A Security Enforcement Kernel for OpenFlow Networks

Phillip Porrast

Martin Fong*
t SRl International

Seungwon Shin?
Mabry Tysont

Vinod Yegneswarant

Guofei Gu!
 Texas A&M University

{porras, vinod, mwfong}@csl.sri.com {swshin, guofei}@cse.tamu.edu
{mabry.tyson}@sri.com

ABSTRACT

Software-defined networks facilitate rapid and open innovation at
the network control layer by providing a programmable network in-
frastructure for computing flow policies on demand. However, the
dynamism of programmable networks also introduces new security
challenges that demand innovative solutions. A critical challenge
is efficient detection and reconciliation of potentially conflicting
flow rules imposed by dynamic OpenFlow (OF) applications. To
that end, we introduce FortNOX, a software extension that provides
role-based authorization and security constraint enforcement for
the NOX OpenFlow controller. FortNOX enables NOX to check
flow rule contradictions in real time, and implements a novel anal-
ysis algorithm that is robust even in cases where an adversarial
OF application attempts to strategically insert flow rules that would
otherwise circumvent flow rules imposed by OF security applica-
tions. We demonstrate the utility of FortNOX through a prototype
implementation and use it to examine performance and efficiency
aspects of the proposed framework.

Categories and Subject Descriptors

C.2.6 [COMPUTER-COMMUNICATION NETWORKS]: In-
ternetworking

General Terms
Software-Defined Networking, Security

Keywords

OpenFlow, Security, Policy Enforcement

1. INTRODUCTION

Dynamic network orchestration, driven by the benefits for elas-
ticity of server and desktop virtualization, delivers computing re-
sources and network services on demand, spawned and recycled in
reaction to network service requests. Frameworks such as Open-
Flow (OF), which embrace the paradigm of highly programmable
switch infrastructures [14], compute optimal flow routing rules

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

HotSDN’12, August 13, 2012, Helsinki, Finland.

Copyright 2012 ACM 978-1-4503-1477-0/12/08 ...$15.00.

from remote clients to virtually spawned computing resources. Here,
the question of what network security policy is embodied across a

set of OF switches is entirely a function of how the current set of

OF applications will react to the incoming stream of flow requests.

As the state of an OF switch must be continually reprogrammed to

address the current flows, the question of what policy was embod-

ied in the switch 5 minutes prior is as elusive to discern as what the

policy will be 5 minutes into the future.

Within the OpenFlow community, the need for security policy
enforcement is not lost. Efforts to develop virtual network slic-
ing, such as in FlowVisor [22] and in the Beacon OpenFlow con-
troller [18], propose to enable secure network operations by seg-
menting, or slicing, network control into independent virtual ma-
chines. Each network domain is governed by a self-consistent OF
application, which is architected to not interfere with OF applica-
tions that govern other network slices. In this sense, OpenFlow se-
curity is cast as a non-interference property. However, even within
a given network slice the problem remains that a network opera-
tor may still want to instantiate network security constraints that
must be enforced within the slice. In this paper, we assert not only
that reconciliation of the needs for well-defined security policy en-
forcement can occur within the emerging software-defined network
paradigm, but also that this paradigm offers the opportunity for rad-
ically new innovations in dynamic network defense.

The FortNOX Enforcement Kernel. We introduce a new security
policy enforcement kernel (called FortNOX) as an extension to the
open source NOX OpenFlow controller [10]. FortNOX incorpo-
rates a live rule conflict detection engine, which mediates all Open-
Flow rule insertion requests. A rule conflict is said to arise when the
candidate OpenFlow rule enables or disables a network flow that is
otherwise inversely prohibited (or allowed) by existing rules. Rule
conflict analysis is performed using a novel algorithm, which we
call alias set rule reduction, that detects rule contradictions, even
in the presence of dynamic flow tunneling using set and goto ac-
tions. When such conflicts are detected, FortNOX may choose to
accept or reject the new rule, depending on whether the rule in-
sertion requester is operating with a higher security authorization
than that of the authors of the existing conflicting rules. FortNOX
implements role-based authentication for determining the security
authorization of each OF applications (rule producer), and enforces
the principle of least privilege to ensure the integrity of the media-
tion process.

