choose steps that A uses

€ We can create a verification algorithm that uses y instead of
A’s choose steps

® If A accepts on x, then there is a certificate y that allows us to
verify this (namely, the choose steps A made)

® If A runs in polynomial-time, so does this verification
algorithm
@ Suppose B is a verification algorithm
® Non-deterministically choose a certificate y
& RunBony

® If B runs in polynomial-time, so does this non-deterministic
algorithm

NP-Completeness 14

N

An Interesting Problem

@ A Boolean circuit is a circuit of AND, OR, and NOT
gates; the CIRCUIT-SAT problem is to determine if
there is an assignment of 0’s and 1’s to a circuit’s
inputs so that the circuit outputs 1.

Logic Gates:

D@ NOT

Inputs:

NP-Completeness 15

N

CIRCUIT-SAT is in NP

& Non-deterministically choose a set of inputs and the
outcome of every gate, then test each gate’s I/0.

Logic Gates: 0 1 0
1
>0 NOT
1 1
0 _A’DOL' Output:
D - .
1 0 0 1

AND

NP-Completeness 16

N

NP-Completeness

" @A problem (language) L is NP-hard if every
problem in NP can be reduced to L in
polynomial time.

@ That is, for each language M in NP, we can

take an input x for M, transform it in
polynomial time to an input x’ for L such that
x is in M if and only if x"is in L.

L is NP-complete if it's in NP and is NP-hard.

NP-Completeness 17

Cook-Levin Theorem

N
\J

& CIRCUIT-SAT is NP-complete.
= We already showed it is in NP.

@ To prove it is NP-hard, we have to show that every
language in NP can be reduced to it.
= Let M be in NP, and let x be an input for M.

s Let y be a certificate that allows us to verify membership in M in
polynomial time, p(n), by some algorithm D.

= Let S be a circuit of size at most O(p(n)?2) that simulates a
computer (details omitted...)

= A

NP-Completeness

Cook-Levin Proof

’F\

We can build a circuit that S|mulates the verification of x s

membership in M using y.™

Let W be the working storage
for D (including registers,
such as program counter); let
D be given in RAM “machine
code.”

Simulate p(n) steps of D by
replicating circuit S for each
step of D. Only input: v.
Circuit is satisfiable if and only
if x is accepted by D with
some certificate y

Total size is still polynomial:
O(p(n)?).

<p(n)
cells

] s P,

r———

AN

i\

0TI T

NI

———n

p(n)

r———

NP-Completeness

steps

19

Some Thoughts
‘about P and NP

NP-complete
problems live here

NP

N

® & @

Belief: P is a proper subset of NP.

Implication: the NP-complete problems are the hardest in NP,

Why: Because if we could solve an NP-complete problem in
polynomial time, we could solve every problem in NP in polynomial
time.

That is, if an NP-complete problem is solvable in polynomial time,
then P=NP.

Since so many people have attempted without success to find
polynomial-time solutions to NP-complete problems, showing your
problem is NP-complete is equivalent to showing that a lot of smart
people have worked on your problem and found no polynomial-
time algorithm.

NP-Completeness 20

TeAoc EvoTnTac

EMIXEIPHIIAKO MPOFPAMMA Ezn
EKMAIAEYEH KAl AIA BIOY MAGHEH — w%

T : - 2007-2013
=m
YNOYPIEIO NAIAEIAL & GPHEKEYMATON. NOAITIEMOY & ABAHTIZMOY EYPONAIKO KOINONIKO TAMEIO
EvpumdikiEvwon EI!AIKH YMHPEZIA AIAXEIPIIHE

Eupuwnaiké Korvenis Tapeis
. Me tn ouyxpnuatodétnon g EAAadag ka g Evpwnaixrg Evwang

OO

XpnuatodoTnon

To napov eknaldeuTiko UAIKO €€l avanTuxOei oTa nAaioia Tou
eknal®euTIKOU €pyou Tou O10AoKovTa.

