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Virtualization Definitions

2 The Architecture of Virtual Machines

� Virtual Machine:  a software-based implementation of  real 

(hardware-based) computer

� In its pure form, supports booting and execution of unmodified 

OSs and apps 

� Virtual Machine Monitor (“hypervisor”): the software that 

creates and manages the execution of virtual machines 

� A VMM is essentially a simple operating system 



Virtualization Use-cases

� Enterprise server (workload) consolidation

� Run at most one service per machine (sysadm best practice) 

�run one service per VM

� Legacy software systems

� Virtual desktop infrastructure (VDI)

� Compute clouds

� Large-scale, hosted cloud computing (e.g., Amazon EC2)

� VM as a convenient container and sandbox

� End-user virtualization (e.g. S/W testing & QA, OS research)

� Embedded (e.g. smartphones)

3 The Architecture of Virtual Machines

How does virtualization work, in detail ? 



Lecture Outline

� Abstraction, system interfaces and implementation layers

� ISA, ABI, API

� Virtual Machine Taxonomy

� Process virtual machines

� Multiprogrammed systems 

� Emulators and dynamic binary translation

� High-level-language virtual machines

� System virtual machines

� “Classic” virtual machines

� Hosted virtual machines

� Whole-system virtual machines

� Key virtualization techniques 
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Computer systems are built on levels of abstraction
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� Different perspectives on 

what a “machine” is

� OS � ISA: Instruction Set 

Architecture

� h/w – s/w interface

� Compiler � ABI: 

Application Binary Interface

� User ISA + OS calls

� Application � API: 

Application Programming 

Interface

� User ISA + Library calls

ISA

ABI
API



Virtualization Definitions

� Virtualization

� A layer mapping its visible interface and resources onto the underlying 
layer or system on which it is implemented

� Purposes: abstraction, replication, isolation

� Virtual Machine (VM)

� An efficient, isolated duplicate of a real machine

� Programs should not be able to distinguish between execution on real or 
virtual H/W (except for: fewer/variable resources, and device timing)

� VMs should execute without interfering with each other

� Efficiency requires that most instructions execute directly on real H/W

� Hypervisor / Virtual Machine Monitor (VMM)

� Partitions a physical machine into multiple “virtual machines”

� Host : machine and / or software on which the VMM is implemented

� Guest : the OS which executes under the control of the VMM
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OS vs Hypervisor (VMM)

� Hypervisor / Virtual Machine Monitor (VMM)

� Software that supports virtual machines on a physical machine 

� Determines how to map VM resources to physical ones

� Physical resources may be time-shared, partitioned, or emulated

� The OS has complete control of the (physical) system

� Impossible for >1 operating systems to be executing on the same 

platform

� OS provides execution environment for processes

� Hypervisor (VMM) “virtualizes” the hardware interface

� GuestOS’s do not have complete control of the system

� VMM provides execution environment for OS 

� “virtual hardware”
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What needs to be emulated for a VM? [ Hardware ]

� CPU and memory hierarchy

� ISA, Register state, Memory state

� Privilege levels, Exceptions/Traps, Interrupts

� Memory Management Unit (MMU)

� Page tables, segments � virtual memory support

� Controlled via special registers, and via page tables 

� Platform

� Interrupt controller, timers, peripheral buses

� Firmware (BIOS)

� Peripheral devices

� Disk, network interface, serial line

� Programmed I/O, Direct Memory Access (DMA)

� Events delivered to software via polling or interrupts
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Hardware is not (commonly) designed to 
be multiplexed � Loss of isolation



What needs to be emulated for a VM? [ OS, App ]

� OS
� OS issues instructions to control hardware devices 

� … interacts with hardware devices using “sensitive” instructions 

� Allocate and manage hardware resources on behalf of programs 

� … OS runs at higher privilege level than applications

� Expose system call interface to applications

� … implemented using low-level H/W interfaces

� Application
� Relies on the system call interface, runs in unprivileged mode

� Special instruction(s) to call into OS code

� OS provides a program with the illusion of its own memory 

� Virtual address spaces (implemented via MMU) � isolation 
� from OS and other App’s

� Most instructions run directly on the CPU 

� Sensitive instructions cause the CPU to throw an exception to the OS 
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“Classic” VM (Popek & Goldberg, 1974) (1/4)

� Essentials of a Virtual Machine Monitor (VMM)

� An efficient, isolated duplicate of the real machine.