Contributions. In summary, our paper makes the following con-
tributions:

e Presentation of the security enforcement challenge in Open-

(3)\\\(4)
BLOCK10.0.0.2 > 10.0.0.4:80

10.0.0.2 > 10.0.0.3:80; Modify SRC IP t0 10.0.0.1
10.0.0.1 > 20.0.0.3:80; Modify DST IP t0 10.0.0.4
10.0.0.1 > 10.0.0.4:80; Forward
OF controller
| 4

5
. 10.00.2 > 10.0.0.3:80 l\J 2) - 10.0.0.1 > 10.0.0.4%
10.0.0.2 (1) OF switch (5)

Figure 1: Dynamic Flow Tunneling Scenario

Flow networks and the need for a security enforcement ker-
nel at the controller.

e Extension of NOX to support role-based OF application au-
thentication through digital signatures.

e Development of a novel alias-set rule reduction algorithm for
instantaneous and accurate validation of flow-rule contradic-
tions, including those with set and goto actions.

e A prototype implementation of FortNOX and a preliminary
performance evaluation of its overhead. Information regard-
ing our reference implementation of FortNOX is available at
http://www.openflowsec.org.

2. SECURITY POLICY-ENFORCEMENT
CHALLENGE IN SOFTWARE-DEFINED
NETWORKS

Security Policy in software-defined networks (SDNs) is a func-
tion of what connection requests are received by OF applications.
OF applications may compete, contradict, override one another, in-
corporate vulnerabilities or possibly be written by adversaries. In
the worst case an adversary can use the deterministic OF applica-
tion to control the state of all OF switches in the network. The
possibility of multiple (custom and third-party) OpenFlow applica-
tions running on a network controller device introduces a unique
policy enforcement challenge: since different applications may in-
sert different control policies dynamically, how does the OF con-
troller guarantee that they are not in conflict with each other?

Consider a simple evasion scenario, which we call dynamic-flow
tunneling, illustrated in Figure 1, that contains three hosts, one OF
switch, and one OF controller. A firewall (which can be easily im-
plemented as an OF security application) is used that has a rule to
block network packets from the outside host 10.0.0.2 to the web
service (port 80) running on the internal host 10.0.0.4. Assume
now that some other OF application adds three new flow rules to
the OF controller that are linked by GOTO TABLE directives [17].
The first rule modifies the source IP address of a packet to 10.0.0.1
if a packet is delivered from 10.0.0.2 to 10.0.0.3 (port 80). The sec-
ond rule changes the destination IP address of a packet to 10.0.0.4
if a packet is delivered from 10.0.0.1 to 10.0.0.3 (port 80). The final
rule simply allows forwarding a packet from 10.0.0.1 to 10.0.0.4 at
port 80. In this case, if the host 10.0.0.2 sends a packet to port
80 of the host 10.0.0.3, this packet can bypass the firewall because
it does not directly go to the host 10.0.0.4 but 10.0.0.3. However,
this packet will be eventually delivered to the host 10.0.0.4 by the
OF controller even if there is a firewall forbidding such traffic. It
clearly shows that one can evade an existing firewall (or an OF ap-
plication implementing the security enforcement) by simply adding

Security
Apps

i ! Native C :
Drectve || Python | OF Apps i
Translator OF Apps ! !
I |

Python SWIG 1]

Unsigned Rules
Signed Rules
IPC Interface
Aggregate Flow Table

send_openflow_command() | OF Mod Commands
Admin Flow Rules Add (conflict enforced)

Role-based Source Auth Modify (conflict enforced)
Delete (priority enforced)
State Table Manager
Conflict Analyzer
Flow Rule Timeout Callback

Separate Process

Security App
Flow Rules

OpenFlow App
Flow Rules

NOX’

{
Gy N

Figure 2: FortNOX Implementation

a few OF flow rules (from some OF applications). While this illus-
trative example is trivial, the real challenge is ensuring that all OF
controller applications do not violate security policies in large real-
world (enterprise/cloud) networks with many OF switches, diverse
OF applications, and complex security policies. Conducting this
kind of job manually is clearly error-prone and challenging.

