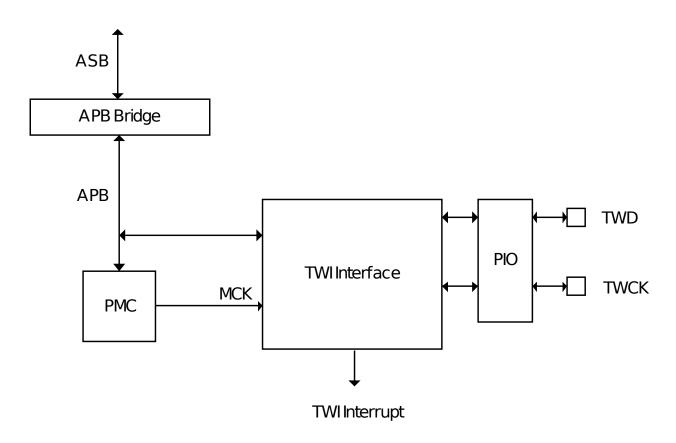
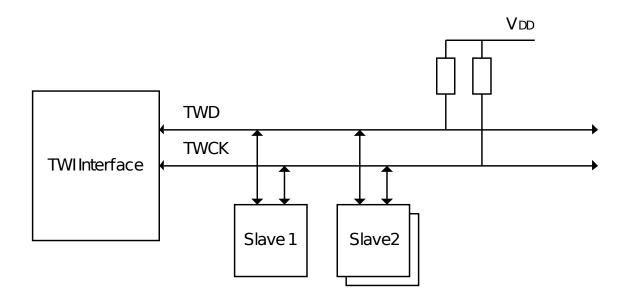


Two Wire Interface (TWI)



TWI Features

- Master mode support only
 - Master transmitter mode
 - Master receiver mode
 - All Two-wire Atmel EEPROMs Supported
- Programmable:
 - Clock baud rate Up to 400 Kbits
 - Up to Three bytes internal address (device up to16 Mbytes)
 - Support 7-bit and 10-bit addressing
- Support fast I²C mode (up to 400kHz)

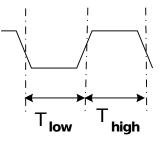


TWI Block Diagram

TWI Application

Dependencies

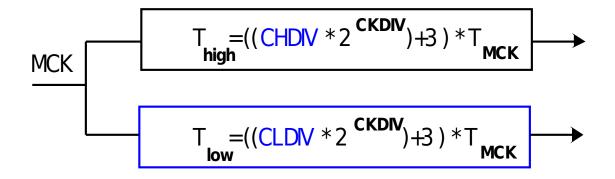
- PMC has to be programmed 1st for TWI to work
- PIO Controller has to be programmed for the pins to behave as intended
 - Dedicate the both as peripheral
 - Define the both line as open drain
- For example:
 - Configure TWI PIOs
 - Configure PMC by enabling TWI clock
 - Configure TWI in master mode
 - Disable interrupts
 - Reset peripheral
 - Set Master mode
 - Set TWI Clock Waveform Generator Register
 - CKDIV, CHDIV and CLDIV


TWI Clock Waveform Generator Register TWI_CWGR

¹⁸ CKDIV	16 15	CHDIV	8	7	CLDIV	0
---------------------	-------	-------	---	---	-------	---

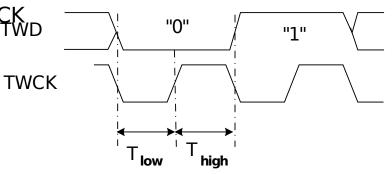
CLDIV: The TWCK low period T low

CHDIV: The TWCK high period T high

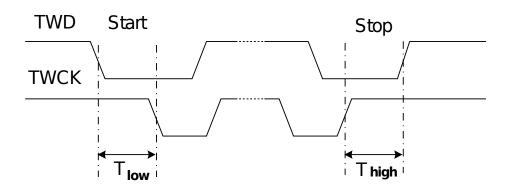

TWCK

- CKDIV: Clock divider
 - Increase the TWCK period

Clock Waveform Generator



MCK	T _{MCK}	CKDIV	CHDIV		CLDIV			TWCK	
Hz	Second	0 to 7	0 to 255	T_{high} = ((CHDIV * 2 ^{CKDIV})+3) T_{MCK}	0 to 255	$T_{low} = ((CLDIV * 2^{CKD}))$	[™])+3)T _{MCK}	Second	Hz
48 000 000	20,8E-9	2	15	1,3E-6	15	1,3E-6		2,6E-6	381,0E+3



Clock Generation

- Data are sampled on TWCK rising edge
 - Data Stable during high period of TWCK
 - Change during falling edge
 - Sampling on the rising edge