� Equivalence 

� Software on the VMM executes identically to 

its execution on hardware, barring timing effects.

i.e. Running on VMM == Running directly on HW

� Performance

� Non –Privileged instructions  can  be  executed directly by the real  
processor, with no software  intervention  by  the VMM.

i.e. Performance on VMM == Performance on HW

� Resource control

� The VMM must have complete control of the virtualized resources.
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Hardware

VM

VMM



“Classic” VM (Popek & Goldberg, 1974) (2/4)

� Instruction types

� Privileged instructions: generate trap when executed in any but 
the most-privileged level

� Execute in privileged mode, trap in user mode

� E.g.  x86 LIDT : load interrupt descriptor table address

� Privileged state: determines resource allocation

� Privilege mode, addressing context, exception vectors, … 

� Sensitive instructions: instructions whose behavior depends on 
the current privilege level, or modify H/W state

� Control sensitive: change privileged state 

� Behavior sensitive: exposes privileged state

� E.g.  x86 POPF : pop stack to EFLAGS (in user-mode, the ‘interrupt 
enable’ bit is not over-written)
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“Classic” VM (Popek & Goldberg, 1974) (3/4)
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USER

PI

SI

ISA is Virtualizable

Theorem 1: A VMM may be constructed if the set of SI’s is a subset of the set of PI’s

USER

PI

SI

ISA is NOT Virtualizable



“Classic” VM (Popek & Goldberg, 1974) (4/4)

� To build a VMM, it is sufficient for all instructions that 

affect the correct functioning of the VMM (SI’s) always trap 

and pass control to the VMM.

� This guarantees the “resource control property” 

� Non-privileged instructions are executed without VMM 

intervention

� Equivalence property: We are not changing the original code, so 

the output will be the same. 
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Mostly-virtualizable Architectures �

� x86

� Sensitive push/pop instructions are not privileged

� Segment and interrupt descriptor tables in virtual memory

� Itanium

� Interrupt vectors table in virtual memory

� MIPS

� User-accessible kernel registers k0, k1 (save/restore state)

� ARM

� PC is a general-purpose register

� Exception returns to PC (no trap)
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Virtualization overheads

� VMM maintains virtualized privileged machine state

� Processor status, addressing context, device state, …

� VMM emulates privileged instructions

� Translation between virtual and real privileged state

� E.g. guest-to-real page tables

� Traps are expensive

� Several 100s cycles (for x86) 

� Certain important OS operations involve several traps

� Interrupt enable/disable for mutual exclusion

� Page table setup/updates for fork()  
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How to achieve safe –and- fast virtualization? 

� Emulation

� Interpret each instruction

� Paravirtualize

� Modify the guest OS to avoid non-virtualizable instructions

� Binary translation (instead of trap-and-emulate)

� Static vs Dynamic 

� Change processor architecture

� Intel VT , AMD Pacifica � extend x86 to make "Classic 

Virtualization" possible [ VM/370 origins ! ]

� Add a new CPU mode to distinguish VMM from guest/app
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Binary Translation
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� User applications are not translated, but run directly. 

� Binary Translation only happens when the guest OS kernel gets called.