3. WHAT IS FORTNOX

FortNOX extends the NOX OpenFlow controller by providing
non-bypassable policy-based flow rule enforcement over flow rule
insertion requests from OpenFlow applications. Its goal is to en-
hance NOX with an ability to enforce network flow constraints (ex-
pressed as flow rules) produced by OF-enabled security applica-
tions that wish to reprogram switches in response to perceived run-
time operational threats. Once a flow rule is inserted to FortNOX
by a security application, no peer OF application can insert flow
rules into the OF network that conflict with these rules. Further, it
enables a human administrator to define a strict network security
policy that overrides the set of all dynamically derived flow rules.

By conflict, we refer to one or more candidate flow rules that are
determined to enable a communication flow that is otherwise pro-
hibited by one more existing flow rules. FortNOX’s ability to pre-
vent conflicts is substantially greater than simple overlap detection,
commonly provided in switches. FortNOX comprehends conflicts
among flow rules, even when the conflict involves flow rules that
use set operations to rewrite packet headers in ways that establish
virtual tunnels between two end points. FortNOX resolves con-
flicts in rules by deriving authorization roles using digitally signed
flow rules (Section 3.1), where each application can sign (or not) its
flow rule insertion requests, resulting in a privilege assignment for
the candidate flow rule. In Section 3.3, we describe conflict resolu-
tion among the flow rules from sources with the same or different
authorization roles.

Figure 2 illustrates the components that compose the FortNOX
extension to NOX. At the center of NOX lays an interface called
send_openflow_command(), which is responsible for relaying flow
rules from an OF application to the switch. FortNOX extends this
interface with four components. A Role-based Source Authentica-
tion module provides digital signature validation for each flow rule
insertion request, assigning the appropriate priority to a candidate
flow rule, or the lowest priority if no signature is provided (Sec-
tion 3.1). The Conflict Analyzer is responsible for evaluating each

candidate flow rule against the current set of flow rules within the
Aggregate Flow Table (Section 3.2). If the Conflict Analyzer deter-
mines that the candidate flow rule is consistent with the current net-
work flow rules, the candidate rule is forwarded to the switch and
stored in the aggregate flow table, maintained by the State Table
Manager (Section 3.4). FortNOX adds a flow rule timeout callback
interface to NOX, which updates the aggregate flow table when
switches perform rule expiration.

We add two additional interfaces that enable FortNOX to provide
enforced flow rule mediation. First, we introduce an IPC Proxy,
which enables a legacy native C OF application to be instantiated
as a separate process, and ideally operated from a separate non-
privileged account. The proxy interface adds a digital signature
extension, enabling these applications to sign flow rule insertion
requests, which then enables FortNOX to impose role separations
based on these signatures. Through process separation, we are able
to enforce a least privilege principle in the operation of the con-
trol infrastructure. Through the proxy mechanism, OF applications
may submit new flow rule insertion requests, but these requests are
mediated separately and independently, by the conflict resolution
service operated within the controller.

Finally, in Section 3.5, we describe a security directive transla-
tor, which enables security applications to express flow constraint
policies at a higher layer of abstraction, agnostic to the OF con-
troller, OF protocol version, or switch state. The translator receives
security directives from a security application, then translates the
directive into applicable flow rules, digitally signing these rules,
and forwards them to FortNOX.

3.1 Role-based Source Authentication

FortNOX recognizes by default three authorization roles among
those agents that produce flow rule insertion requests. These roles
may be augmented with sub-roles, as needed when deployed. The
first role is that of human administrators, whose rule insertion re-
quests are assigned the highest priority within FortNOX’s conflict
resolution scheme, as well as the highest flow rule priority attributes
sent to the switch. Second, security applications are assigned a sep-
arate authorization role. These security applications produce flow
rules that may further constrain the administrator’s static network
security policy based on newly perceived runtime threats, such as a
malicious flow, an infected internal asset, a blacklist-worthy exter-
nal entity, or an emergent malicious aggregate traffic pattern. Flow
insertion requests produced by security applications are assigned a
flow rule priority below that of administrator-defined flow rules. Fi-
nally, non-security-related OF applications are assigned the lowest
priority.