- Start and stop condition
 - TWD Falling edge while TWCK is high indicate **Start** Condition
 - TWD Rising edge while TWCK is high indicate **Stop** Condition

Control Register TWI_CR

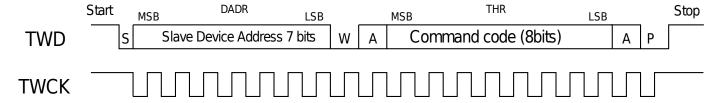
SWRTS ⁸	MSDIS ³	MSEN ²	STOP ¹	START °
--------------------	--------------------	-------------------	-------------------	---------

- START Send a start
- STOP Send a stop after a complete transmission
- MSEN = 1 = Master Mode ENABLE
- MSDIS = 1 = Master Mode DISABLE

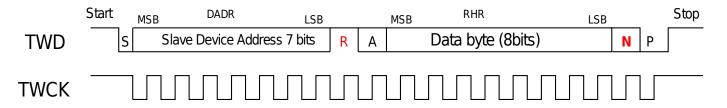
Both = Master mode = Disabled

- SWRST = 1 = RESET = software controlled hardware reset
 - Writing a zero to this register has no effect
 - SWRST cleared by hardware

Master Mode Register TWI_MMR


22	DADR	16	MREAD ¹² 9	IA DRSZ	8
----	------	----	-----------------------	---------	---

- DADR: Device bus address (0 to 127)
 - Used to access slave devices (Hard coded)
- MREAD: Master read direction
 - Master read direction
- IADRSZ: Internal Devices address size
 - 0 : No internal address (Send byte protocol)
 - 1: One-byte internal Device address size (0 to 256)
 - 2: Two-byte internal Device address size (0 to 65535)
 - 3: Three-byte internal Device address size (0 to 16 Mbytes)



Byte protocol Data Transfer

- Set the byte protocol excluding internal device address size
 - Master mode register IADRSZ = 0
- Write command

Read Data from Slave

S: Start W: Write R: Read

A: Acknolewdge ACK

N: Not Acknolewdge NACK DADR: Device address (Slave) IADR: Internal device address

Internal Address Register TWI_IADR

- IADR: Internal device address (0 to 16 Mbytes)
 - Used to access slave devices internal mapping memory

Write protocol Data Transfer

- Set the byte protocol including internal device address size
 - Master mode register IADRSZ # 0
 - Internal Address Register TWI IADR
- Write command

One byte internal Address

			SB		MSB LSB		MSB LSB			
TWD	S	DADR (6:0) W	Α	IADR(7:0)	Α	DATA(7:0)	Α	P	

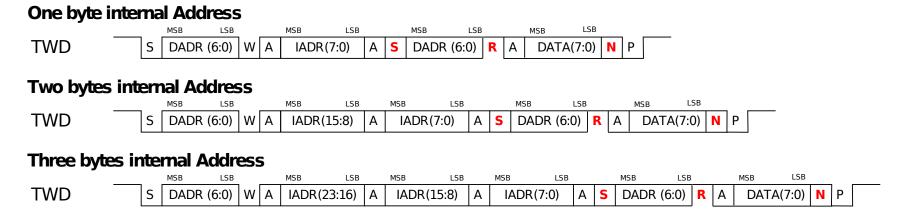
Two bytes internal Address

		MSB I	.SB		MSB LSB		MSB LSB		MSB LSB			
TWD	S	DADR (6:	0) W	Α	IADR(15:8)	Α	IADR(7:0)	Α	DATA(7:0)	Α	Р	

Three bytes internal Address

		MSB	LSB		MSB	LSB	MSB	LSB		MSB LS	3	MSB	LSB			
TWD	S	DADR	(6:0)	WA	IADR(23:	16) A	IADR	(15:8)	Α	IADR(7:0)	Α	DATA	4(7:0)	Α	Р	

S: Start W: Write R: Read


A: Acknolewdge ACK

N: Not Acknolewdge NACK DADR: Device address (Slave) IADR: Internal device address

Read protocol Data Transfer

- Set the byte protocol including internal device address size
 - Master mode register IADRSZ # 0
 - Internal Address Register TWI IADR
- Read command

S: Start W: Write R: Read

A: Acknolewdge ACK
N: Not Acknolewdge N

N: Not Acknolewdge NACK DADR: Device address (Slave) IADR: Internal device address

TWI Interrupts

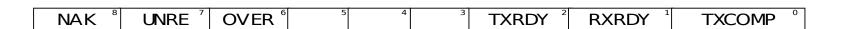
- TWI Interrupt Enable Register TWI_IER (Write Only)
 - 0 = No effect
 - 1 = Enable
- TWI Interrupt Disable Register TWI_IDR (Write Only)
 - 0 = No effect
 - 1 = Disable
- TWI Interrupt Mask Register TWI_IMR (Read Only)
 - 0 = Not enabled
 - 1 = Enabled