+ translator cache

+ trace cache



VMM architectures
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Modified view of H/W

Paravirtualized VMM

Unmodified view of H/WOnly OS knows about H/W

VMM provides a virtual HW/SW interface to guest OSs 

by trapping and emulating sensitive instructions 



VMM examples
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VMware 

workstation
Xen kvm



Key Techniques (1/3): De-privileging
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� VMM emulates the effect on 
system/hardware resources of 
privileged instructions whose 
execution traps into the VMM 
� aka trap-and-emulate

� Typically achieved by running 
GuestOS at a lower hardware 
priority level than the VMM
� “Normal” instructions run directly 

on processor

� “Privileged” instructions trap into 
VMM (for safe emulation)

� Problematic on architectures 
where privileged instructions do 
not trap when executed at 
deprivileged priority!

resource

vmm

privileged 

instruction

trap

GuestOS

resource

emulate change

change



Key Techniques (2/3): Primary vs Shadow Structures

21 The Architecture of Virtual Machines

� VMM maintains “shadow” copies of critical structures 
whose “primary” versions are manipulated by GuestOS
� e.g., page tables

� Primary copies needed to insure correct environment 
visible to GuestOS



Memory Management by the VMM
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� Isolation/protection of Guest OS 
address spaces

� Efficient MM address translation

VMM
machine

VMM GuestOS

“shadow” page tables page tables

process
virtual

OS
physical

entity
address space



Key Techniques (3/3): Memory Tracing (Trace faults)
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� Control access to memory so that the shadow and primary 
structures remain coherent
� Write-protect primary structure so that update operations cause 

page faults � caught, interpreted, emulated by the VMM 

� VMM typically use hardware page protection mechanisms to 
trap accesses to in-memory primary structures

VMM

OS OS

ApplicationsApplications

User mode

Kernel mode
Primary

Page table

Shadow page tableShadow page table

Physical MachineTRAP

PFH

Updated

Updated



Evolution of System Virtualization
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Classic Virtualization
(Popek & Goldberg)

System Virtualization

Trap-and-emulate

Hardware / VMM Interface

Enhancement

Software Virtualization
(VMware)

Binary Translation

Modern Approach

Para-virtualization
(Xen)

…

Hardware Support for Virtualization
(Intel VT & AMD SVM)

…

VMM / Guest OS Interface
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Virtualization Timeline (C. Dall – 2013)
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Virtual machines were popular in 60s-70s � IBM OS/370
● Share resources of mainframe computers to run multiple single-user OSs
● Interest is lost by 80s-90s:  development of multi-user OS,  rapid drop in H/W cost
● Hardware support for virtualization is “lost” … until the late 90s (VMware)



Virtualization alternatives & their performance
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Design space
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API interface ABI interface



System VMMs
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Type 2

Type 1

Type 1: runs directly on hardware

• primary goal: performance

• Examples: OS/370, VMware ESXi

Type 2: runs on host OS

• primary goal: ease of installation

• Example: User-Mode Linux, VMware Workstation



Hosted VMMs

� Hybrid between Type 1 and Type 2

� “Core VMM” runs directly on hardware

� Improved performance as compared to “pure Type 2”

� Leverage s/w engineering investment in host OS for I/O device support 

� I/O services provided by host OS

� Overhead for I/O operations,  reduced performance isolation
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Example: VMware Workstation



Process vs System VM
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Process:

Provides API interface

+ Easier to install

+ Leverages OS 
services – e.g. 
device drivers

- Execution overhead

System:
Provides ABI interface
+ Efficient execution
+ Can add OS-
independent services –
e.g. migration, 
checkpointing, sandbox



Process VM concept
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� A guest program developed 
for a machine (ISA and OS) 
other than the user’s host 
system can be used in the 
same way as all other 
programs in the host system

� Runtime system

� Encapsulates an individual 
guest process giving it the 
same appearance as a native 
host process

� All host processes appear to 
conform to the guest’s 
worldview



Process VM architecture
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Whole-system VMMs

� Case of GuestOS ISA != HostOS ISA 

� Full emulation of GuestOS and its applications

� Example: VirtualPC
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Acceleration techniques

� Binary translation
� locate sensitive instructions in guest binary and replace on-the-fly with 

emulation code or hypercall

� VMware, QEMU

� Para-virtualization
� Port the GuestOS to modified ISA

� Xen, L4, Denali, Hyper-V

� Reduce number of traps

� Remove un-virtualizable instructions

� Hardware support
� Make all sensitive instructions privileged (!)

� Intel VT-x, AMD SVM

� Xen, VMware, kvm

� Nested page tables

� Direct device assignment, IOMMU, Virtual interrupts
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