Roles are implemented through a digital signature scheme, in
which FortNOX is preconfigured with the public keys of various
rule insertion sources. FortNOX augments NOX’s flow rule inser-
tion interface to incorporate a digital signature per flow request.
If a legacy OF application does not choose to sign its flow rules,
those rules are assigned the default role and priority of a standard
OpenFlow application.

3.2 Alias Set Rule Reduction

To detect a conflict between a newly inserted candidate Open-
Flow rule and the existing OpenFlow rule set, the source and desti-
nation IP addresses, their ports, and wild card members we convert
all rules, including the candidate rule, into a representation we call
alias reduced rules (ARRs), and then perform our conflict analysis
on these ARRs. An alias reduced rule is simply a derivation of the
flow rule in which we expand the rule’s match criteria to explicitly
incorporate set operation transformations and wildcards. An initial

alias set is created, containing the first rule’s IP addresses, network
masks, and ports (where 0 (zero) represents any port). If the rule’s
action causes a field substitution via a set action, the resultant value
is added to the alias set, which is then used to replace the criteria
portion of the ARR. We then conduct a pairwise analysis of the
candidate ARR to the current set of ARRs that represent the active
rule set. If there is an intersection between both the source and ad-
dress sets, the union of the respective sets is used as the subsequent
rule’s alias set. For example, given the OF security rule,

a — b drop packet (1)

its source alias set is (a), while its destination alias set is (b). The
derived rule is

(a) — (b) drop packet 2)

For the candidate (evasion) rule set,

la—cset(a=2a’)
2a —cset(c=Db) 3)
3 a’ — b forward packet

the intermediate alias sets are

la—cset(a=2a) (a,a’)(c)
2a —cset(c=Db) (a,a’)(c,b) (@]
3 a’ — b forward packet (a, a’) (c, b) forward packet

and the derived rule is

(a, a”) = (c, b) forward packet (&)
3.2.1 Rule Set Conflict Evaluation

FortNOX first performs alias set rule reduction on the candidate
rule. These validity checks are then performed between the candi-
date ARR cRule and the set of ARRs representing the active flow
rules fRule, as follows:

1. Skip any cRule/fRule pair with mismatched prototypes.

2. Skip any cRule/fRule pair whose actions are both either for-
ward or drop packet.

3. If cRule’s alias sets intersect those of fRule’s, declare a con-
flict.

Thus, given the example flow description in Equation 2 and the
candidate rule set in Equation 5, assuming that both rules are TCP
protocol, the first candidate rule passes the first two checks. How-
ever, for the third check, because the intersection of the source and
destination alias sets results in (a) and (b), respectively, the candi-
date rule is declared to be in conflict.

As a practical consideration, because OpenFlow rules permit
both wildcard field matches and IP address network masks, deter-
mining alias set intersection involves more than simple membership
equality checks. To accommodate this, we define comparison oper-
ators that determine if a field specification is (i) more encompass-
ing ("wider"), (i2) more specific ("narrower"), (i2¢) equal, or (iv)
unequal. Thus, an intersection occurs when the pairwise compar-
isons between all fields of a candidate rule are wider than, equal to,
or narrower than that of the corresponding fields of the constraint
table rule.

For a formalization of the above, we first define some terms: (i)
S; is the iy, entry of security constraints, (ii) Fj is the 4.5, entry of
flow rules, (iii) SC; ; is the jip item of the 445, entry of the condition
part of security constraint, (iv) SA; is the iz, entry of the action
part of the security constraint, (v) F'C} ; is the ji, item of the i:p
condition part of a flow rule from unprivileged applications, and
(vi) F'A; is the i, action part of the flow rule. At this time, both
SC,; and F'C; ; are sets whose elements are one of the specific
value or some ranges and j € {1,2,...,14}. Rule contradiction is
then formalized using the following notation:

if there is any S;, satisfying SC; ; N FC; ; # © and ©)
SA; # FA;, forall j, thenF; is conflicted with S;

3.3 Conflict Resolution

When the above alias rule reduction algorithm detects a conflict
between an existing rule in the aggregate flow table and a candi-
date flow rule, disposition of the candidate rule is evaluated based
on the authorization roles possessed by the rule insertion source.
If the source of the flow rule insertion request is operating with
an authorization role greater that than of the conflicted rule in the
aggregate flow table, then the new candidate rule overrides the ex-
isting rule. The existing rule is purged from both the aggregate flow
table and the switch, and the candidate rule is inserted into both. If
the source of the insertion request is a source whose authorization
role is lower than that of a conflicting rule in the aggregate flow ta-
ble, then the new candidate rule is rejected, and an error is returned
to the application.

