
Institute of Computer Science (ICS)

Foundation for Research and Technology – Hellas (FORTH)

� Manolis Marazakis (maraz@ics.forth.gr)

Virtualization for Embedded Systems

Lecture for the Embedded Systems Course

CSD, University of Crete (April 27, 2015)

Virtualization Definitions

2 The Architecture of Virtual Machines

� Virtual Machine: a software-based implementation of real

(hardware-based) computer

� In its pure form, supports booting and execution of unmodified

OSs and apps

� Virtual Machine Monitor (“hypervisor”): the software that

creates and manages the execution of virtual machines

� A VMM is essentially a simple operating system

Virtualization Use-cases

� Enterprise server (workload) consolidation

� Run at most one service per machine (sysadm best practice)

�run one service per VM

� Legacy software systems

� Virtual desktop infrastructure (VDI)

� Compute clouds

� Large-scale, hosted cloud computing (e.g., Amazon EC2)

� VM as a convenient container and sandbox

� End-user virtualization (e.g. S/W testing & QA, OS research)

� Embedded (e.g. smartphones)

3 The Architecture of Virtual Machines

How does virtualization work, in detail ?

Lecture Outline

� Abstraction, system interfaces and implementation layers

� ISA, ABI, API

� Virtual Machine Taxonomy

� Process virtual machines

� Multiprogrammed systems

� Emulators and dynamic binary translation

� High-level-language virtual machines

� System virtual machines

� “Classic” virtual machines

� Hosted virtual machines

� Whole-system virtual machines

� Key virtualization techniques

4 The Architecture of Virtual Machines

Computer systems are built on levels of abstraction

The Architecture of Virtual Machines5

� Different perspectives on

what a “machine” is

� OS � ISA: Instruction Set

Architecture

� h/w – s/w interface

� Compiler � ABI:

Application Binary Interface

� User ISA + OS calls

� Application � API:

Application Programming

Interface

� User ISA + Library calls

ISA

ABI
API

Virtualization Definitions

� Virtualization

� A layer mapping its visible interface and resources onto the underlying
layer or system on which it is implemented

� Purposes: abstraction, replication, isolation

� Virtual Machine (VM)

� An efficient, isolated duplicate of a real machine

� Programs should not be able to distinguish between execution on real or
virtual H/W (except for: fewer/variable resources, and device timing)

� VMs should execute without interfering with each other

� Efficiency requires that most instructions execute directly on real H/W

� Hypervisor / Virtual Machine Monitor (VMM)

� Partitions a physical machine into multiple “virtual machines”

� Host : machine and / or software on which the VMM is implemented

� Guest : the OS which executes under the control of the VMM

6 The Architecture of Virtual Machines

OS vs Hypervisor (VMM)

� Hypervisor / Virtual Machine Monitor (VMM)

� Software that supports virtual machines on a physical machine

� Determines how to map VM resources to physical ones

� Physical resources may be time-shared, partitioned, or emulated

� The OS has complete control of the (physical) system

� Impossible for >1 operating systems to be executing on the same

platform

� OS provides execution environment for processes

� Hypervisor (VMM) “virtualizes” the hardware interface

� GuestOS’s do not have complete control of the system

� VMM provides execution environment for OS

� “virtual hardware”

7 The Architecture of Virtual Machines

What needs to be emulated for a VM? [Hardware]

� CPU and memory hierarchy

� ISA, Register state, Memory state

� Privilege levels, Exceptions/Traps, Interrupts

� Memory Management Unit (MMU)

� Page tables, segments � virtual memory support

� Controlled via special registers, and via page tables

� Platform

� Interrupt controller, timers, peripheral buses

� Firmware (BIOS)

� Peripheral devices

� Disk, network interface, serial line

� Programmed I/O, Direct Memory Access (DMA)

� Events delivered to software via polling or interrupts

8 The Architecture of Virtual Machines

Hardware is not (commonly) designed to
be multiplexed � Loss of isolation

What needs to be emulated for a VM? [OS, App]

� OS
� OS issues instructions to control hardware devices

� … interacts with hardware devices using “sensitive” instructions

� Allocate and manage hardware resources on behalf of programs

� … OS runs at higher privilege level than applications

� Expose system call interface to applications

� … implemented using low-level H/W interfaces

� Application
� Relies on the system call interface, runs in unprivileged mode

� Special instruction(s) to call into OS code

� OS provides a program with the illusion of its own memory

� Virtual address spaces (implemented via MMU) � isolation
� from OS and other App’s

� Most instructions run directly on the CPU

� Sensitive instructions cause the CPU to throw an exception to the OS

9 The Architecture of Virtual Machines

“Classic” VM (Popek & Goldberg, 1974) (1/4)

� Essentials of a Virtual Machine Monitor (VMM)

� An efficient, isolated duplicate of the real machine.