TWI_IER, TWI_IDR, TWI_IMR

NACK 8	UNRE 7	OVER 6	5	4	3	TXRDY ²	RXRDY 1	TXCOMP °
--------	--------	--------	---	---	---	--------------------	---------	----------

TWI Interrupts

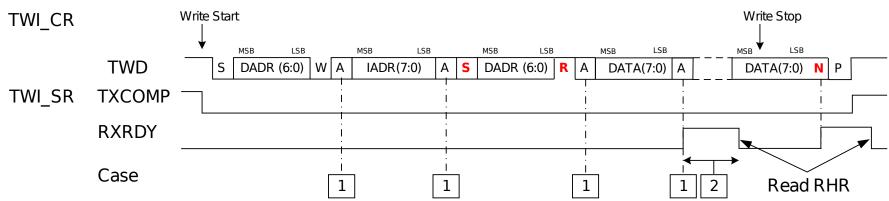
- Transmission Completed
- Receive Holding Register Ready
- Transmit Holding Register Ready
- Overrun Error
- Underrun Error
- Not Acknowledge Error



1 interrupt line goes to the AIC Read TWI SR to determine which interrupt occurred

TWI Status Register TWI_SR

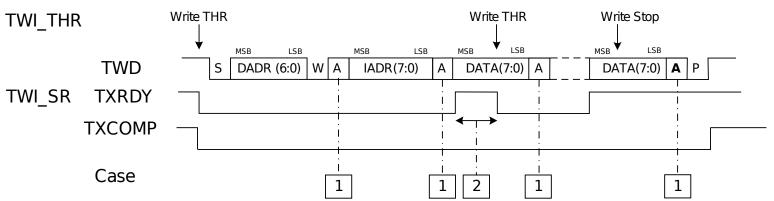
- Transmission Completed (Read And Write)
- Receive Holding Register Ready
 - 1: DATA byte has been received (Read mode)
- Transmit Holding Register Ready
 - 1: DATA byte must be transferred only (Write mode)
- Overrun Error
 - 1: Detect an overrun (Read mode)
- Underrun Error
 - 1: Detect an overrun (Write mode)
- Acknowledge
 - 1: Detect (Read & Write mode)



TWI Read Status bit

- Transmission Completed (0: during transmission)
- Receive Holding Register Ready (1: When the RHR register is full)
- Overrun Error (1: in case 2 if RXRDY=1 when other data received)
- Acknowledge (1: in case 1 if read NACK N)
 - if NACK stop the transmission and Send un Stop

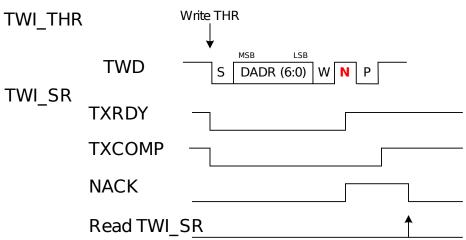
Read some data at one byte size internal Address



TWI Write Status bit

- Transmission Completed (0: during transmission)
- Transmit Holding Register Ready (1: When the THR register is Empty)
- Underrun Error (1: in case 2 if TXRDY=1 when new data must be transmit)
- Acknowledge (1: in case 1 if read NACK N)
 - if NACK stop the transmission and send a Stop

Write some data at one byte size internal Address

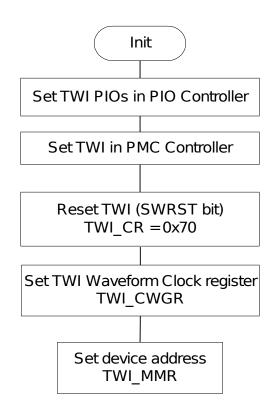


TWI Acknowledge Error

- Send a bad Device address
 - Write THR start transmission
 - Send Device Address (bad address)
 - NACK (N) detection
 - Set NACK (TWI SR)
 - Set TXRDY (TWI_SR)
 - Send Stop
 - Set TXCOMP (TWI_SR)