If the source of the insertion requester operates with equal autho-
rization to that of the conflicting rule in the aggregate flow table,
then FortNOX enables the administrator to specify the resolution
outcome. By default, the new rule will override the previous rule.

3.4 State Table Manager

The State Table Manager and Flow Rule Timeout Callback mod-
ules manage the state of all active flow rules that are enforced by
FortNOX, as well as their disposition of the rule with respect to the
switch’s flow table and the authorization role of the rule’s producer.
When a flow rule is successfully inserted into the switch, its ARR
is stored in the aggregate flow table. Rules are deleted through
explicit timers provided through the Security Directives Translator
(below), or when found in conflict with a candidate rule inserted
from a producer operating at a higher authorization level.

When a rule is entered into the aggregate flow table it has the ef-
fect of prohibiting the switch from receiving subsequent flow rules
that conflict with this rule. However, the switch may currently hold
a rule in its flow table that conflicts with the current flow rule. As
stated earlier, the aggregate flow table includes an attribute to in-
dicate which rules are resident in the switch’s flow table. When a
local rule is purged from the aggregate flow table that is also found
to be resident in the flow table switch, FortNOX asks the switch
to delete the lower-priority conflicting rule, and it adds the new
higher-priority rule to the switch.

3.5 Security Directive Translation

The Security Directive Translator is a python interface that medi-
ates a set of high-level threat mitigation directives into flow rules,
which are then digitally signed and submitted to FortNOX. The
current security directive translator implements seven security di-
rectives: block, deny, allow, redirect, quarantine, undo, constrain
and info. Block implements a full duplex filter between a CIDR
Block and the internal network, where the primary use for this com-
mand is in blacklist enforcement. The deny, allow, undo and info

directives are similar to their firewall counterparts and capable of
being refined down to an individual flow. However, these two di-
rectives are implemented using the address resolution protocol, and
thus enforce both directly conflicting flows, and indirect flows in-
volving the use of set commands designed to establish indirect
tunnels.

Redirect enables a security application to tunnel all flows be-
tween a source and given target, to a new target location of the
security application’s choice. The switch is directed to rewrite the
packet headers of all applicable flows such that the source cannot
tell that its flows have been redirected to the new target. A common
application for this directive includes the redirection of a malicious
scanner into a honeynet. The quarantine directive enables a security
application to essentially isolate an internal host from the network.
It further redirects all HTTP communications that are initiated from
the quarantined machine to a proxy server that may report quaran-
tine notifications to the end user who may be operating the HTTP
browser. Finally, the constrain directive enables one to deactivate
all current flow rules in the switch that are not set to priority N.
This directive may be used in an emergency operating mode, such
as a DDoS, where during the emergency only a pre-defined set of
flows should be enabled (i.e., an emergency policy can be specified
and activated, overriding all other flow rules until the emergency is
remediated).

4. IMPLEMENTATION

FortNOX is implemented as a native C++ extension of the NOX
source code in approximately 500 lines of C++ code. We modified
the send_openflow_command function, whose main operation is
to send OpenFlow commands to network switches, to capture flow
rules from all OpenFlow applications, i.e., of both security (privi-
leged) and non-security (unprivileged) applications. FortNOX in-
tercepts flow rules in the function and stores them into the security
constraints table if the rules are from privileged security applica-
tions (i.e., flow rules produced through the privileged path are con-
sidered trusted flow rules and are preserved as active network secu-
rity constraints). If a flow rule is from an unprivileged application,
FortNOX evaluates the rule to determine if a conflict exists within
its security constraints table. If there are conflicts, an error message
is returned to the OF application. Otherwise, the rule is forwarded
to the network switches.