� Equivalence

� Software on the VMM executes identically to

its execution on hardware, barring timing effects.

i.e. Running on VMM == Running directly on HW

� Performance

� Non –Privileged instructions can be executed directly by the real
processor, with no software intervention by the VMM.

i.e. Performance on VMM == Performance on HW

� Resource control

� The VMM must have complete control of the virtualized resources.

10 The Architecture of Virtual Machines

Hardware

VM

VMM

“Classic” VM (Popek & Goldberg, 1974) (2/4)

� Instruction types

� Privileged instructions: generate trap when executed in any but
the most-privileged level

� Execute in privileged mode, trap in user mode

� E.g. x86 LIDT : load interrupt descriptor table address

� Privileged state: determines resource allocation

� Privilege mode, addressing context, exception vectors, …

� Sensitive instructions: instructions whose behavior depends on
the current privilege level, or modify H/W state

� Control sensitive: change privileged state

� Behavior sensitive: exposes privileged state

� E.g. x86 POPF : pop stack to EFLAGS (in user-mode, the ‘interrupt
enable’ bit is not over-written)

11 The Architecture of Virtual Machines

“Classic” VM (Popek & Goldberg, 1974) (3/4)

12 The Architecture of Virtual Machines

USER

PI

SI

ISA is Virtualizable

Theorem 1: A VMM may be constructed if the set of SI’s is a subset of the set of PI’s

USER

PI

SI

ISA is NOT Virtualizable

“Classic” VM (Popek & Goldberg, 1974) (4/4)

� To build a VMM, it is sufficient for all instructions that

affect the correct functioning of the VMM (SI’s) always trap

and pass control to the VMM.

� This guarantees the “resource control property”

� Non-privileged instructions are executed without VMM

intervention

� Equivalence property: We are not changing the original code, so

the output will be the same.

13 The Architecture of Virtual Machines

Mostly-virtualizable Architectures �

� x86

� Sensitive push/pop instructions are not privileged

� Segment and interrupt descriptor tables in virtual memory

� Itanium

� Interrupt vectors table in virtual memory

� MIPS

� User-accessible kernel registers k0, k1 (save/restore state)

� ARM

� PC is a general-purpose register

� Exception returns to PC (no trap)

14 The Architecture of Virtual Machines

Virtualization overheads

� VMM maintains virtualized privileged machine state

� Processor status, addressing context, device state, …

� VMM emulates privileged instructions

� Translation between virtual and real privileged state

� E.g. guest-to-real page tables

� Traps are expensive

� Several 100s cycles (for x86)

� Certain important OS operations involve several traps

� Interrupt enable/disable for mutual exclusion

� Page table setup/updates for fork()

15 The Architecture of Virtual Machines

How to achieve safe –and- fast virtualization?

� Emulation

� Interpret each instruction

� Paravirtualize

� Modify the guest OS to avoid non-virtualizable instructions

� Binary translation (instead of trap-and-emulate)

� Static vs Dynamic

� Change processor architecture

� Intel VT , AMD Pacifica � extend x86 to make "Classic

Virtualization" possible [VM/370 origins !]

� Add a new CPU mode to distinguish VMM from guest/app

16 The Architecture of Virtual Machines

Binary Translation

17 The Architecture of Virtual Machines

� User applications are not translated, but run directly.

� Binary Translation only happens when the guest OS kernel gets called.

+ translator cache

+ trace cache

VMM architectures

18 The Architecture of Virtual Machines

Modified view of H/W

Paravirtualized VMM

Unmodified view of H/WOnly OS knows about H/W

VMM provides a virtual HW/SW interface to guest OSs

by trapping and emulating sensitive instructions

VMM examples

19 The Architecture of Virtual Machines

VMware

workstation
Xen kvm

Key Techniques (1/3): De-privileging

20 The Architecture of Virtual Machines

� VMM emulates the effect on
system/hardware resources of
privileged instructions whose
execution traps into the VMM
� aka trap-and-emulate

� Typically achieved by running
GuestOS at a lower hardware
priority level than the VMM
� “Normal” instructions run directly

on processor

� “Privileged” instructions trap into
VMM (for safe emulation)

� Problematic on architectures
where privileged instructions do
not trap when executed at
deprivileged priority!

resource

vmm

privileged

instruction

trap

GuestOS

resource

emulate change

change

Key Techniques (2/3): Primary vs Shadow Structures

21 The Architecture of Virtual Machines

� VMM maintains “shadow” copies of critical structures
whose “primary” versions are manipulated by GuestOS
� e.g., page tables