To €pyo «Avoikta Akadnuaika Maénuarta oTo MavenioTnuIo
KpnTnc» £xel xpnuaTtodoTnoel Jovo Tn avadiauopPpwan Tou
eKNal®euUTIKOU UAIKOU.

To epyo uhonoieiTal oTo nAaioio Tou Enixeipnoiakou MpoypappaTtog
«Eknaideuon kai Aia Biou Maénon» kai ouyxpnuatodoTEiTal ano
TNV Eupwnaikn 'Evwon (Eupwnaiko Koivwviko Taueio) kar ano
£0vIKOUC NOpouC.

EMIXEIPHEIAKO NMPOIPAMMA

*

R EKMAIAEYZH KAI AlA BIOY MAGHZH / Ez nA

x ™ ErLEVIYEN STV UOYWVid TNE YVWON 2007-2013
* 5 Kk E“ npéypappa ya tv avdntuén

YONOYPFEIO MAIAEIAZ KAl BPHIKEYMATQON EYPanAiko KOINQONIKO TAMEIO

Evpwnaikn ‘Evwon EIAIKH YIMHPEZIA AIAXEIPIZHZX

E 6 K 5 Tauei
vpUnAo Tolvivie@ THES Mme N ouyxpnpatodotnon tn¢ EAAGdag kat tn¢g Evpwnaikig ‘Evwong

*
*

2NUEIWUATA

2NUEiwpa adeiodoTnong

« To napov UAIKO OlaTiBeTal HE TOug opouq TN¢ adesiac xpnong Creative Commons
Avacpopa Mn Epnopikn Xpnon, Oxi I'Iapaywyo Epyo 4.0 [1] N psmysvsmspn,
Alsevnq 'Ekdoon. EEcupOUVTcu Td CIUTOTE)\r] epya TpITO)V Mn.x. cpo)Toypacplsq,
6|aypa|JuaTa K.A.M, T0 onoia sunsplsxowm O€ QuTO Kal Ta onoia ava(pspovml
padi pe Touc OpouC xpncnq TOUC 0TO «Znueiwpa Xpnong ‘Epywv Tpitwv».

©OS0)

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

« Q¢ Mn Eunopikn opileTal n xpnon:
— nou Ogv nNePIAAPBAVEI AUETO 1 EYUETO OIKOVOUIKO OPEAOC anod TNV XPnon Tou £pyou,
yia To dlavopuEa Tou £pyou kal adelodoxo

— nou 0ev nepIAapBavel oikovopikn ouvaliayn wc npolndBeaon yia Tn xpnon n
npooBacn oTo £pYo

— nou 0ev npoonopilel oTo SlIAVOUEa TOU £pyou Kal adelodOX0 EPHETO OIKOVOUIKO OPENOC
(n.x. dlapnuioceic) anod TV NPoBoAr Tou Epyou o€ 01adIKTUAKO TOMO

« O dikalouxoc unopei va napexel otov adelodoxo EExwpioTn adeia va XpnoIUOonoIEi
TO £PYO YIA EUMOPIKN XpNon, EPOoov auTto Tou {NTNOEI.

>nueiwpa Avagopdc

Copyright Maveniotnuio Kpntnc, Iwavvnc ToAANg 2015. «AAyopiBuol
kal noAunAokotnta. NP-Completeness». 'Ekdoon: 1.0. HpakAeio 2015.
AlaB@eoipo ano tn dikTuakn dleubuvon:

https://opencourses.uoc.gr/courses/course/view.php?id=368

https://opencourses.uoc.gr/courses/course/view.php?id=368

AlaTnpnon ZNUEIWUATWV

OnoladnnoTe avanapaywyn n dl1aokeun Tou UAIkoU Ba npenel va
oupnepIAaupavelr:

= TO Znueiwpa Avagopdac

= TO Znueiwpa AdeiodoTnoNG
= TN ONAWoN AIaTrpNonNg ZNUEIWPATWV
= TO 2nueiwpa Xpnonc Epywv Tpitwv (EpOocov unapxel)

uadi e TOUC OUVOOEUOPEVOUC UNEPOUVOETIOUC.