S. EVALUATION

To analyze the performance overhead of FortNOX in conducting
inline OpenFlow rule conflict analysis, we deployed our FortNOX
prototype into a laboratory network operating an HP ProCurve E6600
OpenFlow-enabled switch, firmware version K.15.05.5001. We
compiled FortNOX into NOX version destiny 0.9.1 (full beta), and
conducted our flow rule conflict analysis using the alias set rule
reduction algorithm. FortNOX was hosted on an Intel Xeon 2.67
GHz E5640 CPU with 12 GB RAM, a 1 Gbps network link, and
running an Ubuntu-Server v10.10. The experiment was conducted
using a dedicated packet generator and a second server used for
receiving flows, both linked to OF-enabled ports on the ProCurve
via 1 Gbps network links. Packet generation was performed using
hping [20] version 3.0.0 Alpha 2 operated from a dedicated Intel
Xeon 3.2 GHz CPU running Ubuntu-Server v10.10 and directed
to a similarly provisioned server. The server wass configured and
provisioned roughly identical to the traffic generator.

In the experiment, our objective was to measure the compu-
tational impact of conducting flow rule conflict analysis between
a candidate flow rule and an increasingly large corpus of active

flow rules. To baseline the experiment, we employed NOX with
an optimized module_manager.py for flow rule insertion. Mod-
ule_manager.py was modified to insert 4-tuple-based flow rules into
the ProCurve per unique flow request. In our baseline test, we eval-
uate the NOX rule insertion handling logic by generating 1000 flow
rule insertions at a uniform rate of 100 new UDP flows per second,
where each UDP flow caused NOX to produce a new flow rule.
The UDP flows were directed at an address running the Discard
service so that no response packets would be generated. Since our
focus was to isolate the computational overhead of flow rule con-
flict evaluation, this traffic profile was selected to minimize delays
due to switch-local garbage collection and switch-side buffering.
The same experimental traffic profile was then run using the Fort-
NOX controller where we varied the experiment by evaluating the
same 1000 candidate flow rule insertions. However, this time we
pre-seeded the FortNOX aggregate flow table with 1, 10, 100, 500,
and 1000, unique resident flow rules, against which the set of 1000
candidate flows were evaluated for conflicts.

. ’/’ * 1
09l i]
L ! * 1

0.8| — NOX * -
— FortNOX w/ 1 flow rule
FortNOX w/ 10 flow rules * b
0.7 | &= FortNOX w/ 100 flow rules —
[| *—* FortNOX w/ 500 flow rules * 4
FortNOX w/ 1000 flow rules
L * .
~ 06
x
Il r ¥ 1
V o5+ i
. *
x L]
*
& o4l -
. * 4
03 * _
L * 4
02— * !
L 1 4
01 .
| *

I |
10

\\\\1"\ L e
0 01

1
x = Delay in ms (log scale)

Figure 3: These CDF plots present the computational laten-
cies imposed over UDP flows by NOX and FortNOX. Five plots
illustrate FortNOX performance in conducting conflict evalua-
tion per flow against 1, 10, 100, 500 and 1000 flow rules.

In Figure 3, we illustrate the results through a series of cumu-
lative distribution functions representing the computational delay
required to conduct full pairwise rule conflict analysis. The experi-
ment suggests that FortNOX’s conflict evaluation overhead is in the
worst case linear with respect to the number of rules. Note, our ex-
periments represent a uniform priority scenario (with no whitelist-
ing rules) in which we force an evaluation of each incoming flow
against each resident flow rule, which in practice would represent a
worst case scenario. Our algorithm pre-segments active flow rules
based on priorities and actions type, which in operational scenarios
enables substantial prefiltering of the number of active flow rules
that a candidate rule would be evaluated against (e.g., a candidate
forward rule would be subject to conflict evaluation against other
forward rules).

6. RELATED WORK

The FortNOX security kernel is inspired by prior research fo-
cused on testing or verifying firewall and network device config-
uration [7, 13, 2, 23, 1], e.g., using Firewall Decision Diagrams
(FDDs) [13] or test case generators [21, 7]. The problem of routing

misconfigurations has been well studied in the context of interdo-
main routing protocols like BGP. For example, researchers have
investigated the problem of modeling network devices to conduct
reachability analysis [2, 23]. The router configuration checker (rcc)
uses constraint solving and static analysis to find faults in BGP con-
figurations [8]. Their system detects faults leading to invalid routes
and invisible routes. In this space, our work is perhaps most closely
related to header space analysis, a static analysis approach to de-
tecting network misconfigurations [11].