� Primary copies needed to insure correct environment
visible to GuestOS

Memory Management by the VMM

22 The Architecture of Virtual Machines

� Isolation/protection of Guest OS
address spaces

� Efficient MM address translation

VMM
machine

VMM GuestOS

“shadow” page tables page tables

process
virtual

OS
physical

entity
address space

Key Techniques (3/3): Memory Tracing (Trace faults)

23 The Architecture of Virtual Machines

� Control access to memory so that the shadow and primary
structures remain coherent
� Write-protect primary structure so that update operations cause

page faults � caught, interpreted, emulated by the VMM

� VMM typically use hardware page protection mechanisms to
trap accesses to in-memory primary structures

VMM

OS OS

ApplicationsApplications

User mode

Kernel mode
Primary

Page table

Shadow page tableShadow page table

Physical MachineTRAP

PFH

Updated

Updated

Evolution of System Virtualization

24 The Architecture of Virtual Machines

Classic Virtualization
(Popek & Goldberg)

System Virtualization

Trap-and-emulate

Hardware / VMM Interface

Enhancement

Software Virtualization
(VMware)

Binary Translation

Modern Approach

Para-virtualization
(Xen)

…

Hardware Support for Virtualization
(Intel VT & AMD SVM)

…

VMM / Guest OS Interface

Sources

� James E. Smith, Ravi Nair, The Architecture of Virtual Machines, IEEE
Computer, vol.38, no.5, May 2005

� Mendel Rosenblum, Tal Garfinkel, Virtual Machine Monitors:
Current Technology and Future Trends, IEEE Computer, May
2005.

� A. Whitaker, R.S. Cox, M. Shaw, S.D. Gribble, Rethinking the
Design of Virtual Machine Monitors, IEEE Computer, vol.38,
no.5, May 2005.

� Kirk L. Kroeker, The Evolution of Virtualization, CACM, vol.52, no. 3,
March 2009

� G.J. Popek, and R.P. Goldberg, Formal Requirements for
Virtualizable Third Generation Architectures, CACM, vol. 17 no.
7, 1974.

� Jim Smith and Ravi Nair, Virtual Machines: Versatile Platforms for
Systems and Processes, ISBN-10: 1558609105, Elsevier, 2005

25 The Architecture of Virtual Machines

Virtualization Timeline (C. Dall – 2013)

26 The Architecture of Virtual Machines

Virtual machines were popular in 60s-70s � IBM OS/370
● Share resources of mainframe computers to run multiple single-user OSs
● Interest is lost by 80s-90s: development of multi-user OS, rapid drop in H/W cost
● Hardware support for virtualization is “lost” … until the late 90s (VMware)

Virtualization alternatives & their performance

27 The Architecture of Virtual Machines

Design space

28 The Architecture of Virtual Machines

API interface ABI interface

System VMMs

29 The Architecture of Virtual Machines

Type 2

Type 1

Type 1: runs directly on hardware

• primary goal: performance

• Examples: OS/370, VMware ESXi

Type 2: runs on host OS

• primary goal: ease of installation

• Example: User-Mode Linux, VMware Workstation

Hosted VMMs

� Hybrid between Type 1 and Type 2

� “Core VMM” runs directly on hardware

� Improved performance as compared to “pure Type 2”

� Leverage s/w engineering investment in host OS for I/O device support

� I/O services provided by host OS

� Overhead for I/O operations, reduced performance isolation

30 The Architecture of Virtual Machines

Example: VMware Workstation

Process vs System VM

31 The Architecture of Virtual Machines

Process:

Provides API interface

+ Easier to install

+ Leverages OS
services – e.g.
device drivers

- Execution overhead

System:
Provides ABI interface
+ Efficient execution
+ Can add OS-
independent services –
e.g. migration,
checkpointing, sandbox

Process VM concept

The Architecture of Virtual Machines32

� A guest program developed
for a machine (ISA and OS)
other than the user’s host
system can be used in the
same way as all other
programs in the host system

� Runtime system

� Encapsulates an individual
guest process giving it the
same appearance as a native
host process

� All host processes appear to
conform to the guest’s
worldview

Process VM architecture

33 The Architecture of Virtual Machines

Whole-system VMMs

� Case of GuestOS ISA != HostOS ISA

� Full emulation of GuestOS and its applications

� Example: VirtualPC

34 The Architecture of Virtual Machines

Acceleration techniques

� Binary translation
� locate sensitive instructions in guest binary and replace on-the-fly with

emulation code or hypercall

� VMware, QEMU

� Para-virtualization
� Port the GuestOS to modified ISA

� Xen, L4, Denali, Hyper-V

� Reduce number of traps

� Remove un-virtualizable instructions

� Hardware support
� Make all sensitive instructions privileged (!)

� Intel VT-x, AMD SVM

� Xen, VMware, kvm

� Nested page tables

� Direct device assignment, IOMMU, Virtual interrupts

35 The Architecture of Virtual Machines