Write some data at one byte size internal Address

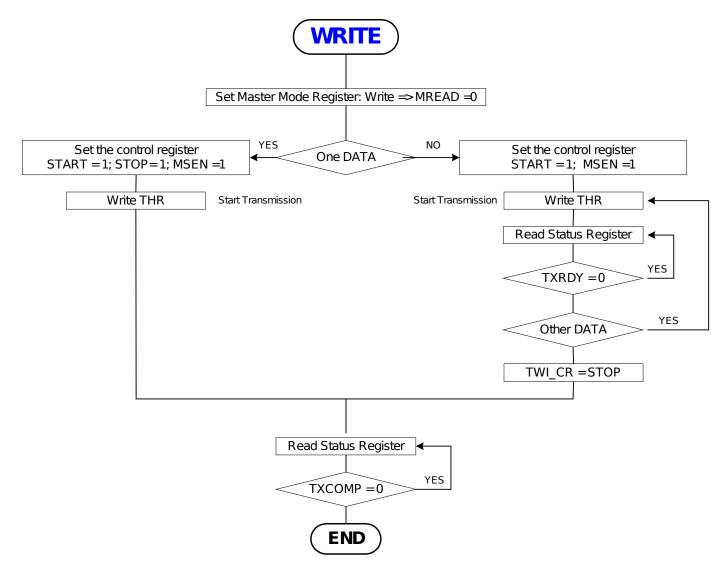
Software access


- All inline function
- Standard function is valid for AT91 core
- Register access function
 - AT91F_TWI_EnableIt
 - AT91F_TWI_DisableIt
 - AT91F_TWI_GetInterruptMaskStatus
 - AT91F_TWI_IsInterruptMasked

Setting function

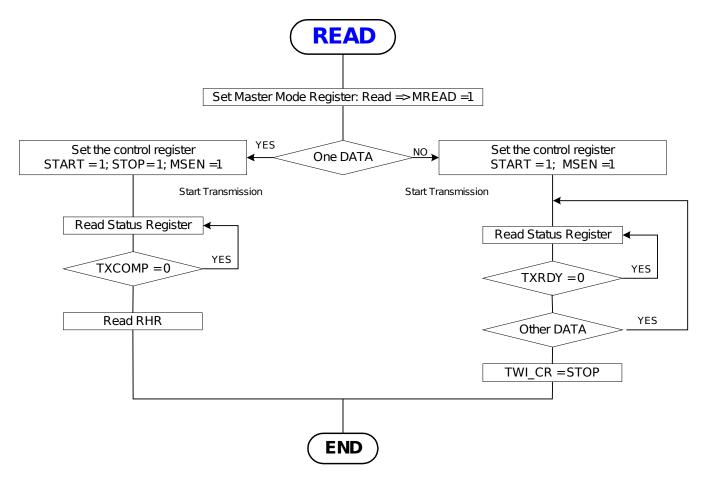
- AT91F_TWI_CfgPIO
- AT91F_TWI_CfgPMC
- AT91F_TWI_Configure

Initialization



Initialization

- All inline function no cost for call
 - //* PIO AT91C_PA3_TWD & AT91C_PA4_TWCK (peripheral A)
 - AT91F TWI CfgPIO();
 - //* Power management
 - AT91F_TWI_CfgPMC();
 - //*TWI minimum Setting
 - AT91F_TWI_Configure(AT91C_BASE_TWI);
 - //* Set TWI Clock (MCK = 30MHz, TWI 8KHz) CKDIV=4, CHDIV=117, CLDIV=117)
 - *AT91C_TWI_CWGR= 0x047575;
 - //*Set the device address 0x55 (7 bits), addressable space device 16 bits
 - *AT91C_TWI_MMR= 0x550200;



Write to Device

- Write value 0xAA to internal device address 0x00001
 - //* Set the Internal device address
 - *AT91C_TWI_IADR = 0x0001;
 - //* Set Write in mode register
 - *AT91C_TWI_MMR &= 0xFFFFEFFF;
 - //* Set control register
 - *AT91C_TWI_CR = AT91C_TWI_START | AT91C_TWI_MSEN | AT91C_TWI_STOP;
 - //* Set Data register for start transmission
 - *AT91C_TWI_THR = 0XAA;
 - //* Wait end transmission
 - Status = *AT91C_TWI_SR;
 - while (!(status & AT91C_TWI_TXCOMP)){
 - Status = *AT91C_TWI_SR; }

Read From Device

- Read data at internal device address 0x00001
 - //* Set the Internal device address
 - *AT91C_TWI_IADR = 0x0001;
 - //* Set Read in mode register
 - *AT91C_TWI_MMR |= 0x00001000;
 - //* Set control register and send start
 - *AT91C_TWI_CR = AT91C_TWI_START | AT91C_TWI_MSEN | AT91C_TWI_STOP;
 - //* Wait complete by TXCOMP or TXRDY
 - Status = *AT91C_TWI_SR;
 - while (!(status & AT91C_TWI_TXCOMP)){
 - Status = *AT91C_TWI_SR; }
 - //* Get data
 - Value = *AT91C_TWI_RHR;

TWI Summary

- High Speed. up to 400 K bits per second compatible Fast I2C
- Support Byte command & Internal device address protocol
- Individual Waveform clock Generator
- PIO Multiplex
- Error checking
 - Overrun, Underrun, NAK
- Master Mode only
- No Peripheral DMA support