The OpenFlow standard has as its roots a rich body of work on
control-flow separation and clean-slate design of the Internet (e.g.,
[5], [9]). SANE [6] and Ethane [5] propose new architectures
for securing enterprise networks. The SANE [6] protection layer
proposes a fork-lift (clean-slate) approach to upgrading enterprise
network security that introduces a centralized server, i.e., domain
controller, to authenticate all elements in the network and grant ac-
cess to services in the form of capabilities that are enforced at each
switch. Ethane [5] is a more practical and backwards-compatible
instantiation of SANE that requires no modification to end hosts.
Ethane switches reside alongside traditional network switches and
communicate with the centralized controller that implements pol-
icy. Both studies may be considered as catalysts for the emergence
of OpenFlow and software-defined networking. FortNOX is built
over the foundations laid by these studies and shares a common ob-
jective in improving enterprise security using programmable net-
work elements.

We build our system on NOX, which is an opensource OF con-
troller [10]; however, our methodology could be extended to other
architectures like Beacon [18], Maestro [3], and DevoFlow [15].
FlowVisor is a platform-independent OF controller that uses net-
work slicing to separate logical network planes, allowing multi-
ple researchers to run experiments safely and independently in the
same production OpenFlow network [22]. Flow Visor cares primar-
ily about non-interference across different logical planes (slices)
but does not instantiate network security constraints within a slice.
It is possible that an OF application uses packet modification func-
tions resulting in flow rules that are applied across multiple network
switches within the same slice. In such cases, we need a security
enforcement kernel such as FortNOX to resolve conflicts.

The need for better policy validation and enforcement mecha-
nisms has been touched on by prior and concurrent research ef-
forts. The Resonance architecture enables dynamic access con-
trol and monitoring in SDN environments [16]. The FlowChecker
system encodes OpenFlow flow tables into Binary Decision Dia-
grams (BDD) and uses model checking [1] to verify security prop-
erties. However, the evaluation of FlowChecker does not consider
handling of set action commands, which we consider to be a sig-
nificant distinguisher for OpenFlow networks. NICE provides a
model-checking framework that uses symbolic execution for au-
tomating the testing of OpenFlow applications [4]. More recently,
researchers have proposed developing language abstractions to guar-
antee consistency of flow updates in software-defined networks [19].
In contrast, our complementary work on the FortNOX security en-
forcement kernel is focused on detection of rule update conflicts
and security policy violations. Veriflow proposes to slice the net-
work into equivalence classes to efficiently check for invariant prop-
erty violations [12]. The alias set rule reduction algorithm of Fort-
NOX is complementary to this approach.

7. CONCLUSION

We motivated and presented the design of FortNOX, a software
extension that empowers OF security applications with the abil-
ity to produce enforceable flow constraints. Our design incorpo-

rates several critical components that are necessary for enabling
security applications in OF networks including role-based autho-
rization, rule reduction, conflict evaluation, policy synchronization,
and security directive translation. Our prototype implementation
demonstrates the feasibility and viability of our alias-set rule re-
duction approach. FortNOX rule conflict analysis imposes minimal
additional latency over standard NOX, with an average overhead of
less than 7 ms for evaluating a candidate flow rule against 1000 ex-
isting flow rules. FortNOX is an important first step in improving
the security of OF networks, but much work remains in building
out a rich suite of applications that cover a wide range of security
services.

8. ACKNOWLEDGMENTS

We are grateful for helpful comments from Peter Neumann and
the anonymous reviewers to an earlier version of this paper. This
material is based upon work supported through the U.S. Army Re-
search Office under the Cyber-TA Research Grant No. W911NF-
06-1-0316 and NSF Grant No. CNS-0954096. Any opinions, find-
ings, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views
of the Army Research Office or the National Science Foundation.

9. REFERENCES

[1] E. Al-Shaer and S. Al-Haj. FlowChecker: Configuration
Analysis and Verification of Federated Openflow
Infrastructures. In Proceedings of the 3rd ACM SafeConfig
Workshop, 2010.

[2] E. Al-shaer, W. Marrero, A. El-atawy, and K. Elbadawi.
Network Configuration in A Box: Towards End-to-End
Verification of Network Reachability and Security. In
Proceedings of the IEEE International Conference on
Network Protocols, 2009.

[3] Z. Cai, A. L. Cox, and T. E. Ng. Maestro: A System for
Scalable OpenFlow Control. In Rice University Technical
Report, 2010.

[4] M. Canini, D. Venzano, P. Peresini, D. Kostic, and
J. Rexford. A NICE Way to Test OpenFlow Applications. In
Proceedings of the Symposium on Network Systems Design
and Implementation, 2012.

[5] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,
and S. Shenker. Ethane: Taking Control of the Enterprise. In
Proceedings of ACM SIGCOMM, 2007.

[6] M. Casado, T. Garfinkel, M. Freedman, A. Akella, D. Boneh,
N. McKeowon, and S. Shenker. SANE: A Protection
Architecture for Enterprise Networks. In Proceedings of the
Usenix Security Symposium, 2006.

[7]1 A.El-atawy, T. Samak, Z. Wali, E. Al-shaer, F. Lin, C. Pham,
and S. Li. An Automated Framework for Validating Firewall
Policy Enforcement. Technical report, 2007.

[8] N.Feamster and H. Balakrishnan. Detecting BGP
Configuration Faults with Static Analysis. In Proceedings of
theUsenix Symposium on Network Systems Design and
Implementation, 2005.

[9] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,
J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A Clean
Slate 4D Approach to Network Control and Management. In
Proceedings of ACM Computer Communications Review,
2005.
[10] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,

N. McKeown, and S. Shenker. NOX: Towards an Operating
System for Networks. In Proceedings of ACM Computer

Communications Review, July 2008.

[11] P. Kazemian, G. Varghese, and N. McKeown. Header Space
Analysis: Static Checking for Networks. In Proceedings of
the Symposium on Network Systems Design and
Implementation, 2012.

[12] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey.
VeriFlow: Verifying Network-Wide Invariants in Real Time.
In Proceedings of ACM Sigcomm HotSDN Workshop, 2012.

[13] A. Liu. Formal Verification of Firewall Policies. In
Proceedings of the International Conference on
Communications (ICC), 2008.

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
Enabling Innovation in Campus Networks. In Proceedings of
ACM Computer Communications Review, April 2008.

[15] J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. R.
Curtis, and S. Banerjee. DevoFlow: Cost-effective Flow
Management for High Performance Enterprise Networks. In
Proceedings of the 10th ACM Workshop on Hot Topics in
Networks (HotNets), 2010.

[16] A.Nayak, A. Reimers, N. Feamster, and R. Clark.
Resonance: Dynamic Access Control for Enterprise
Networks. In Proceedings of the 1st ACM SIGCOMM WREN
Workshop, 20009.

[17] OpenFlow. OpenFlow 1.1.0 Specification.
http://www.openflow.org/documents/
openflow—-spec-v1l.1.0.pdf.

[18] OpenFlowHub. BEACON. http:
//www.openflowhub.org/display/Beacon.

[19] M. Reitblatt, N. Foster, J. Rexford, and D. Walker.
Consistent Update for Software-Defined Networks: Change
You Can Believe In! In Proceedings of the ACM Workshop
on Hot Topics in Networks, 2011.

[20] S. Sanfilippo. HPing home page.
http://www.hping.org.

[21] D. Senn, D. Basin, and G. Caronni. Firewall Conformance
Testing. In Proceedings of the IFIP TestCom, 2005.

[22] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,

M. Casado, N. McKeown, and G. Parulkar. Can the
Production Network Be the Testbed. In Proceedings of the
Usenix Symposium on Operating System Design and
Implementation (OSDI), 2010.

[23] G. Xie, J. Zhan, D. Maltz, H. Zhang, A. Greenberg,

G. Hjalmtysson, and J. Rexford. On Static Reachability
Analysis of IP Networks. In Proceeding of IEEE INFOCOM,
2005.

